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A B S T R A C T

Background: Prediction of brain invasion pre-operatively rather than postoperatively would contribute to the
selection of surgical techniques, predicting meningioma grading and prognosis. Here, we aimed to predict
the risk of brain invasion in meningioma pre-operatively using a nomogram by incorporating radiomic and
clinical features.
Methods: In this case-control study, 1728 patients from Beijing Tiantan Hospital (training cohort: n = 1070)
and Lanzhou University Second Hospital (external validation cohort: n = 658) were diagnosed with meningi-
omas by histopathology. Radiomic features were extracted from the T1-weighted post-contrast and T2-
weighted magnetic resonance imaging. The least absolute shrinkage and selection operator was used to
select the most informative features of different modalities. The support vector machine algorithm was used
to predict the risk of brain invasion. Furthermore, a nomogram was constructed by incorporating radiomics
signature and clinical risk factors, and decision curve analysis was used to validate the clinical usefulness of
the nomogram.
Findings: Sixteen features were significantly correlated with brain invasion. The clinicoradiomic model
derived from the fusing MRI sequences and sex resulted in the best discrimination ability for risk prediction
of brain invasion, with areas under the curves (AUCs) of 0�857 (95% CI, 0�831�0�887) and 0�819 (95% CI,
0�775�0�863) and sensitivities of 72�8% and 90�1% in the training and validation cohorts, respectively.
Interpretation: Our clinicoradiomic model showed good performance and high sensitivity for risk prediction
of brain invasion in meningioma, and can be applied in patients with meningiomas.
Funding: This work was supported by the National Natural Science Foundation of China (81772006,
81922040); the Youth Innovation Promotion Association CAS (grant numbers 2019136); special fund project
for doctoral training program of Lanzhou University Second Hospital (grant numbers YJS-BD-33).
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
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1. Introduction

Meningiomas are the most common primary intracranial tumours
in adults, accounting for 36�7% of all intracranial tumours [1]. Brain
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invasion in meningiomas was defined as the presence of meningioma
tissue within the adjacent brain without a separating connective tis-
sue layer in 1997 [2]. In the latest 2016 edition of the World Health
Organization (WHO) classification of central nervous system (CNS)
tumours [3], microscopic examination of brain invasion was added as
an independent grading criterion for the diagnosis of WHO grade II
atypical meningioma. Brain invasion is getting the highest clinical
attention [4], and the main reasons are as follows: firstly, microsurgi-
cal resection is the most widely used treatment for the vast majority
of meningiomas [5]. The choice of surgical technique is closely related
to brain invasion, such as application of intraoperative navigation,
expansion of surgical excision range, etc. Secondly, brain tumours
now explicitly list brain invasion as a criterion of atypia [3]. Grad-
ing of meningiomas only depends on histopathological criteria,
and higher grades are associated with worse prognosis, including
higher rates of tumour recurrence and worse survival [6], but
brain invasion may not be detected by histopathology due to a
lack of brain tissue samples [5,6]. The authors reported 85% of
samples as ‘unassessable’ pathologically [7]. Therefore, clinical
pathological assessment of brain invasion is limited. Finally, brain
invasion has gained distinct changes in clinical behaviour, and is
a risk factor for preoperative seizures and postoperative haemor-
rhage [7,10]. From the above, we observed that brain invasion
directly impacted therapeutic decisions, histopathologic grading
and prognosis [7,8,11].

Histopathological examination is the only standard for the diag-
nosis of brain invasion in meningiomas [12]. However, some studies
have reported that the frequency of brain invasion is significantly dif-
ferent from that diagnosed in neuropathological tissue samples [7,8].
A large portion of invasive tissue might not be detected during micro-
scopic analyses without adjacent CNS tissue. Some grade I meningio-
mas (14�7% in our study) show brain invasion, which would affect
the treatment selection and prognosis of patients when pathological
examination was missed. Compared to focusing on local fine struc-
tures, imaging studies of brain invasion can analyse the entire
tumour. In a recent study [7], Alborz et al. used routine preoperative
MRI to predict brain invasion. Several imaging characteristics, such as
irregular tumour shape, heterogeneous contrast enhancement, and
peritumour oedema were identified as predictors of brain invasion.
However, current image-guided brain invasion testing is non-specific
and highly subjective [1,7], which depends on the experience of radi-
ologists.

To overcome these problems, radiomics analysis is a reasonable
tool that has rapidly emerged in the field of medical imaging analysis
in recent years. Compared with subjective evaluation, radiomics anal-
ysis is more stable and objective, quantifying high-dimensional
tumour features that cannot be observed by the naked eye, such as
texture, intensity, and shape features [13,14]. It is also a non-invasive
way to provide a quantitative method for the evaluation of tumour
heterogeneity. Recent studies have shown several applications of
radiomics in meningiomas, such as different diagnoses, prediction of
the grade and histological subtype, and prediction recurrence-free
survival in meningioma [5,15�17]. Moreover, a recent study showed
that radiomics might predict preoperative cavernous sinus invasion
by pituitary adenomas [18]. These studies show the value of radio-
mics in medical imaging, which can also be a potential method for
the prediction of brain invasion in meningiomas on MRI.

