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Abstract
The mechanisms of the evolution and development of the heart in metazoans are

highlighted, starting with the evolutionary origin of the contractile cell, supposedly

the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a

combination of several cellular organisms containing their specific metabolic path-

ways and genetic signaling networks. During evolution, these tool kits diversified.

Shared parts of these conserved tool kits act in the development and functioning of

pumping hearts and open or closed circulations in such diverse species as arthro-

pods, mollusks, and chordates. The genetic tool kits became more complex by gene

duplications, addition of epigenetic modifications, influence of environmental fac-

tors, incorporation of viral genomes, cardiac changes necessitated by air-breathing,

and many others. We evaluate mechanisms involved in mollusks in the forma-

tion of three separate hearts and in arthropods in the formation of a tubular heart.

A tubular heart is also present in embryonic stages of chordates, providing the

septated four-chambered heart, in birds and mammals passing through stages with

first and second heart fields. The four-chambered heart permits the formation of

high-pressure systemic and low-pressure pulmonary circulation in birds and mam-

mals, allowing for high metabolic rates and maintenance of body temperature.

Crocodiles also have a (nearly) separated circulation, but their resting temperature

conforms with the environment. We argue that endothermic ancestors lost the

capacity to elevate their body temperature during evolution, resulting in ectother-

mic modern crocodilians. Finally, a clinically relevant paragraph reviews the occur-

rence of congenital cardiac malformations in humans as derailments of signaling

pathways during embryonic development.
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1 | INTRODUCTION

In this review, we highlight the mechanisms of cardiac devel-
opment in several taxa, starting with the evolutionary origin
of the contractile cell as a proxy for the cardiomyocyte. It has

been made credible that the last eukaryotic common ancestor
(more than 1 billion years ago) has been an amalgam of sev-
eral cellular organisms containing their specific metabolic
pathways and signaling tool kits. During evolution, these tool
kits diversified as the species diversified being part of the
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Cambrian explosion. Shared parts of these tool kits led to con-
served elements acting in the development and functioning of
pumping hearts and open or closed circulations in such
diverse species as arthropods (>1 million extant species),
mollusks (about 200 000 species), and chordates (an esti-
mated 50 000 species). The genetic tool kits became more
complex by gene duplications, the addition of epigenetic
modifications, the influence of environmental factors, the
incorporation of viral genomes, the cardiac changes necessi-
tated by air-breathing, and many others. Here, we evaluate
mechanisms involved in cephalopods (as an example of mol-
lusks) in the formation of three separate hearts, and in adult
insects (an example of arthropods) in the formation of a tubu-
lar heart. A tubular heart is also present in embryonic stages
of chordates, leading here to the septated four-chambered
heart, passing through stages with a first heart field (FHF) and
a second heart field (SHF) in birds and mammals. The four-
chambered heart permits the formation of a high-pressure
systemic and a low-pressure pulmonary circulation in birds
and mammals, allowing for high metabolic rates and mainte-
nance of body temperature. Crocodilians also have a (nearly)
separated circulation, but their resting temperature conforms
with the environment. Using data from cardiac embryology,
we argue that endothermic ancestors lost the capacity to ele-
vate their body temperature during evolution, resulting in
ectothermic modern crocodilians. Finally, a clinically rele-
vant paragraph (13) reviews the occurrence of congenital
cardiac malformations in humans1 as derailments of signal-
ing pathways during embryonic development.

2 | EVOLUTION OF THE
CONTRACTILE CELL

This early contractile cell was probably an endosymbiotic
cell, an aggregation containing absorbed bacteria forming a
nucleus, an enslaved α-proteobacterium type mitochondrion,
a prokaryote cilium, and others, exploiting actins, myosins,
and tubulins as early as ~1 billion to 1.9 billion years ago.2,3

These cells could migrate and contract and contacted each
other by junctions and junctional complexes. Bilaterians
evolved, forming a mesoblast, the anlage, to form many
organs. The first one with a pulsatile, heartlike structure
might have been akin to the Ediacaran Kimberella, about
600 million years ago and at the roots of the Cambrian
explosion.4,5 Several fairly different cardiac themes evolved
with varying renditions of peristaltic and rhythmically beat-
ing hearts, driving extinct species and still thriving in extant
Protostomia and Deuterostomia. We lack evidence about the
cause of (mass) extinctions of many beautiful species, with
the possible exception of the impact of one particular mete-
orite and the most recent impact of human influence. It is
also likely that improperly adapted cardiac functions culled

these inevitable evolutionary outcomes, as exemplified by
lethal congenital cardiovascular malformations in current
clinical practice. It has been postulated that a large number
of prenatal deaths in mutant mice is related to mal-
functioning of the cardiovascular system.6,7 Here, the study
of embryonic stages becomes necessary, not as a recapitula-
tion of evolution but as a way of providing independently
living larval and adult organisms that are adapted to their
environmental challenges. In the meantime, the successful
embryos need to stay alive through all their phases of growth
and remodeling by recombination and diversification of
available and newly recruited elements of their (signaling)
tool kits as used by Erwin.5

3 | CARDIAC PRECURSORS

It is tempting to consider hearts of different chordate species
as points on a linear arrangement. This is an oversimplifica-
tion, as extant species have developed independently from
(common) ancestors. This holds true even more for embry-
onic stages as intermediates to the adult forms. Human and
mouse heart development, as well as chicken and Zebrafish,
have been studied most extensively, usually in combination
with explanations on (molecular) mechanisms related to con-
genital cardiac malformations. Mechanisms described in vari-
ous vertebrates have evolved over different evolutionary time
spans, as fish and amphibians evolved early. The first mam-
mals separated from reptilian ancestors ~350 million years
ago, whereas birds came much later in existence (~150 mil-
lion years). This resulted in an evolution of varying and
increasing complexities. The astonishing success of the identi-
fication of similar molecular key elements underlying cardiac
development in diverse invertebrate and chordate species8 has
dominated the idea of common conserved homologies. How-
ever, new elements including epigenetic regulation and hemo-
dynamic forces have been added during the millions of years
of evolution, needing a new synthesis of concepts of peristal-
tic and beating pumps in open and closed circulations.

It is evident that contracting muscular tubes have found
their ways in very divergent taxa such as protostomes
(ecdysozoans: arthropods, including insects; lophotrochozoans:
annelids, mollusks, including octopus), and deuterostomes
(echinoderms, chordates, including vertebrates). Figure 1 (after
Schierwater9) shows the phylogenetic relationships of these
taxa. Their tubes perform analogous functions but are anatomi-
cally nonhomologous, supporting the concept of convergent
evolution (homoplasy) even to the extent that a three-
chambered heart is present in cephalopods (a systemic heart
comparable with a vertebrate left ventricle, and two respiratory
branchial hearts in octopus) and in most reptiles, as in turtles.
Furthermore, supporting wing hearts (insects), accessory hearts
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(hagfish), and muscularized lymph hearts (amphibians) are
present.