To the best of our knowledge, until now there is no reported study
predicting brain invasion in meningiomas based on the radiomic or
texture features analysis. Therefore, the aim of our study was first to
extract the radiomic features that are correlated with brain invasion
from two MRI modalities (T1-weighted post-contrast [T1C] and T2-
weighted [T2]), respectively. Second, to fuse these two modalities to
generate a radiomic signature. Third, to establish a nomogram com-
bining radiomic signatures and clinical risk factors to predict brain
invasion in meningioma patients undergoing MRI.
2. Materials and methods

2.1. Study population

Our study was a case-control study [19]. Ethical approval was
obtained from the Institutional Review Board of Lanzhou Univer-
sity Second Hospital and Beijing Tiantan Hospital, and informed
consent of patients was waived. In the study, all patients with
meningiomas who underwent surgery were enroled according to
the inclusion and exclusion criteria. The inclusion criteria were:
(a), all patients were diagnosed with meningioma and clearly
graded by histology (including WHO grade I, II, and III meningio-
mas); (b), MR images, including T1C and T2 sequences, were per-
formed within one week before surgical resection; and (c), the
images of each patient were of good quality and without artefacts.
The exclusion criteria were: (a), before surgical resection, patients
received treatment such as radiotherapy, chemoradiotherapy or
surgery; (b), patients without a clear histological grading; (c),
patients with incomplete MRI sequences; (d), patient images with
artefacts that impacted assessment; (e), assessment of surgeon and
imaging suspected brain invasion. These exclusion criteria were
chosen because some patients may have MRI examinations in
other hospitals and lack of MR data in our institute, and some
patients only have enhanced MR without plain scan (plain scan
was done in other hospital), resulting in lack of sequence, etc.

Tumour resection was performed with the aid of a microscope for
all patients, and brain invasion was diagnosed according to the path-
ological records [12]. Brain invasion may not have been determined
in some cases due to the lack of adjacent brain tissue. the samples
(excluding incomplete MRI sequences, brain invasion, etc.) including
1127 cases in the training cohort and 691 cases in the validation
cohort were evaluated for brain invasion by the surgeon and imaging
records [9]. Surgical records described obvious adhesion between the
surface of the tumour and the brain. If surgical records were not
available, diagnostic imaging reports were used for evaluation. T2
showed that the tumour boundary was blurred, irregular tumour
shape, and significant peritumour oedema. Thus 311 cases in the
training cohort and 114 cases in the validation cohort with suspected
brain invasion were excluded. The basic characteristics (such as age,
sex, histological subtype, and the WHO grade etc.) of these cases are
consistent with that in corresponding patients included in training
cohort and validation cohort.

Finally, a total of 1070 patients from Beijing Tiantan Hospital
were used as the training cohort from January 2010 to March
2019, and 658 patients of the Lanzhou University Second Hospital
were identified for the external validation cohort from January
2014 to March 2019. Thus, the study included 1728 patients (train-
ing cohort: 276 males and 794 females, with a mean age of
51�89 § 10�12 years; validation cohort: 137 males and 521
females, with a mean age of 52�5 § 9�99 years). The patient
recruitment flowchart is shown in Fig. 1. Data concerning the fol-
lowing five conventional clinical variables were obtained from the
electronic medical records: age, sex, WHO grade, histological sub-
type, and Ki-67 expression level, which were blindly and indepen-
dently conducted by two radiologists (P L and J Z) to ensure the
accuracy of the extracted data. In this retrospective study, there
was not a difference in the data recording methods during the
study period.

An assessment of the brain invasion and suspected brain invasion
groups’ flowchart is shown in Fig. 2. Thus, 335 patients (training
cohort: n = 254; validation cohort: n = 81) were enroled in the inva-
sion group, while 1393 patients (training cohort: n = 816; validation
cohort: n = 577) were enroled in the non-invasion group. For sus-
pected brain invasion, we randomly selected 50 cases (based on the
surgeon assessment) and applied a clinicoradiomic model to validate
whether have brain invasion.



Fig. 1. Inclusion and exclusion criteria.
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2.2. Image acquisition, segmentation, and normalization

MRI examinations were completed one week before the opera-
tion. The MRIs combined two hospitals with 3.0-T scanners (Siemens
Verio; Siemens Trio Tim; GE Discovery MR750; Philips Achieva) and
a 1.5-T scanner (Siemens Magnetom Aera). The MRI protocols of each
Fig. 2. Assessment of brain invasion and sus
hospital included T2 and T1C images, and the detailed parameters for
each scanner are illustrated in Table.S1.

To ensure the validity and accuracy of the data, two radiologists
(readers 1 and 2, with 12 and 15 years of experience in brain MRI
interpretation, respectively) independently performed manual seg-
mentation of the MR images with an open-source ITK-SNAP software
pected brain invasion groups flowchart.
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(www.itksnap.org), and without prior knowledge of the operative
and pathological records. A more senior radiologist with 19 years of
experience conformed the segmentation. Reader 1 (P L) segmented
all training cases, reader 2 (J Z) segmented all validation cases. When
the two radiologists were unsure, reader 3 (Z Y Z) with 19 years of
experience confirmed segmentation. The regions of interest (ROIs) of
images were manually delineated on each slice of the tumour with-
out the surrounding brain tissue, and oedema on both axial T1C and
T2 images. For T2 images, it was drawn separately with T1C as visual
guidance. The volume of interest (VOI) was generated by fusing the
segmented tissues on each slice.