In tunicates (such as the ascidian Ciona), heart develop-
ment has been studied extensively10-12 and compared to the
vertebrate sister group. Ascidians possess a general chordate
body plan including notochord, central nervous system, lateral
muscles, and a ventral endodermal pharynx with gill slits. The
heart beats peristaltically, although potentially in a reversible
fashion through an open circulatory system, comparable to that
of insects,13 and is not lined by endothelial cells. It functions
only after a clade-specific morphogenesis,11 in which it trans-
forms from a free-swimming larva into a sessile filter-feeding
adult. The heart rudiment develops from a single pair of blas-
tomeres in the 64-cell stage, together with several other body
muscles.10,14 The descendants of these blastomeres express
Mesp, which has an essential role in the speed of migration
and the specification of multipotent cardiac progenitor cells.15

In ascidians, Mesp1/2 is regulated by beta-catenin, Tbx6, and
others. Mesp1, likely representing the first element of the car-
diac tool kit (Figure 2), probably functions as a dual regulator,

activating Ets1/2 and Hand-like and repressing Raldh2.11

Excess cardiac tissue by Mesp-driven Ets1/2 overexpression
may lead to a two-compartment phenotype,16 although being
distinct from a cardia bifida as observed after retinoic acid
treatment of chicken embryos.17 In chicken embryos, GATA
4/5/6 is expressed in both precardiac mesoderm and gut epi-
thelium.18 In mouse embryonic stem (ES) cells, Mesp acti-
vates Hand2, Nkx2.5, and GATA4, while repressing genes
involved in the maintenance of multipotency.19 In a human
ES cell line, performing a whole genome-based transcriptome
study, the Mesp1 regulatory network showed a highly
dynamic up-regulation of extracellular matrix proteins.20

A survey of 647 patients with congenital outflow tract (OFT)-
related heart defects delivered seven patients with Mesp1
mutations,21 suggestive of its contribution to the development
of congenital heart disease. The differentiation of the
precardiac mesoderm in an evolutionary context is driven by
interactions between a restricted set of genes. A handful of
orthologues (Nkx2.5/Tinman, GATA 4/5/6/Pannier, Hand1/2,
Tbx5, Mef2c) in mesodermal precardiac tissues are referred to

FIGURE 1 Phylogenetic
relationships to demonstrate the position
of arthropods, mollusks, and chordates
among the bilaterians and metazoan
(After9)
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as “heart regulatory kernel”11,22,23 or “core cardiac transcrip-
tion factors,“24 followed by various sets of “terminal selec-
tors”25 or “patterning genes,” 24 with very different outcomes
in ascidians and vertebrates,26 which can be extended to other
taxa such as insects and mollusks.27 In arthropods, the various
types of circulation have recently been described.28 The Dro-
sophila open circulatory system29 contains a heart consisting
of 52 cell pairs surrounding a cardiac cavity and lined by non-
muscle pericardial cells with shared ontogenetic origin. Not-
withstanding different morphogenetics, vertebrate and fly
heart development show many commonalities. In Drosophila
tailup (Islet1 homolog), among others also essential for the
formation of the alary muscles connecting the heart tube to
the exoskeleton, is part of a cardiac regulatory unit that
includes tinman (the fly homolog of Nkx2.5), pannier
(GATA homolog), decapentaplegic (BMP family member),
and wingless (Wnt homolog), and all can be included in the
ancestral core set of cardiac transcription factors. These tran-
scription factors have a dynamic expression pattern during
heart development, suggesting that their function can vary
depending on timing and cellular context.27,30 In chicken, het-
erotopic transplantation of the organizer Hensen's node is able
to induce ectopic cardiac differentiation in the host,
expressing early cardiac markers, including Nkx2.5, but also
involving fibroblast growth factor (FGF) and transforming
growth factor (TGFβ) signaling.31

In mollusks, essential functions are performed in determin-
ing left/right asymmetry and chirality by the already described
cardiac signaling network, such as decapentaplegic/BMP,
Nodal signaling, and also dose-dependent formin genes.32

Due to the complex evolution and diversification of these spe-
cies, various interactions are proposed.33 Nodal signaling is a
key factor in the determination of left/right asymmetry, char-
acteristic for body plan development in, for example, snails,34

and also in cardiogenesis.35 In the freshwater snail Lymnaea,
a set of tool kit genes involved in vertebrates both in car-
diogenesis and in left/right body asymmetry (Nodal, BMP4,
FGF8, Lrd, Inversin, Brachyury) is expressed in embryonic
stages36 and related to the sidedness in other molluscan

species.37 The determination of chirality in snails is compli-
cated by a system of delayed inheritance in which the mater-
nal genotype determines the phenotype in the offspring.38

Heart development in the more elaborate cephalopods has
been studied in more detail, showing a closed endothelium-
lined circulatory system. This probably developed in parallel
to the vertebrate system as in general invertebrates, including
other mollusks present with an open vascular circulation that
changes considerably, establishing first a larval heart and later
in development a true heart.39 In squid, vascular endothelial
growth factor (VEGF) and FGF receptors have been found in
embryonic vessels,40 pointing to conserved signaling path-
ways; however, more studies are necessary to establish the
gene regulatory networks in molluscan cardiogenesis. The cir-
culation system in hagfish, the most ancestral of extant verte-
brates, is special as it includes several accessory pumps to the
branchial heart, which is equivalent to the heart in other verte-
brates.41 These hearts exhibit limited looping and absent OFT
elements.

In chordates, the development of the heart is a multistep
process involving the lateral plate mesoderm-derived first
heart field (FHF) and second heart field (SHF), although it is
argued that both form a continuum in time and space. In
principle, the FHF forms the left ventricle while the SHF
adds cells to the venous and arterial poles, contributing to
the atria and right ventricle, respectively. The details will be
discussed in the next paragraphs (see also Figure 3).

4 | THE FIRST HEART FIELD

The primitive cardiac tube has been considered as the sole
primordium of all cardiac segments42 until the detection of
the two heart fields in chicken,43,44 in mouse,45,46 and in
Zebrafish.47 The molecularly distinct precursors of the heart
fields both express Mesp1, showing that FHF cells are
unipotent, but SHF precursors are bipotential.48 It became
clear that the primitive cardiac tube (Figure 3) derives from
the FHF and basically has a left ventricular identity. This
identity prominently displays Tbx5 and Nkx2.5 expression

FIGURE 2 Cardiopharyngeal
ontogenetic motif in Ciona. In ascidian
embryos, cell fates are first restricted to a
few progenitors, which are secondarily
amplified (From Anderson and
Christiaen59)
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in the mouse embryo.49 In the embryo, earlier cardiac cres-
cent progenitors of the SHF are positioned medially to the
FHF (Figure 3 Left). Embryological studies indicate that the
FHF-derived left ventricle is ancestral,24,50 with progenitor
cells of the arterial and venous poles48,51-54 positioned poste-
riorly to the ventricular field. These will be guided by
chamber-specific gene interactions involving Tbx1, Tbx2,
Nkx2.5, and ANF or will embrace a ventricular fate in the
absence of retinoic acid signaling,55-57 which also belongs to
the cardiac tool kit. Gene regulatory networks determining
the interactions in the various precursors have been summa-
rized by Herrmann et al58 and Anderson and Christiaen.59

See also Figure 2.

5 | THE SECOND HEART FIELD

There is a necessity to increase cardiac recruitment in the
broader field of the SHF60 before potentiating new compart-
ments.22 The SHF cells (Figure 3 Center right, Right) have a
delayed differentiation but are more proliferative.

The SHF provides initially for precursors for both the
arterial and the venous poles.53,54 A caudal proliferation cen-
ter contributes to both the anterior and posterior poles of the
heart.61 Later, the SHF separates in the anterior and posterior
heart fields, accompanied by the breakthrough of the dorsal
mesocardium (Figure 3 Center right). The anterior field pro-
vides for the right ventricle, the OFT, and part of the ventric-
ular septum, but not the atria, epicardium, or coronary
vessels, while the OFT smooth muscle cells are of mixed
SHF and neural crest (NC) origin.62 The cardiac epicardium
and part of the coronary arteries find their origin in the

posterior SHF.63 Tbx5 and Tbx1, expressed in the SHF
mesoderm, display different functions in the anterior and
posterior parts54,57 and, together with retinoic acid, regulate
the segregation of arterial and venous pole progenitors. Het-
erospecific interactions between a small number of the tran-
scription factors Tbx5 and Nkx2.5, and GATA4, also part of
the cardiogenic tool kit, underlying gene expression patterns
in specific tissues, have been demonstrated in mammalian
cardiogenesis.64 However, this shows much complexity and
requires fine-tuning involving additional partners, including
histone modifications, epigenetic regulation,23,65,66 involve-
ment of hemodynamics,67,68 regulation of cell movement,69

and participation of microRNAs70,71 to provide for expan-
sion of cardiac progenitors, compartments, and cell
differentiation.

6 | THE POSTERIOR SECOND
HEART FIELD

The posterior SHF is interesting in amniotes as it shows the
development of two organ systems, the lungs and the atria.
The co-evolution of lungs and the atrial compartment of the
heart, including the atrial septum, is probably based on the
conserved interaction of Tbx5-Wnt2/2b signaling pathways,72

found in the posterior SHF of the lateral plate mesoderm in
air-breathing amphibians, as well as in amniotes. This makes
the accidental appearance of symmetric atrial and lung devel-
opment in congenital forms of atrial isomerism understand-
able. An important derivative of the SHF with respect to atrial
development is the dorsal mesenchymal protrusion (DMP),
involved in atrial septation by fusion with the endocardial

FIGURE 3 Development of the heart tube. Left: The cardiac crescent contains both FHF and SHF precursors (arrows). Center left: The
slightly looped primary heart tube connects the venous and arterial poles. Center right: In a later stage, the still undivided heart with an atrial
component with the cardinal veins and the pulmonary vein. The ventricular compartment shows anterior (future right) and posterior (future left)
sides. The cardiac jelly has developed into two cushion complexes: the atrioventricular and outflow tract cushions (blue). The arterial pole shows the
aortic sac and with the attached pharyngeal arch arteries. The dorsal mesocardium starts to disrupt (brown hole). The second heart field is depicted in
yellow. Right: The derivatives of the anterior and posterior parts of the second heart field (yellow) together with the migrated neural crest cells
(blue-green). AP, arterial pole; AV, atrioventricular; Dao, dorsal aorta; FHF, first heart field; OFT, outflow tract; PAA, pharyngeal arch arteries;
PHT, primary heart tube; SHF, second heart field; VP, venous pole
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atrioventricular (AV) cushions.73 The progenitors within the
posterior SHF give rise to multipotent cardiopulmonary pro-
genitors, a process that is regulated by hedgehog (Shh/Gli)
signaling from the foregut endoderm.74 Other paracrine sig-
naling pathways in amphibians and amniotes also involve reti-
noic acid, GATA4/5/6, and Bmp. It is interesting to note that
a subpopulation of myocardial cells added to the venous pole
does not express Nkx2.5 and is related to the development of
the cardiac pace-making and conduction systems.75,76 Tbx5
as an essential transcription factor for heart development inter-
acts with the transcriptional repression machinery of the
nucleosomal remodeling complex,77 which evolved during
the early diversification of vertebrates (excluding fish)
together with the evolution of cardiac septation.78-80

7 | THE ANTERIOR SECOND
HEART FIELD

The SHF is active from fish onward,81-83 although with a
diverse outcome as there are more than 25 000 species of fish
described. In general, the anatomy of the fish heart has conve-
niently been divided in four main types mainly based on ven-
tricular structure and the presence/position of coronary
vessels.83 The heart is tubular with three compartments: the
sinus venosus, the atrium, and the ventricle with sinoatrial
(SA) and AV valves between the respective compartments.
The OFT contains multiple valve leaflets. In sharks, several
species-dependent rows of conal valves are present as in the
myocardial part (conus arteriosus) of the “ancient” teleost
heart. In several species, smooth muscle cells and fibro-
blasts84 have been reported in the wall of the conus. In the
“modern” teleost, a single valve set has been maintained,
probably as a result of evolutionary loss. In lungfish, the mus-
cular conus is free from valve leaflets, while a spiral valve is
reported in the more distal truncus arteriosus, which is also
myocardial. The smooth muscular elastin-rich bulbus arteri-
osus is mostly considered as the vascular wall distal to the
OFT valves and probably akin to the arterial trunk of land-
based vertebrates (reviewed by Grimes and Kirby83). In the
early mammalian heart, the “bulbus cordis” usually identifies
the myocardium, giving rise to the OFT. However, this
includes the right ventricle as well as the conus and the
truncus arteriosus, as a consequence giving rise to many mis-
interpretations.85 In reptiles, birds, and mammals, the conus is
remodeled and incorporated into the right(−sided) ventricle,
whereas in fish there is no right ventricle. In Zebrafish, two
waves of SHF-derived cells migrate to the arterial pole. Ven-
tricular progenitors migrate directly to the arterial pole,
whereas OFT progenitors become sequestered temporarily in
the core mesoderm of the second pharyngeal arch, meanwhile
down-regulating Nkx2.5. Hereafter, they migrate and differ-
entiate into OFT lineages residing in both conus and bulbus,81

with different sensitivities to fgf8. In embryonic Zebrafish,
progenitors are continuously added to the ventricle, whereas
late/differentiating progenitors are added to the bulbus,
thereby lengthening the FHF-derived primitive heart tube.47

In amniotes, the right ventricle is a new compartment
derived from the anterior SHF, requiring canonical Wnt/β-
catenin signaling.86 It develops in concert with the evolution-
ary new addition of air-breathing, requiring functioning lungs.
In lungfish, this is heralded by partial septation of both the
atrium87 and the ventricle,88 pointing toward separation of the
pulmonary and systemic blood flows. In amphibians, only the
atrium, but not the ventricle, is septated, but this group has
acquired the potency of skin-breathing, probably requiring
another type of circulation. In amniotes, septation progressed
by remodeling of the OFT, originally only serving as outflow
of the primary heart tube. SHF-derived NKx2.5-positive myo-
cardial precursors are asymmetrically contributing to the pul-
monary and aortic sides of the OFT, resulting in a
lengthening of the pulmonary trunk and a distal positioning of
the pulmonary semilunar valve, also referred to as the “pul-
monary push.”89 The OFT of the doubled ventricle is now
doubly connected to the aortic sac compared to the single
connection in the proposed ancestral vertebrate and in ascid-
ians. Elongation of the cardiac tube takes place by progressive
addition of SHF-derived cells (reviewed by Cortes et al90),
requiring disheveled and Wnt5a.91

Apart from SHF progenitors, the anterior (arterial) pole
of the heart receives an additional population, the neural
crest cells (NCCs).92-96 The interesting mix of SHF and
NCC populations provides for several intricate remodeling
processes, including myocardial differentiation (more specif-
ically of OFT and right ventricle), OFT cushion morphogen-
esis, semilunar valve formation, separation of the aortic and
pulmonary channels, and arterial vessel wall differentiation.

In ancient teleosts, such as Arapaima gigas, NCCs might
be encountered in the bulbus segment of the heart as indicated
by the presence of pigment cells.97 (See Reyes-Moya et al.98)
Lineage labeling in Zebrafish demonstrated that NCCs from
the classical cardiac neural crest (caudal to the otic placode)
could give rise to MF20-positive muscle cells in the complete
cardiac tube. In addition, a more rostral segment of the neural
crest is also involved.99 Laser ablation of relevant parts of the
neural crest resulted in severe cardiac malformations.100 In
(transgenic) Zebrafish, NCCs are reported to migrate as two
populations to the embryonic heart tube. The first wave passes
through pharyngeal arch 1 and arch 2 and gives rise to about
10% of the cardiomyocytes over the entire tube. SHF-derived
cardiomyocytes mostly occupy the distal third part of the
heart.96 The much later second wave of NCCs in Zebrafish96

migrates along the sixth pharyngeal arch, enveloping the
endothelium of the ventral aorta and invading the bulbus arte-
riosus. FGF inhibition prevents contribution to the OFT but
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not the integration in the heart tube, while NCC ablation
results in restricted recruitment of SHF cells. In mice, PO-
1-marked NCCs were found as undifferentiated cells nested
in the myocardium of the left ventricle, excluding the right
ventricle. These cells have the potential to differentiate into
cardiomyocytes after injury.101 It is interesting to note that in
chicken, early and late nonmyocardial NCC migration waves
were indicated populating the OFT septal complex and pha-
ryngeal arches, respectively.102 The interactions in birds and
mammals with their inherent OFT septation is further dis-
cussed below.