After manual segmentation, T1C and T2 images were standardized
using z-score normalization to obtain a standard normal distribution
of the image intensities. To evaluate the reproducibility and robust-
ness of feature extraction, after two months, 50 patients in the train-
ing cohort were randomly selected and segmented again by Reader 1
and Reader 2 to build the re-segmentation set, and 50 patients were
randomly selected from each MR scanner to build the different MR
scanners set for calculating the intra-/interclass correlation coeffi-
cients (ICCs), respectively.

2.3. Feature extraction and selection

The pyradiomic platform was used to extract standardized radio-
mic features from the medical imaging data [20], and feature
Fig. 3. Flowchart of the process of radiomics. The tumours were segmented on T1-weighted
least absolute shrinkage and selection operator (LASSO) was used to select the features. The
optimal model was selected with the best performance for brain invasion prediction by mod
extraction followed the Image Biomarker Standardization Initiative
(IBSI) guideline in this study [21]. A total of 1595 radiomic features
were extracted from the VOI of each modality of MR images: 14
shape features, 306 first-order features, and 1275 textural features.
T1C features were extracted from the VOI of T1C images, while T2
features were extracted from the VOI of T2 images. The Supplemen-
tary Methods list the details of the radiomic features.

For both T1C and T2 features, the least absolute shrinkage and
selection operator (LASSO) regression with three-fold cross-valida-
tion was used to select the radiomic features highly correlated with
brain invasion. Features with a coefficient lower than 0.25, or a P
value greater than 0.05, were removed accordingly. To determine
whether the selected features are correlated with each other, we
used Pearson correlation analysis to estimate the correlation between
these features from T1C and T2 images. In addition, the correlation
between the radiomics features and the Ki-67 expression level was
evaluated by Pearson correlation coefficient analysis. A flowchart of
the study is shown in Fig. 3.

For clinical factors, the correlation between clinical factors and
brain invasion were tested via the Chi-square test and a Student's t-
test with the P-value set to 0.05. Features with P-value more than
0.05 and postoperative factors were excluded from the model. There
were a priori variables to be excluded regardless of the statistical sig-
nificance, such as WHO grade and Ki-67 expression level (postopera-
tive factors).
post-contrast (T1C) and T2-weighted (T2) MRI to form the volume of interest (VOI). The
support vector machine (SVM) algorithm was then used to fit the predictive model. The
el comparison.

http://www.itksnap.org
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2.4. Fusion of modalities

According to the principles and characteristics of T1C and T2
modalities, T1C, which is derived from the injection of contrast
medium, represents the blood supply and whether the blood-brain
barrier has been breached, while T2, which is correlated with water
content, mainly reflects tissue oedema, and is sensitive to oedema
around the tumour. Hence, in order to increase the discrimination
ability of the radiomic model, we fused the two modalities by com-
bining the selected radiomic features together, reflecting the factors
that influence brain invasion from different perspectives.

2.5. Radiomic signature building

After fusing modalities, based on the selected radiomic features,
the support vector machine (SVM) algorithm was used to build a
radiomic model with a radial basis kernel for risk prediction of brain
invasion. The T1C and T2 models were built based on T1C and T2 fea-
tures, respectively, while the fusion model was built based on T1C
and T2 fusion features (all 16 radiomic features).

The maximum area under the curve (AUC) in the training cohort
with three-fold cross-validation determined the final regularization
parameter. Then, the radiomic model predicted a radiomic signature
showing the likelihood of brain invasion for each patient.

2.6. Nomogram development and validation

After analysing the clinical characteristics, the Chi-square test was
used to compare the differences in sex and WHO grade, while the
Student's t-test was used to compare the differences in age and Ki-67
expression level between the invasion and non-invasion groups in
the training and validation cohorts. Generally, P values < 0�05 (two-
sided) were considered statistically significant.

Integrated discrimination improvement (IDI) was conducted to
quantify the performance improvement. After the inclusion of radio-
mic signature, the P-values showed whether the improvement in
reclassification was statistically significant.

After the selection of clinical characteristics and the model com-
parison, a nomogram incorporating the radiomic signature and corre-
lated clinical risk factors was developed in the training cohort and
validated in the validation cohort, using multivariate logistic regres-
sion coefficients. This method provides a more understandable and
convenient tool for clinicians and patients.

The discrimination ability of the radiomic-clinical nomogram was
assessed by the calibration curves for the training and validation
cohorts, and the agreement between the observed outcomes and pre-
dicted risks of brain invasion was assessed using the Hosmer-Leme-
show (H-L) test. Decision curve analysis (DCA) was used to quantify
the net benefits at different threshold probabilities to assess the clini-
cal usefulness of the nomogram [22].