8 | CARDIAC SEPTATION

It is evident that cardiac septation is restricted to several classes
of vertebrates—lungfishes, amphibians, reptiles (including
birds), and mammals—as it is related to the advent of air-
breathing and the accompanying presence of lungs requiring
separation of pulmonary (low-pressure) and systemic (high-
pressure) circulation. Complete septation, resulting in four
chambers, is encountered only in adult crocodilians (for a criti-
cal comment, see “Evo-devo aspects of congenital mal-
formations paragraph 13”), birds, and mammals. Most
amphibians, with the exception of lungless salamanders, pre-
sent with a septated atrium only. The proximal part of the
Xenopus single ventricle derives from the FHF, while the distal
part feeding the OFT derives from both FHF and SHF,103 indi-
cating an overlap of the cardiac fields. Furthermore, in contrast
to birds and mammals, it is only the SHF and not the NCC that
forms the incomplete spiral septum of the amphibian OFT.103

In reptiles, birds, and mammals, the composition of the OFT
septation complex presents a combined participation of NCCs
and SHF104 (Figure 4). The majority of reptiles (lizards, snakes,
turtles) have an anatomically partially divided ventricle.80,105

Varanid lizards and pythons have a functionally septated

ventricular compartment during systole,106 reducing shunting
between systemic and pulmonary blood.

During embryonic development, hearts of all vertebrates
exhibit a kind of looping, which is governed by a right-
handed signaling pathway involving Nodal, BMP, and
Pitx2.107 In fish, addition of SHF-derived cells47 results in a
limited elongation of the primitive heart tube, probably
accompanied by a restricted repositioning of atrium and ven-
tricle. In other vertebrates, the elongation process continues,
probably by more massive addition of SHF cells to the FHF-
derived primitive heart tube. At the venous pole, this gives
rise to the atrium. Septation of the atrium is most likely a phe-
nomenon invoked by formation of the lungs, as will be related
in a following paragraph. At the arterial pole, the SHF pro-
vides for the OFT that is serially connected to one ventricle.
In mammals this will become the right ventricle, and in non-
crocodilian reptiles probably the cavum pulmonale (see
below). Formation of the complete septum between left and
right ventricles (Figure 5), however, is very complicated, indi-
cated by the high percentage of ventricular septal defects
(VSDs) in human congenital heart disease (reviewed in
Gittenberger-de Groot et al108). In non-crocodilian reptiles,
usually several septa are present between three interconnected
compartments, being the cavum pulmonale, cavum venosum,
and cavum arteriosum. The homology and origin of these
cava from FHF or SHF are uncertain. The cavum arteriosum
resembles mostly the mammalian left ventricle in position as
it feeds the systemic aorta (in reptilians, the right fourth pha-
ryngeal arch artery). The cavum pulmonale may resemble the
mammalian right ventricle as it feeds the pulmonary trunk,
but also the visceral aorta (in reptilians the left fourth pharyn-
geal arch artery). The cavum venosum is usually a smaller
compartment located intermediate between the atria, the other
ventricular cava, and the OFT. Functionally, the mixing of
blood from the different cava is probably a minor issue consid-
ering the myocardial architecture of parallel trabeculations109-111

FIGURE 4 Outflow tract and pharyngeal arch arteries viewed from ventral in reptile (left), bird (center), and mammal (right). The carotid arch
arteries (PAA3) are depicted in purple, the aortic arches (PAA4) in pink, the pulmonary arches (PAA6) in blue, and the dorsal aortae or rudiments in
red. Note the disappearance of the left fourth PAA in birds (center) and of the right sixth PAA in mammals (C). As a consequence, the NC-derived
part of the outflow septum (green) associates with the SHF-derived aortic flow divider (light yellow) in birds (B) or the SHF-pulmonary flow divider
(dark yellow) in mammals (D), resulting in two different OFT septa. NC, neural crest; OFT, outflow tract; PAA, pharyngeal arch arteries; SHF,
second heart field (From Poelmann et al104)
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and the fluid characteristics of blood.112 The myocardial ele-
ments separating these chambers have been given various func-
tions and names over the last century. The definition depended
on their position in the body (horizontal and vertical septum113),
their place in the heart (Bulbo-auricular Sporn, Bulbusleiste114),
bulbus lamella, muscular ridge, aorticopulmonary septum
(reviewed in Jensen et al115), or their appearance during embry-
onic development (folding septum, inflow septum, OFT septal
complex67,80). The participation of the FHF and SHF with
these structures has not been established, making the determi-
nation of homology with the septal structures in mammals
hazardous. It is tempting to nominate the mammalian inter-
ventricular septum as the border between left and right ventri-
cles based on the expression on FHF- and SHF-related patterns;
however, the evolution and development of the interventricular
septum with its inlet (probably FHF-derived) and folding (prob-
ably both FHF- and SHF-derived) constituents is too compli-
cated for this simplification.79,80,116 Further investigations
determining the genetic networks in the septal complexes of
reptiles, birds, and mammals are warranted before a more defin-
itive conclusion can be drawn concerning the homology of the
cava and ventricles and their separating myocardial and mesen-
chymal elements.

9 | SEMILUNAR VALVES AND
THE OFT

The usual three-leaflet semilunar valve configuration in
mammals and birds consists of two sets: one in the aorta
and one in the pulmonary trunk.117 As a congenital mal-
formation in humans, bicuspid valves are quite common
(see also “Evo-devo aspects of congenital mal-
formations”). Reptiles nearly always present with bicuspid
semilunar valves in all three major arteries, two persisting
aortas. and one pulmonary trunk.118 In fish with one
undivided OFT, the conal/truncal valves have many phe-
notypes, including multiple rows (elasmobranchs), a sin-
gle valve (teleosts), and a spiral truncal valve (lungfish),
as described above. The area in which the valves are
embedded is very dynamic during embryonic develop-
ment. It consists of epicardial, myocardial, endocardial,
endothelial, and mesenchymal (smooth muscle and fibro-
blast) specializations from the SHF, supplemented by NC-
derived mesenchymal, smooth muscle, and neuronal cells
and fibroblasts. The interactions between these cell
populations in the OFT dictate the outcome of the differ-
ent phenotypes.

FIGURE 5 Ventricular septation in a chicken embryo. Merging of folding and inlet components before septation is finished. A: Most cranial,
showing the epicardial cushion (*) between the outflow tract and the right and left atria, with the AV cushions in between. The left ventricle is
grazed in the section. B,C: Cranial level of the folding septum between the OFT and the fused atrioventricular cushions. D: Folding septum borders
the interventricular foramen. E: AV cushions attached to the flanks of the IS, where the tip of the septal OFT cushion is found (arrow). IS and FS
have fused and constitute the floor of the interventricular foramen. E,F: Right AV junction is present in the right ventricle immediately above the
arrow and can be traced downstream in D. AV, atrioventricular; AVC; atrioventricular cushions; FS, folding septum; IS, inlet septum; LA, left atria;
LV, left ventricle; OFT, outflow tract; RA, right atria; RV, right ventricle (from Poelmann et al80)

POELMANN AND GITTENBERGER-DE GROOT 641



The delineation of the OFT and its components has
received much attention and discussion in comparative car-
diac embryology.83,119-123 This has rendered sometimes con-
flicting hypotheses about compartmental properties and
homologies in comparative vertebrate studies and the
description of congenital malformations in the human popu-
lation, with consequences for more recent aspects of gene
regulatory networks and protein interactions. It seems evi-
dent that the OFT in fish, for example, consists of a proximal
myocardial conus arteriosus as well as the more distal bulbus
arteriosus rich in smooth muscle cells as well as elastin. The
evolutionary origin of the latter is still uncertain, although
both conus and bulbus are SHF-derived123 with an addi-
tional contribution of NCCs. Due to heavy remodeling in
mammals, the distinction in conus and bulbus is far from
clear. Our approach is a three-part distinction, from proximal
to distal: (1) the myocardial tube harboring the proximal
endocardial OFT cushions and involved in ventricular
septation; (2) the transitional zone with distal endocardial
cushions developing into the arterial roots with the develop-
ing semilunar valves; and (3) the arterial walls of the pulmo-
nary trunk and the ascending aorta. This distinction
essentially mirrors the description by Grimes et al.85

10 | THE OFT ENDOCARDIAL
CUSHIONS

The endocardial cushions serve a double function in car-
diogenesis: formation of the AV and semilunar valves, and
separation of the systemic and pulmonary flows (Figure 5).

Endocardial cushions, beginning as acellular cardiac jelly,
will develop in the AV canal as well as in the OFT. The car-
diac jelly, sometimes considered the myocardial basement
membrane, contains extracellular matrix components such as
hyaluronan and aggrecan124 and will become cellularized by
endocardial-mesenchymal transition (EMT) primarily from
the overlying endocardium.125-128 Secondarily, other cell
populations take part in expanding the cushions. These
include epicardial cells migrating from the AV junction in
the case of AV cushions,129-131 and epicardial cells and
NCCs in the case of OFT cushions.103,132 Each individual
cushion probably receives its own balanced set of mesenchy-
mal cells.130,131,133 In chicken embryos, it is shown that the
formation of the semilunar valves highly depends on the
interaction of endocardial and NC-derived mesenchymal cells
guided by hemodynamical forces sculpting the OFT.67 It is
noteworthy that also in these events of cardiogenesis, asym-
metric development is apparent, although the main leaflets of
the aortic and pulmonary semilunar valves originate from the
same two OFT endocardial cushions. Only the so-called non-
facing leaflets117,133 may have a different contribution of
NCCs. Indeed, aortic bicuspidy in humans is far more

common than pulmonary bicuspidy, as is also supported by
studying a hamster strain.134 Another asymmetric event is the
expansion of the pulmonary trunk compared to the aorta, also
called the pulmonary push,89 which is probably responsible
for the more distal location of the pulmonary orifice and
valve compared to the aortic orifice. The expansion of the
pulmonary trunk also corroborates the absence of rotation of
the OFT, as has been advocated.135-137

EMT of the endocardial area is regulated by TGFβRIII,
Cadherin 11, and Postn encoding for the extracellular matrix
protein periostin.138 Gene regulatory networks in the cardiac
tool kits have been studied in mammalian embryos. These
include but are not limited to Notch1,139 Slit-Robo,140 Krox
20,141 Wnt signaling,142 TGFβ signaling,143 NFATc1,144

ADAM17,145 Msx,128 and matrix proteins such as laminin,146

versican,147,148 periostin,149 hyaluronan,145 tenascin and
fibrillin,68 elastin, collagens, and others (see Pucéat150).

The other functions of the endocardial cushions are
involvement in both AV septation151 and OFT separation.152

In the OFT, an associated role of NCCs is obvious, although
the exact interaction with SHF mesenchymal cells is far from
clear. This is partly due to the dynamic evolutionary history
of this area. In fish and amphibians, separation of the OFT is
not taking place, although NCCs have been reported to
migrate to this area.96,99,100,103 The situation in reptiles varies,
as only in crocodilians and birds is OFT separation complete,
whereas in lizards, snakes, and turtles separation is more akin
to that of amphibians. This does not imply that the OFT septal
complex in crocodilians, birds, and mammals is identical
(Figure 4). We have to realize that separation in crocodilians
results in the formation of three arterial trunks: a pulmonary
trunk (connected to the sixth pharyngeal arch arteries) a vis-
ceral and a systemic aorta (left and right fourth pharyngeal
arch arteries), but in birds and mammals only one aorta per-
sists as outflow of the heart. In birds, the early embryonic left
visceral aortic arch artery will regress from the OFT at a time
slightly before the completion of ventricular septation, while
the right one will persist as the definitive aorta. In mammals,
the left aortic arch artery will develop into the definitive aorta,
while the right-sided arch artery will become incorporated
into the subclavian artery. This implies that in these different
taxa, the cellular partners in the OFT septal complex will
show different spatial patterns.104 The OFT septal complex
includes NCCs and SHF mesenchymal cells.104,153,154 Fur-
thermore, condensed mesenchymal prongs suggestive of
NCCs155,156 co-populate two OFT endocardial cushions, the
septal cushion (dorsally located) and the parietal (ventral)
one. The function of these prongs, originally hypothesized to
be involved in OFT septation, is unclear, as these are present
in both unseptated (turtles) and septated (crocodilians) rep-
tiles, as well as in birds and mammals. After normal remo-
deling of the human OFT, the septal complex is incorporated
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into cardiac structures, such as the subpulmonary infundibu-
lum, and cannot be recognized anymore as a septal struc-
ture.157 Abnormal remodeling leading to congenital OFT
malformations, however, may show persisting remnants of
the septal complex.122 Recently it was reported that in a com-
mon arterial trunk (CAT) with an unseptated OFT, NCC-
derived prongs were present in the endocardial cushions. The
NCCs, hampered by abnormal SHF positioning with diminu-
tive pulmonary push, take an aberrant course to the endocar-
dial cushions.154

The toolboxes govern mechanisms such as endoderm sig-
naling, EMT in the endocardium, mesenchymal-epithelial
transition in the SHF, proliferation to increase the size of the
involved cell populations, recruitment of NCCs, migration
of SHF and NCCs, interactions between SHF and NCCs,
and the differentiation to their final phenotypes, even includ-
ing apoptosis of NCCs.92 The sum of these interacting
mechanisms leads to remodeling of the OFT. It comes as no
surprise that improper OFT remodeling accounts for a
majority of congenital cardiovascular malformations in new-
borns, whereas an unknown number of affected embryos
could have been lost in pregnancy.

11 | THE ATRIAL SEGMENT

In vertebrates, a considerable remodeling of the inflow seg-
ment of the heart is taking place due to the advent of air-
breathing and the consequence of pulmonary venous return to
be separated from the systemic circulation. In other words, the

single systemic entry will be joined by the pulmonary entry,
realizing a double inlet. In early vertebrate development, the
sinus venosus segment of the primary heart tube will feed
the (common) atrium (Figure 6). As the sinus venosus is
myocardialized in many species, it can be considered a true
cardiac chamber. It will remain recognizable as a separate
structure in hagfish connected to the left side of the common
atrium,41 but in birds and most mammals (except mono-
tremes158) it will become incorporated in the dorsal atrial
wall159 (Figure 6). In lungfish, a separate pulmonary channel
traverses the main atrial compartment and delivers oxygenated
blood directly to the ventricle.87 The posterior SHF gives rise
to additional cells, leading to expansion of the appendages160

of the atrium. The mechanism by which SHF-derived cells
become inserted into the cardiac tube has not been analyzed in
detail. Tbx5 mutation as in Holt-Oram syndrome is character-
ized by atrial septal defects and occasional right lung agene-
sis161 apart from upper limb malformation. Evolutionary loss
of lungs in nearly two-thirds of the salamanders that,
as a consequence, have become obligatory skin- and
buccopharyngeal-breathers has a dramatic impact on the con-
figuration of the circulatory system, particularly on cardiac
morphology. In these species, the atrium is only partially
septated. In amphibians, the lungs induce atrial septation simi-
lar to mammals, and atrial septum reduction results directly
from reduced or absent lungs.162 As these species lack pulmo-
nary veins, all the blood flowing into the heart derives from
the cardinal veins via the sinus venosus in the right-sided part
of the atrium, while pulmonary ostia in the left atrium are

FIGURE 6 Two stages in cardiac
development viewed from ventral. The
endocardial OFT and AV cushions
involved in septation are depicted in grey.
The SHF-derived regions are in yellow.
Left: Atrium and ventricle are not septated
yet. Right: Four-chambered heart. The left
ventricle is FHF-derived; the main
components of the other chambers are
probably SHF-derived. Note that the
posterior walls of both right and left atria
are SHF-derived, as this represents the
incorporated sinus venosus including, for
the left atrium, the pulmonary vein
myocardium. Ao, Aorta; FHF, first heart
field; LA, left atrium; LV, left ventricle;
OFT, outflow tract; PT pulmonary trunk;
RA, right atrium; RV right ventricle; SHF,
second heart field (Adapted from
Gittenberger-de Groot et al232)
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lacking. During normal development, the pulmonary veins
become incorporated into the left atrial body wall (frog163) but
not the atrial appendage (human164), demonstrating the close
relationship between the left atrium and lung circulation.