2.7. Imaging analysis by the radiologists

To compare the diagnostic performance of the radiomics signa-
ture with visual assessment, MRIs (T1C and T2 sequences) of all 1728
cases were independently assessed by two radiologists (J Z and Z Y
Z). Both radiologists had no prior knowledge of the histopathological
results and all personal information was de-identified prior to analy-
sis. Image analysis was based on clinical experience. Diagnostic accu-
racy, sensitivity, and specificity were calculated and compared with
the histopathological results.

2.8. Statistical analysis

In this study, all the statistical analyses were achieved with
Python 3.7.1 (https://www.python.org), R software (version 3.4.1;
http://www.Rproject.org) and IBM SPSS 22.0 for Windows (IBM Corp,
Armonk, NY, USA). Python was used to extract and select the radio-
mic features as well as build the prediction models. R software was
used to evaluate the prediction models. SPSS was used to compare
the variables between different cohorts. Logistic regression with the
LASSO penalty and the SVM model were implemented using Python
3.7.1 in the Scikit-learn package (version 0.21.3). The data were
adjusted for multiple testing (Bonferroni correction) in all data analy-
sis. Pearson’s Chi-squared test was used to explore the difference
between the training and validation cohorts. Descriptive statistics for
continuous variables are expressed as mean § standard deviation.
The Chi-square test was used to compare the difference in sex and
WHO grade, while a Student's t-test was used to compare the differ-
ence in age and Ki-67 expression level between brain invasion and
non-invasion in the training and validation cohorts. Generally, P val-
ues of less than 0�05 (two-sided) were considered statistically signifi-
cant. The intra-/inter-class correlation coefficients (ICCs) were used
to assess the agreement of extracted features by two radiologists and
different MR scanners, respectively. Kappa test analyses were con-
ducted to determine the inter-observer agreement.

2.9. Role of the funding source

This study has received funding from the National Natural Science
Foundation of China, the Youth Innovation Promotion Association
CAS, and Special fund project for doctoral training program of Lanz-
hou University Second Hospital. The funders (J L Z) had role in study
design and data interpretation.

3. Results

3.1. Clinical characteristics

Considering the larger sample size of 1070 cases from Beijing
Tiantan Hospital, this group was set as the training cohort, while the
658 cases from Lanzhou University Second Hospital were set as the
validation cohort. The clinical characteristics of the patients are
shown in Table 1. In these two cohorts, sex and the pathological
WHO grade were found to be significantly different statistically (P <

0�001 for all), and age was not significantly different (P > �05)
between the invasion and non-invasion groups. For meningiomas
with brain invasion, the mean Ki-67 expression level was 5�7 § 4�8,
7�3 § 5�6, which were significantly higher than that of without brain
invasion with a mean value of 3�8 § 2�4, 3�7 § 3�3 (P < 0�001) in
the training and validation cohorts, respectively.

The distribution of different subtypes of meningiomas between
the brain invasion and non-invasion groups is shown in Supplemen-
tary Table S2. The frequency of brain invasion in WHO grade I transi-
tional meningioma (9�25%; 4�55%) and WHO grade II atypical
meningioma (2�71%; 4�56%) was much higher than other subtypes
in the training and validation cohorts, respectively.

3.2. Radiomic features correlated with brain invasion

The ICCs were calculated to evaluate agreement of features
extracted by two radiologists and different MR scanners, respectively,
and all values > 0�75, reflecting good agreement. In total, 3190 radio-
mic features were extracted from axial T1C and T2 sequences from
each patient. Amongst them, eight T1C features and eight T2 features
were selected, and most of them (14/16) were extracted from the fil-
ter-filtered images and were more relevant with brain invasion.
These 16 features included 2 shape features, 4 first-order features,
and 10 texture features, which can be seen in Table 2.

The Pearson correlation analysis showed that the features
extracted from T1C were consistent with some features extracted
from T2, P value < 0�0005 (Supplementary Fig.S1). For example,

https://www.python.org
http://www.Rproject.org


Table 2
Radiomics features extracted from T1C and T2 that were significantly relevant with brain invasion.

T1C T2

original_shape_Maximum2DDiameterSlice
original_shape_Maximum3DDiameter
wavelet-LHH_glcm_Imc2
wavelet-HHL_glcm_Imc2
exponential_firstorder_10Percentile
exponential_glcm_InverseVariance
squareroot_firstorder_10Percentile
squareroot_glcm_MCC

wavelet-LLL_firstorder_Median
lbp-3D-m2_glrlm_ShortRunHighGrayLevelEmphasis
logarithm_glrlm_LongRunHighGrayLevelEmphasis
square_ngtdm_Busyness
squareroot_firstorder_90Percentile
squareroot_glrlm_LongRunHighGrayLevelEmphasis
squareroot_glszm_GrayLevelVariance
squareroot_ngtdm_Busyness

Table 1
Patient clinical characteristics in the training and validation cohorts.

Characteristics Training cohort P value Validation cohort P value

Invasion Non-invasion Invasion Non-invasion

Sex <0.001* <0.001*
Male 99 177 33 105
Female 155 639 48 472

Age (years, mean § SD) 51.89§13.53 51.79§9.92 0.900 52.5 § 10.5 52.2 § 10.0 0.823
WHO grade <0.001* <0.001*
I grade 0 786 0 545
II grade 248 27 74 30
Ⅲ grade 6 3 7 2

Ki-67 expression level 5.7 § 4.8 3.8 § 2.4 <0.001* 7.3 § 5.6 3.7 § 3.3 <0.001*

Note: The chi-square test was used to compare the difference in sex andWHO grade, while a Student's t-test was used to
compare the difference in age and Ki-67 expression level.
* P <.05. SD, standard deviation.
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T2_wavelet-LLL_first order_ Median feature was correlated with T1C_
original_ shape_ Maximum2DDiameterSlice, T1C_ original_ shape_
Maximum3D Diameter and T1C_ wavelet-LHH_glcm_Imc2 features
in both the training and validation cohorts. The correlation between
these features showed that the two groups of features remained
highly similar and stable in both the training and validation cohorts.
The Ki-67 expression level was significantly correlated with radiomic
features, with a P-value of 0.0003 in the validation cohort.
3.3. Fusion of modalities and model building

Considering the different principles of T1C and T2 modalities,
their radiomic features may correspond to different information. To
analyse this information jointly, modality fusion was conducted at
the feature level. By combining the selected radiomic features
together, the radiomics signature can reflect the influencing factors
of brain invasion from different perspectives. Univariate analysis
showed that sex, histopathological WHO grade and Ki-67 expression
level were significantly different between patients with brain inva-
sion and non-invasion, P < 0�001. However, pathological grade and
Ki-67 expression levels results were obtained after surgery. Thus, the
Table 3
Performance of models for brain invasion prediction.

Cohort Model AUC ACC (%) SEN (%

Training set T1C 0.682(0.645�0.719) 64.77(61.85�67.70) 61.42(
T2 0.742(0.708�0.776) 73.46(70.90�76.06) 57.87(
Radiomic 0.855(0.829�0.882) 76.92(74.40�79.50) 80.32(
Clinicoradiomic 0.857(0.831�0.883) 79.35(76.93�81.76) 72.83(

Validation set T1C 0.735(0.682�0.789) 57.90(54.18�61.58) 86.42(
T2 0.717(0.661�0.772) 54.71(51.07�58.43) 88.89(
Radiomic 0.796(0.747�0.845) 73.25(69.86�76.59) 79.01(
Clinicoradiomic 0.819(0.775�0.863) 65.96(62.38�69.60) 90.12(

Note: Radiomic, combination of T1C and T2; Clinicoradiomic, fusion of radiomic signature
imaging; ACC, balanced accuracy; AUC, area under receiver operating characteristic curve;
tive value.
radiomics signature and sex were selected for the clinicoradiomic
model building.

The discrimination ability of these models was first assessed in the
training cohort and then externally validated in the independent vali-
dation cohort. The performances of T1C, T2, the radiomic (T1C and T2
combined), and the clinicoradiomic models are shown in Table 3. The
clinicoradiomic model demonstrated the best performance, resulting
in an AUC of 0�857 (95% CI, 0�831�0�883) and 0�819 (95% CI,
0�775�0�863), with a sensitivity of 72�8% (95% CI, 67�3%�78�4%)
and 90�1% (95% CI, 83�47%�97%) for brain invasion prediction in the
training and validation cohorts, respectively. In addition, the clinicor-
adiomic model was applied to surgically suspected brain invasion,
and 48 out of 50 cases were diagnosed with brain invasion. Supple-
mentary results listed the calculation formula of the clinicoradiomic
model. The receiver operating characteristic (ROC) curves for T1C, T2,
the radiomic, and the clinicoradiomic model are plotted in Fig. 4.
3.4. Model comparison

The DeLong test was used to compare the AUC estimates of the
discrimination performance between different predictive models.
) SPE (%) PPV NPV

55.37�67.52) 65.81(62.55�69.06) 0.359(0.313�0.404) 0.846(0.817�0.874)
52.03�64.0) 78.31(75.54�81.05) 0.454(0.400�0.509) 0.857(0.832�0.882)
75.56�85.25) 75.86(72.90�78.84) 0.509(0.461�0.558) 0.925(0.906�0.945)
67.34�78.40) 81.37(78.65�84.05) 0.549(0.494�0.603) 0.906(0.885�0.927)
78.84�93.95) 53.90(49.87�57.90) 0.208(0.164�0.251) 0.966(0.946�0.986)
82.02�95.69) 49.91(46.0�53.90) 0.199(0.159�0.240) 0.970(0.950�0.990)
70.19�87.95) 72.44(68.77�76.04) 0.287(0.228�0.345) 0.961(0.943�0.979)
83.39�96.97) 62.56(58.65�66.52) 0.253(0.204�0.302) 0.978(0.963�0.994)

and sex information; T1C, contrast-enhanced T1-weighted imaging; T2, T2-weighted
SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predic-



Fig. 4. Comparison of the receiver operating characteristic (ROC) curves of different models. (a, b) ROC curves of the different models in the training and validation cohorts. The clin-
icoradiomic model demonstrated the best discriminating ability amongst these models, with an AUC of 0.857 in the training cohort and an AUC of 0.819 in the validation cohort. (c,
d) Radiomic signature histogram of the training and validation cohorts. The red bar shows the sample with brain invasion, and the blue bar shows the sample without brain inva-
sion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The integrated discrimination improvement (IDI) index was mea-
sured to evaluate the incremental predictive utility of different pre-
dictive models. The clinicoradiomic model improved by 2�41%
compared with the radiomic model in integrated discrimination
(P = 0�0142) in the validation cohort (Table 4). In addition, compari-
sons between different models in the training cohort are shown in
Table S3.
Table 4
Comparison between different models in validation cohort.