The atrial myocardium derives from the posterior SHF
(reviewed in Carmona et al165) in both Zebrafish47 and the
mouse embryo.76 In the latter, left/right identity is governed
by Pitx2c expression patterns,166,167 which is also reported in
the agnathan lamprey.168 The lineage of the venous pole has
been established in podoplanin-mutant mice159 by Tbx18
expression75 and by clonal analysis.53 Caval vein myocardium
has a distinct origin from the SHF based on its transcriptional
profile,75 sometimes called the tertiary heart field.169 In early
development, the pulmonary veins are connected to the sinus
venosus segment in the left atrium.170 There is a common
SHF contribution to the venous pole,159 segregating into left
and right components, with no indication of an independent
lineage for caval vein myocardium.53 Unexpectedly, a lineage
relationship was also found between the venous pole and part
of the arterial pole, which is derived exclusively from the
SHF.53 Note that the left superior caval vein in human will be
transformed into the coronary sinus. In the human population,
deficient PDGF signaling is related to pulmonary vein abnor-
malities.171 A major structure in atrium development found in
many amphibians and in amniotes (reptiles, birds, mammals)
is the atrium septum,172 dividing the common atrium into left-
and right-sided chambers. The primary foramen is closed col-
laboratively by the AV cushions, the mesenchymal cap, and
the DMP, tissues that can also be found in lungfish.172 In pla-
cental mammals, septation is completed by addition of the sec-
ond septum, while definitive closure of the septum is
completed only after birth.

12 | THE CARDIAC CONDUCTION
SYSTEM

The Drosophila heart is composed of an open tube consisting
of an anterior aorta and a posterior heart containing ostia draw-
ing hemolymph.173 A caudally located autonomic-acting myo-
genic pacemaker is present, containing an ensemble of ion-
channels from which the majority is also found in humans.174

Neuroregulators also found in vertebrates, such as acetylcho-
line, serotonin, and norepinephrine, modulate heart rate in lar-
val, pupal, and adult flies.175,176 In cephalopods, the systemic
heart and the two branchial hearts are similarly under neuro-
regulatory control,177 suggestive of common regulatory path-
ways. The activity of the heart in other mollusks strongly
depends on the function of surrounding organs such as the gut
and the excretory system, as well as on muscle activities
related to burrowing movements, for example.178

In vertebrates, pacemaker function is a prerequisite for
coordinated atrioventricular contraction of the heart and to

maintain its rhythmic activity (Figure 7). The cardiomyocytes
are electrically coupled, and a highly synchronized activity is
governed by the cardiac pacemaker179 located at the inflow of
the heart in the wall of the sinus venosus that is, in origin, a
central compartment feeding the atrium (Figure 7). During lat-
eralization, pacemaker activity will become both left- and
right-sided phenomena, eventually restricted to the right side
to become the definitive sinus node.180 The pacemaker has
connections to the atrial cardiomyocytes,181 probably in the
form of preferential internodal pathways,182-185 as confirmed
with electrophysiology,186 connecting the sinus node to the
AV node (Figure 8).

In early development, peristaltic movements push the
blood toward the arterial pole, but slightly later fast propaga-
tion of the depolarizing impulse results in synchronous con-
traction.115 During differentiation of the AV canal separating
the atrial from the ventricular cardiomyocytes, the AV node
develops and delays the contraction of the ventricle. In mam-
mals, it shows a distinct morphology,187 but its localization in
chicken is still obscure.188 Insulation of atrial from ventricular
myocardium is a prerequisite for proper conduction via the
common bundle. For effective insulation, epicardium-derived
mesenchymal cells (EPDCs) migrate between atrium and ven-
tricular myocardium,129 leaving only the AV node as gate-
way. In case of failing insulation, accessory pathways may
persist with ensuing reentrant arrhythmias.189

A specialized central AV conduction system comparable
to that of birds and mammals is probably not present in fish,
amphibians, or reptiles. Among others, the transcriptional
repressor Tbx3 is required for the development of the inter-
ventricular septum, as well for as the central conduction sys-
tem.190 Crocodilians, the only reptiles with a fully septated
four-chambered heart, seem to occupy an intermediate posi-
tion, but an SA node and AV node are reported to be
absent.191 Homologues of mammalian conduction system
markers have been identified together with a functional AV
bundle.192 The peripheral ventricular Purkinje system, how-
ever, is absent, and ventricular conduction relies on the
trabeculated myocardium, comparable to other ectotherm
vertebrates and as also found in early embryonic bird and
mammalian hearts. Jensen et al192 suggested that the devel-
opment of the ventricular Purkinje system is strongly associ-
ated with high metabolism and endothermy, involving high
heart rates. However, this provides on a partial explanation,
as early avian and mammalian embryos exhibit high heart
rates and temperatures, while many reptilian eggs are incu-
bated at relatively elevated temperatures. It is interesting to
note that a strong left-right asymmetry of the bundle bra-
nches develops193 together with both ventricular walls and
the interventricular system, where the derivatives of the FHF
and SHF join back-to-back.79,80,104
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FIGURE 7 Developing sinus venosus, cardinal veins (blue), and atrium showing the flux of expression of cTnI, Nkx2.5, and HCN4. The
pulmonary veins are in red. The definitive right-sided sinoatrial node and the transient left-sided sinoatrial node are indicated. Note the lack of
Nkx2.5 expression in the developing SANs and the myocardium surrounding the sinus venosus before complete incorporation. There is also an
increasing association of HCN4 expression with the conduction system. The cardiogram shows the increasing cardiac frequency during
development. SAN, sinoatrial node (from Vicente Steijn et al180)
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A peripheral Purkinje system is reported in both birds194,195

and mammals196 and must have developed independently dur-
ing evolution of ventricular septation and endothermy. The
remaining questions here are how the peripheral conduction
systems have developed in these taxa and how the connections
with the central conduction axis have been made.197

13 | CARDIAC DEVELOPMENT AND
THE ACQUISITION OF
ENDOTHERMY IN AMNIOTES

An endotherm is an organism that can maintain its resting
body temperature across a range of environmental tempera-
tures for extended periods, whereas ectotherms usually con-
form to the environmental temperature.198 It is evident that
endothermy is not restricted to birds and mammals, as sev-
eral insects (scarab beetles, flying insects) and marine fish
(tuna), and in some cases turtles, show signs of elevated
body temperature for shorter or longer periods of time.

These are caused by muscle or metabolic activities and are
excluded from this article. Arthropods and mollusks are con-
sidered ectotherms. Chordate endotherms are restricted to
birds and mammals (Figure 1). Nevertheless, there is no
sharp or definitive separation between the nature of ecto-
therms and endotherms, and the term mesotherms has even
been introduced to embrace an “in-between” group of ani-
mals.199 Mammalian endotherms evolved around 250 million
years ago,200 whereas avian endotherms evolved much later,
around 65 million years ago.201 Not all mammals are consid-
ered endotherms. Echidna (monotremes) must probably be
considered mesotherm with an elevated body temperature
only during egg incubation.202

In endotherm amniotes (mammals and birds), there is a
connection between cardiac output, separation of low pulmo-
nary and high systemic pressure by complete cardiac
septation, and high rates of metabolism, which are often 5 to
10 times as high as in reptiles of the same size. Ectotherms
usually exhibit a low metabolism combined with a cardiovas-
cular system that lacks complete separation of systemic and
pulmonary circulations. The faster heart chamber activation in
endotherms, a dominant factor for cardiac output, cannot be
explained solely by temperature difference. The compact
myocardial architecture in birds and mammals facilitates con-
duction, resulting in shortening of the cardiac cycle197 and
increasing the cardiac output. Quantifying time shifting or
heterochrony203 in evolutionary patterns showed that cardiac
development is closely linked to the increasing demands of
the terrestrial “closed” amniote egg,204 with an independent
role for angiogenesis,205 both important factors determining
respiration and food uptake already in the egg. The ensuing
adaptations in the cardiovascular anatomy and function made
possible the advent of endothermy.204

However, one group of ectotherms with a (near) circula-
tory separation exists as an exception: crocodilians. Here, the
heart is functionally fully septated, although two left/right
shunts exist already in the embryo: the central foramen of
Panizza and the peripheral shunt between the two aor-
tas.104,114,206,207 Seymour et al206 argued that crocodilian
ancestors were endotherms based on adult characteristics such
as anatomy and behavior. We agree with Seymour et al,206

postulating that, as a consequence, these terrestrial ancestors
would already have realized a septated ventricle, effecting
separation of high- and low-pressure circulation. When in the
ancestral line and how specific the steps in realization is a
matter of speculation. The current special position of the ecto-
thermic extant crocodilians may then be explained by the loss
of endothermy during evolution related to a change in activity
from land-dwelling to aquatic ambush behavior.