Initial model Model introducing new

Combination of T1C and T2 Clinicoradiomic
T1C Combination of T1C and
T2 Combination of T1C and

Compared with the T1C and T2 models, the performance of combina
crimination ability, respectively. Compared with combination of T
improved by 2.42% in discrimination ability. IDI: Integrated discrimin
ture and sex information.
3.5. Radiomic-Clinical nomogram performance assessment

The clinicoradiomic model indicated the best performance and
defined the radiomic nomogram. The H-L test together with the cali-
bration curve was applied to measure the consistency between actual
brain invasion outcomes and the probability of brain invasion pre-
dicted by the clinicoradiomic model. The actual brain invasion
factor Performance improvement (IDI)

2.41% P = 0.0142
T2 4.77% P = 0.0016
T2 6.34% P< 0.0001

tion of T1C and T2 model improved by 4.77% and 6.34% in dis-
1C and T2 model, the performance of clinicoradiomic model
ation improvement; Clinicoradiomic, fusion of radiomic signa-
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outcomes were consistent with the predicted probability of brain
invasion in both the training and validation cohorts, with P-values of
0�144 and 0�418, respectively, as shown in Fig. 5b-c,

Based on clinical applications, the decision curve assessed the
discrimination ability of the clinicoradiomic model, therefore,
Fig. 5. Establishment and performance of the clinicoradiomic model. (a) The clinicoradiomic
diomic nomogram for the training and validation cohorts. The x-axis represents the probab
sents the actual rate of brain invasion. The solid line represents the discrimination ability
perfect model. The P-value of the Hosmer-Lemeshow test was 0.144 and 0.418 in the trainin
a better evaluation. (d, e) Decision curve analysis for the clinicoradiomic model. The x-axis
represents all patients with brain invasion, while the black line represents all patients witho
of the references to color in this figure legend, the reader is referred to the web version of thi
establishing its clinical utility. A net benefit was provided by the
clinicoradiomic model in the DCA over the brain invasion
scheme or non-invasion scheme at a threshold probability >20%
(Fig. 5d-e). This result showed that the clinicoradiomic data were
clinically available.
model was conducted to develop a nomogram. (b, c) Calibration curves of the clinicora-
ility of brain invasion measured using the clinicoradiomic model, and the y-axis repre-
of the nomogram, while the diagonal dotted line represents an ideal evaluation by a
g and validation cohorts, respectively. A closer fit to the diagonal dotted line represents
shows the threshold probability, and the y-axis measures the net benefit. The blue line
ut brain invasion. The red line represents the clinicoradiomic model. (For interpretation
s article.)
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3.6. Imaging analysis by the radiologists

The diagnostic performance of the MRI visual assessment was
evaluated. The accuracy of the MRI assessments were 64�4% and
65�7%, as shown in Table S4. Inter-observer agreement showed a
kappa value of 0�734 (95% CI 0�595�0�873).

4. Discussion

Until now, this is the preliminary study to develop a clinicoradio-
mic model to predict the risk of brain invasion in meningiomas based
on MRI with a big scale data. The performance of this fusing model
was validated via discrimination, calibration curve and DCA in an
external validation cohort. Sixteen radiomic features showed high
correlation with brain invasion and maintained stable amongst mul-
tiple centres. A multi-sequence (combining T1C and T2) model of
radiomics demonstrated better predictive power in both training
(AUC: 0�855) and validation (AUC: 0�796) cohorts. Meantime, the
nomogram, based on radiomic features and sex information, showed
the best discrimination ability in both training (AUC: 0�856) and vali-
dation (AUC: 0�818) cohorts and can discriminate about 90% of cases
of brain invasion in meningiomas.

In this study, the incidence of brain invasion in high grade menin-
giomas (50%) is consistent with other reports (22�77%) [12,23,24],
and amongst tumours of all WHO grades, the incidence of brain inva-
sion (19%) reflected much higher than the previous study (4�11%)
[7,12]. The main reasons are as follows. First, according to the current
WHO classification, neurosurgeons pay great attention to brain inva-
sion and select more sampling of different surface sites to explicitly
provide adequate information to the neuropathologist. Therefore, the
detection rate of brain invasion has probably improved. Second,
patients preference for hospital choice, and a large amount of data
excluded for various reasons may cause data deviation. Moreover,
amongst the subtypes of meningiomas, the frequency of brain inva-
sion in transitional and atypical meningioma is higher than in other
subtypes, which indicates that these two subtypes are more aggres-
sive than other subtypes.

In our study, sex and histopathological grade were significantly
different in the subgroup analysis. Male and histopathological high-
grade meningiomas were prone to brain invasion, which was similar
to the results of other studies. Recent studies have shown an increase
in the proportion of men or histopathologically high-grade patients
with brain invasion compared with non-invasive meningioma [7,25],
especially according to the latest 2016 WHO classification of CNS
tumour criteria. The mean age did not differ significantly in the con-
tinuous variable analysis. Ki-67 is commonly used as a proliferation
marker in tumours [26,27]. In our study, the mean Ki-67 expression
level of meningiomas with brain invasion was significantly higher
than that in patients without brain invasion. This indicated that the
tumour cells proliferated more actively in the brain invasion group,
in agreement with published reports [28�30]. However, some
authors have reported that brain invasion was not associated with
Ki-67 [23,31]. It may be related to the sample size and the presence
of more hot spots for counting Ki-67 cells in the central part of the
specimen.

Accurate preoperative prediction of brain invasion may assist
clinicians in making a personalised treatment plan to improve the
quality of life because it is closely related to the selection of surgical
techniques, predicting meningioma grading and prognosis. For exam-
ple, the tumour-brain interface is not typically separated initially, but
instead usually fully decompressed from the inside of the tumour, in
order to reduce the damage of brain tissue with brain invasion. Neu-
rophysiological testing and intraoperative navigation (with ultra-
sound or MRI) are needed during surgery to avoid damage to
adjacent brain tissue, especially for tumours in functional areas. The
surgical excision boundary for meningiomas with brain invasion is
larger than that for non-invasive meningiomas. Neurosurgeons
enlarge the extent of resection to remove the invaded tissue around
the tumours, especially for tumours in non-functional areas. More-
over, patients with brain invasion tend to need preparation of ade-
quate blood products for transfusion, especially for patients with rare
blood types. Therefore, preoperative prediction of brain invasion is
very important. At present, brain invasion can only be determined by
histopathological examination [10,32], however, a considerable por-
tion of invasive brain tissue may not be detected due to the lack of
adjacent central nervous system tissue [7,32]. Imaging findings of
brain invasion in meningiomas have been reported, but the image
data are qualitative and subjective [33,34]. MR radiomics can repro-
ducibly extract quantitative and objective data from different
sequences, such as T1C, T2, and DWI, to predict grading, differential
diagnosis, and prediction of recurrence in meningiomas [17,34�36],
especially in the meningiomas grade. Hamerla et al. have reported
comparison of machine learning classifiers for differentiation of grade
1 from higher gradings in meningioma, the results indicated that the
combined model (T1WI, T1C, ADC mapping, Flair) has achieved an
AUC of 0.97 [37]. Some literature results demonstrated that a radio-
mics prediction model performed well in predicting the meningio-
mas grade [38,39], which can provide visually imperceptible
information about the tumour. Given this background, the radiomics
model is a non-invasive, convenient, without the need for gene
sequencing and tissue biopsy, and may be a potentially valuable
approach to predict brain invasion in meningiomas. Moreover, in our
study, the radiomics model (accuracy [ACC]: 79�35% in the training
cohort) outperform the evaluation of brain invasion by two radiolog-
ists (ACC:64�5%, 65�7%).

Therefore, we explored the relationships between radiomic fea-
tures and brain invasion. Of the 1595 radiomic features, eight fea-
tures of a single sequence demonstrated high correlations with brain
invasion and were stable across multiple centres. Amongst these fea-
tures, most were textural features of images, which demonstrated
microscopic description of the tumour including cellularity, peritu-
moural oedema, and compression of normal brain tissue by tumour.
Some features cannot be easily identified by the human visual system
or be interpreted to understand the specific meaning [34,35,40,41].
We observed that radiomics features including T1C_ original_ shape_
maximum 2D diameter slice, T1C_ original_ shape_ maximum 3D
diameter, T2_lbp-3D-m2_glrlm_short run high grey level emphasis,
etc. were associated significantly with brain invasion. Amongst them,
T1C_ shape_ maximum 2D diameter slice and T1C_shape_maximum
3D diameter showed the size and shape of the tumour region. Com-
pared with the non-invasion group, the values of these features were
higher in brain invasion and showed the size and shape of meningio-
mas were associated with brain invasion. Chen et al. [42] previously
reported that shape_ volume was associated with grade. It indicated
that brain invasion, grade, and these features are related to each
other. It has also been shown that these features were closely corre-
lated to MRI characteristics, because irregular tumour shape was a
risk factor for brain invasion [7]. Neighbouring grey-tone difference
matrix (NGTDM) features, including busyness, contrast, and coarse-
ness, may reflect microscopic heterogeneity within the tumours [1],
which is associated with brain invasion. The heterogeneous distribu-
tion of cell density was quantified by these features in our study.
After analysis of the correlation between radiomic features and the
Ki-67 expression level, we found that there was a significant correla-
tion between the two, which was consistent with other studies [1].
Thus, the radiomic feature, as a new tool, could predict brain invasion
in meningiomas.