Arguments based on the characteristics of the cardiovascu-
lar architecture as early as in the egg likely precede other theo-
ries about the evolutionary onset of endothermy, such as

FIGURE 8 The adult cardiac conduction system. The electrical
impulse is generated in the SAN at the entrance of the superior caval
vein into the right atrium. It is conducted through the internodal atrial
myocardium to the atrioventricular node, where it is delayed. The
impulse is then propagated through the common bundle or His bundle
and the left and right bundle branches to the Purkinje fiber network.
AVN, atrioventricular node; CB, common bundle; CS, coronary sinus,
IVC, inferior vena cava; LBB, left bundle branch; LV, left ventricle;
MB: moderator band; PF, Purkinje fiber network; PV, pulmonary vein,
RA, right atrium; RBB, right bundle branch; RV, right ventricle; SAN,
sinoatrial node; SCV, superior caval vein (From Jongbloed et al233)
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change in juvenile and adult growth parameters,208 adult meta-
bolic rate,199,209 or oxygen handling and mitochondrial activ-
ity.210 A further argument from embryo-related studies came
from analysis of fossil egg shells. The eggshell of Titanosaurid
fossils (belonging to a sister group of the crocodilians) has
been examined for isotopic minerals, reconstructing the body
temperature of egg-laying females.201 This temperature proved
to be similar to that of large modern endotherms. Ancestral
egg shells from Oviraptoridae (closely related to modern
birds), on the other hand, demonstrated only a slightly ele-
vated body temperature (mesothermy), suggesting that endo-
thermy has been acquired later in birds.201 The fossil record of
embryonic and juvenile stages is poor; therefore, the introduc-
tion of amniote embryonic cardiovascular physiology as done
here can be made only by comparative approaches.

14 | EVO-DEVO ASPECTS OF
CONGENITAL MALFORMATIONS

Congenital heart disease (CHD) is a major manifestation of
incorrect signaling during embryonic development and is
conservatively estimated to amount to about 5% of registered
births in the western world.1 The prenatal demise is unknown,
but in a series of early studies encompassing knockouts in
mice, an estimated 50% of prenatal lethality is due to
malfunctioning of the cardiovascular and/or hemopoietic
system.6 It is evident that the myriad phenotypes of cong-
enital human malformations must not be considered as inter-
rupted or persisting steps in the evolution of the heart, but
rather as results of mutations, imbalance in dosage, or “mis-
management” in the available (genetic) tool kits, including
epigenetic regulation,211 hemodynamics,67,212 and external
factors such as vitamin A/retinoic acid.56,213

The complexity of interactions leading to CHD may be
inferred from large cohort studies in which mutations of
many genes214 and parts of epigenetic pathways66 are inv-
olved. The diverse outcomes prevent pinpointing major gene
regulatory networks, as is strengthened by the survey of a
large cohort description showing that a mere 11% out of
more than 9700 patients with CHD (69% of which had “con-
otruncal” or ventricular OFT defects) had a genetic diagno-
sis.214 These encompass often complex syndromes, such as
22q11, Kabuki, Alagille, Holt-Oram, but also de novo muta-
tions affecting multiple organs. Regarding cardiac defects,
many genes are related to VSDs and OFT malformations
such as Tetralogy of Fallot (TOF), double-outlet right ventri-
cle (DORV), transposition of the great arteries (TGA), and
CAT. Similar malformations in animal models have been
described above, and include GATA4/6, Nkx2.5, Tbx1/5/20,
Hand2, Nodal pathway, BMP2/4, VEGF pathway, and
others. Most of these are also involved in atrial septal defects

(ASDs) and atrioventricular septal defects (AVSDs)
(Figure 9; reviewed in Gittenberger-de Groot et al108).

As reported, we do not consider a congenital malforma-
tion as resembling a persistent situation of a normal mor-
phology encountered in fish or reptilian hearts, for example.
Most malformations in the human population appear to be
specifically linked to the differentiation into a four-
chambered heart and can be spontaneous or experimentally
evoked in animal models like the often used (transgenic)
mouse or even in the four-chambered chicken heart. We pro-
pose that deviations in the employment of tool kits can be
explanatory in this respect.

14.1 | Malformations at the inflow tract of the
heart

In all species described with a functional lung circulation, we
notice the incorporation of the sinus venosus into the atrial
segment of the heart together with the formation of the pri-
mary atrial septum. At its base is the DMP, and at the free
rim of the septum an endocardial-derived mesenchymal
cap.215,216 When the mesenchymal cap fuses with the AV
cushions, separation of the right (or tricuspid in mammals)
and the left (or mitral) orifices takes place. In mammals, a
malformation may occur in the form of a primary atrial septal
defect (ASD type I), or in a more serious case, an AVSD. It
has been observed that the DMP is not as developed and the
mesenchymal cap is very diminutive.216-219 Genes involved
in the tool kit acting in normal and, when corrupt, in abnormal
development include Tbx5,72 PDGFRα,171,218 and Sonic
hedgehog.216 It is interesting to note that disturbance of
podoplanin can also lead to abnormal pulmonary vein connec-
tions, which normally are guided to the left atrium by the
DMP.159 As non-crocodilian reptiles do not possess an inter-
ventricular septum, the occurrence of a congenital AVSD is
here impossible.

As the atrium in the four-chambered heart should remain
patent to allow oxygenated blood to reach the left side, the
atrial septum must not close completely. Here, reptiles, birds,
and nonplacental mammals present secondary perforations in
the primary atrial septum, which obliterate after birth/hatching
by myocardial and endocardial overgrowth. Placental mam-
mals (Eutheria) display a different approach. The opening in
the primary atrial septum that allows right-left shunting closes
after birth by fusion with a secondary atrial septum because
of increased pressure in the left atrium. The secondary septum
is a right-sided in-folding of the atrial wall that partly overlaps
the opening in the primary septum. Abnormalities in size of
both primary and secondary atrial septal components can lead
to a persistent foramen ovale or, in more serious deficiencies,
to an ASD type II. Failure to differentiate may lead to
AVSDs.73,219 Molecular mechanisms controlling atrium and
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DMP development include PDGF signaling,171,218 BMP,
Tbx5, Osr1, and FoxF1.220,221 Tissue-specific deletion of
Smoothened resulted in compromised DMP formation,
AVDs, reduced proliferation, and diminished Wnt/β-catenin
signaling.216 In humans, ASDs account for about 9% of more
9700 patients, which is far less than the 69% of children with
OFT malformations.214 This difference may be a reflection of
the difference in complexity in evolution and development of
the venous and arterial poles of the heart.

14.2 | Ventricular septal defects

Complete ventricular septation resulting in a four-chambered
heart has developed separately in mammals and birds but, as
we will argue, not completely in crocodilians. Ventricular
septal components are found in the inlet of the heart as a
diminutive structure consisting of trabecular muscles in, for
example, snakes and turtles, found on the posterior wall of
the ventricular chamber. The terminology varies and could
be of positional (vertical) or more functional (inlet) nature.
In complete septation, an anteriorly located folding

(horizontal) septum is positioned between the inflow tract
(IFT) and OFT of the ventricle.80 The final component in
closure in the four-chambered heart consists of the OFT sep-
tal complex. This structure contains both specific SHF and
NC-derived cells. The genetic tool kit contains Tbx1,
FGF8/10, and TGFβ, among others. We have recently
described how in mammals, birds, and reptiles, the contribu-
tion of SHF and NC cells varies, resulting in a vascular OFT
and two or three main arteries. In lung-breathing species,
this always consists of pulmonary and systemic circulation.

Important in complete septation is the role of endocardial
cushions in both the OFT and AV canals. They glue together
the various septal components. It is relevant to realize that
secondary myocardialization of the ensuing mesenchymal
septal components is variable across species. So the OFT sep-
tal complex in crocodilians separates the aortic and pulmo-
nary trunks and remains mesenchymal, while in mammals,
the muscular right ventricular OFT results from myo-
cardialization guided by TGFβ.222,223 At the crossroads of
atrial and ventricular septation, usually a membranous septum
of variable size is found. VSDs are usually encountered at

FIGURE 9 Gene mutations in ASD,
AVSD and VSD. The same genes are often
involved in the formation of multiple
segments of the heart, whereas a given
segment might be governed by many
genes. ASD, atrial septal defect; AVSD,
atrioventricular septal defect: VSD,
ventricular septal defect (from
Gittenberger-de Groot et al108)
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areas where septal components fuse with more or less mesen-
chymal boundaries, resulting in clinically relevant classifica-
tions such as mesenchymal or perimembranous VSD.108,224

Here, we need to discuss the enigmatic complete ventric-
ular septation in crocodilians, which are supposedly second-
arily developing an opening between the right aorta (leaving
the left ventricle) and left aorta (departing from the right
ventricle), the so-called foramen of Panizza.114,207 It turns
out that the membranous ventricular septum is extremely
large and nonmuscularized.191 The foramen of Panizza
develops as a tunnel inside one of the endocardial OFT cush-
ions104 that is proximal to the actual vessel wall in the mes-
enchymal area of the semilunar valves. This foramen must,
therefore, be considered as a specific shunting communica-
tion at the ventricular level, refuting the idea of complete
ventricular septation in crocodilians.

14.3 | Bicuspid semilunar valves

We all have been educated by the elegant and seminal work
of Leonardo Da Vinci, suggesting that a semilunar valve car-
rying three cusps is more efficient compared to a bicuspid
valve. However, in the human a bicuspid valve is the most
common congenital heart “malformation,” often going
undetected until later in adult life and then usually associated
with aortic aneurysm.143 Recent investigations using trans-
genic mice demonstrated that mutated “OFT genes” (NOTCH,
eNOS, GATA4/5, NKx2.5, and TGFβ pathway, compiled by
DeWaard and Postma225) are associated with bicuspidy, most
likely by disturbed SHF addition and neural crest disturbances.
Considering reptiles, we know that these animals usually have
bicuspid valves in their three OFT vessels and seem not to be
encumbered by this situation.

In both mammals and birds, but not in crocodilians, a solu-
tion for the addition of the third cusp is found by adding an
intercalated swelling.133,226,227 All these authors agree on the
importance of the SHF but vary in their explanation for the
development of bicuspidy by describing either a non-anlage
of intercalated cusps or a non-disjunction from the main
endocardial OFT cushion.133 The difference in incidence of
bicuspidy in the aortic vs the pulmonary orifice might have a
hemodynamic background related to the difference in mass
addition of SHF cells between the aortic and pulmonary sides
(as might be inferred from Scherptong et al89). The employ-
ment of the tool kit genes guiding SHF and NCC addition can
lead to abnormal development of the semilunar valves. Inter-
ference with these genes and constituents may lead to mal-
formed valves and leaflets, such as in bicuspid aortic valve,
often associated with aortic coarctation228 and increased sus-
ceptibility for aortic aneurysm,229 and linked to conditions
such as Turner,228 Kabuki,230 and Marfan syndromes.231

A final consideration on developmental differences and
similarities concerns the septation of the OFT and the IFT. In
both situations, we see involvement of either anterior or poste-
rior SHF. In the IFT of reptilian species, including birds, the
atrial primary septum combines with a mesenchymal DMP.
SHF plays a major role, while NCCs are less dominantly pre-
sent in this region. In the OFT of reptiles, the role of SHF is
essential in separating the arterial trunks, whereas the NC is
important for the separation of the systemic and pulmonary
flows. It is intriguing that, in mammals, a folding principle is
found both in the IFT and OFT. At the IFT we see develop-
ment of the secondary atrial septum by in-folding of the atrial
wall, while at the OFT the pulmonary infundibulum and the
ventriculo-infundibular folds likewise derive from an in-fold-
ing. In mammals, this is most likely an adaptation to stabilize
the four-chambered heart structure.

15 | CONCLUSIONS

The cardiac regulatory tool kit contains many modulating fac-
tors such as epigenetic, genetic, viral, hemodynamic, and
environmental, as well as transcriptional activators and repres-
sors, duplicated genes, redundancies, and dose dependencies.

Common gene regulatory networks in heart-bearing spe-
cies, including arthropods, mollusks, and chordates, involve
Wnt/β catenin, Mesp, and BMP during early determination,
followed by Nkx2.5, Tbx5, GATA4, HAND, Shh, retinoic
acid signaling, and a limited set of others.

Numerous, sometimes non-organ-specific tool kits regu-
late the components of regional mechanisms such as cell-cell
interactions, EMT, mitosis, cell migration, differentiation, and
left−/right-sidedness that are involved in the development and
function of, for example, endocardial cushions, looping, sep-
tum complexes, pharyngeal arch arteries, chamber and valve
formation, and conduction system. As these tool kits regulate
specific mechanisms, the ontogeny of complex syndromes
involving cardiac malformations can be explained.

Evolutionary development of the cardiovascular system
involved in the demands of the yolk sac circulation likely pre-
ceded the advent of endothermy in amniotes. This occurred
several times in evolution, first in mammals (maybe indepen-
dently in two groups of mammals200) and later again in birds
(and maybe separate in ancestral crocodilians201).

Parallel evolutionary traits regulate the development of
beating pumps in various taxa, developing in the mesoblast
often in conjunction with the gut, lungs, and excretory
organs that provide various sets of signaling cues during car-
diac development.

It is fascinating to learn that a properly functioning heart is
essential from the start of embryogenesis, but most other organs
are less so. Via the egg yolk or the womb, food is provided by
the yolk sac circulation or via the mother through the umbilical
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circulation, so the alimentary canal becomes functional for
embryo survival only much later, even after hatching or birth.
Gas exchange is regulated by the air chamber in egg-laying
amniotes and through the placenta in mammals, so yolk/
allantois/amnion and umbilical circulation provide for this.
There is definitively a priority for cardiogenesis.

16 | FUTURE
DIRECTIONS/UNSOLVED ISSUES

• The beginning of atrium septation in the amniote heart is
seemingly closely linked with the evolution of air-
breathing in vertebrates. The studies of the sequence of
events in lungless salamanders are interesting and could
be intensified with the search in function of the DMP.

• The basket of pharyngeal arch arteries presents various
solutions of transporting the blood from the heart toward
different regions of the body. Although many descriptions
and analyses have been provided, such as the role of Hox
genes, a comprehensive molecular analysis combined
with hemodynamic forces is still lacking.

• The role of advancing cardiac development and increased
output as a result from the separated systemic and pulmo-
nary blood flows should be more directly related to the
evolutionary development of endothermy. As endothermy
evolved several times wide apart in paleontological his-
tory, this presents multiple entrees for research.

• Mammalian history is particularly interesting, as develop-
ment of embryos relying on a placenta probably origi-
nated after the onset of endothermy. It is intriguing to
note that the mesotherm egg-laying Echidna maintains a
constant body temperature during egg incubation,202

which is favorable for development of the embryo in the
pouch. Investigations on the evolution of monotremes
related to cardiac development could provide more insight
in the origin of endothermy in mammals.
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