Moreover, we selected T1C and T2 sequences to develop the
model. T1C imaging is usually used to define the boundaries of gross
tumours, and to evaluate the extent of tumour invasion and blood
supply [43]. T2 imaging is sensitive to water tissue and can be used
to detect the presence of oedema [44]. Through Pearson correlation
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analysis, we found that the features extracted from T1C were consis-
tent with some features extracted from T2 in the training and valida-
tion cohorts. Thus, we realized that this result revealed that the
radiomic features of T1C also reflected some radiomic features of T2.
For example, we assumed that a radiomic feature of T2 corresponded
to oedema, which cannot be found in T1C, but it was related to other
features from T1C. This indicated that different features from the two
groups affected each other. It also proved that the single sequence
was only sensitive to some features, and the combination of the two
sequences could be more sensitive to detect more and minor fea-
tures. At the same time, the correlation between the two groups of
features remained highly similar in the training and validation
cohorts, indicating that the selected features remained stable from
different centres and different acquisition parameters. In this study, a
multi-sequence (combining T1C and T2) model of radiomics features
demonstrated better predictive power than the T1C or T2 models
alone, in both the training and validation cohorts. These results show
that multiple sequences could provide more information about
tumours and improve the model’s performance and accuracy of pre-
diction of brain invasion in meningiomas.

Compared to radiomic models based on T1C, T2, and T1C/T2
images, incorporating sex information as a clinical risk factor of the
nomogram demonstrated the best predictive performance. Our
nomogram included preoperative risk factors without postoperative
factors. This individualised nomogram was helpful for the preopera-
tive prediction of brain invasion in meningiomas for both clinicians
and radiologists. The results were more beneficial than the radiomics
model and could be used in clinical applications for meningioma
patients who underwent MRI scans.

Our study had several limitations. First, the retrospective study
used pathological results as the gold standard. However, brain inva-
sion may not be detected by histopathology due to a lack of brain tis-
sue sample. In order to avoid false negatives, the samples (excluding
incomplete MRI sequences, brain invasion, etc.) were assessed by sur-
geons and imaging, however, surgeon and imaging assessments are
subjective. Second, since almost 50% of the patients were excluded
for various reasons in the training and validation cohorts, there might
be an inevitable selection bias, especially in 425 patients with sus-
pected brain invasion excluded after assessment of surgeon and
imaging, which may decrease the discrimination ability of our model.
Third, the MRI scans were retrospectively collected from two centres
with different device and acquisition parameters, and radiomic fea-
tures were sensitive to parameters and other factors, we therefore
standardised T1C and T2 images to obtain a standard normal distri-
bution of the image intensities after feature selection. Fourth, in this
large data study, two neuroradiologists spent plenty of time to manu-
ally delineate tumours, thus, efficient automatic segmentation was
available for meningiomas in the future research. Finally, T1C and T2
sequences were selected for this study. On the T2 sequence, some
cases had unclear boundaries. Although we referred to the T1C
sequences for visual guidance to delineate, there were still devia-
tions. In the future, multimodal studies such as FLAIR and DWI
sequences could be incorporated into the model in order to further
improve accuracy. In addition, although this is a case-control study,
the main predictors enroled the clinicoradiomic model occurred
before the end, so the authenticity of the study results is improved to
a certain extent, further prospective studies are needed to confirm.
Due to the limitation of case-control studies, the threshold of the
algorithm needs to be adjusted according to the prevalence of brain
invasion in different data sets when applied to the clinic [45].

5. Conclusion

Preoperative identification of brain invasion would contribute to
ameliorate clinical decision-making, predicting meningioma grading
and prognosis. Though radiomic analysis, sixteen radiomic features
showed high correlation with brain invasion, and maintained stable
amongst multiple centres. The radiomics signature can effectively
predict brain invasion in meningiomas based on MR imaging (combi-
nation of T1C and T2). The clinicoradiomic model incorporating the
radiomic signatures and sex information showed great performance
and high sensitivity in predicting brain invasion, and can be used in
patients with meningioma.

Research in context

Evidence before this study

We searched publications with the following terms on PubMed
and Web of Science: “(radiomics OR texture analysis) AND (predict
OR prediction) AND (brain invasion OR brain non-invasion) AND
meningiomas AND MRI”. The articles were not limited to English lan-
guage publications and did not have date restrictions. There has been
no research on the preoperative prediction of brain invasion in
meningiomas.

Added value of this study

Microscopic examination of brain invasion has been added as an
independent grading criterion for the diagnosis of WHO grade II atyp-
ical meningioma, according to the latest 2016 edition of the World
Health Organization (WHO) Classification of Central Nervous System
(CNS) tumours. Therefore, accurate prediction of brain invasion in
meningiomas is urgently needed. To our knowledge, this is the first
study to build a clinicoradiomic model based on radiomic features
and clinical factors to predict brain invasion in meningiomas. This
model demonstrated good performance and might be a potential
non-invasive tool to assist in the clinical and surgical management,
meningioma grading, and prediction of prognosis.

Implications of all the available evidence

The clinicoradiomic model, a new non-invasive way, incorporat-
ing the fusing radiomic features and sex information showed good
performance for risk prediction of brain invasion in patients with
meningioma. This model can be used in clinical applications for
meningioma patients who undergo MRI scans to potentially improve
their management and outcomes.
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