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Take my breath away
A lack of oxygen activates a pathway that causes the bacterial cell wall

to break down, which, in turn, aids bacterial biofilm development.
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A
lthough all bacteria are single-celled

microorganisms, they display signs of

multicellular behavior when they form

communities known as biofilms. Within these

communities, bacteria can sense cues from their

environment, communicate with each other, dif-

ferentiate into subpopulations, redistribute to

form distinct architectures and cooperate in

ways that enhance the ‘collective fitness’ of the

biofilm.

At a molecular level, biofilm formation can be

regarded as a complex developmental program

that is controlled by multiple regulatory net-

works that effectively sense and respond to envi-

ronmental signals (Moormeier and Bayles,

2017). Now, in eLife, Ameya Mashruwala, Adri-

ana van de Guchte and Jeffrey Boyd of Rutgers

University report how hypoxia (that is, a short-

age of oxygen) influences the formation of bio-

films in the bacterium Staphylococcus aureus

(Mashruwala et al., 2017).

Staphylococcal biofilms are exposed to hyp-

oxic conditions in a variety of environments,

including when bacterial cell densities are high

within the biofilm. A secreted sugar polymer

called polysaccharide intercellular adhesin (PIA)

is known to be involved in biofilm formation in

some staphylococci, but very few clinical strains

of S. aureus produce detectable levels of PIA in

vitro. In fact, PIA is associated more with the

protection of biofilms under conditions of high

shear stress, rather than being a critical compo-

nent of biofilm structure (Schaeffer et al., 2016;

Foka et al., 2012; Weaver et al., 2012). Never-

theless, researchers have shown that hypoxia

can increase PIA production, and thus biofilm

formation, in strains that produce detectable lev-

els of PIA (Cramton et al., 2001; Gotz, 2002).

Through a series of elegant experiments,

Mashruwala et al. demonstrate that while hypoxia

increases the biomass of the biofilm due to a

decrease in cell respiration, the mechanism

appears to be independent of PIA. Instead, they

show that decreased respiration activates a path-

way that results in cell lysis (that is, the break-

down of the cell wall that encloses the

bacterium), which in turn leads to enhanced bio-

film development.

Programmed cell death is thought to have

evolved when multicellular organisms first origi-

nated. Since the individual cells that make up a

multicellular organism are constrained for space

and nutrients, they are limited in their capacity to

multiply and must therefore cooperate to survive.

Although a rather extreme form of cooperation,

programmed cell death ensures that a multicellu-

lar body functions efficiently (Ameisen, 2002).

Similar to multicellular organisms, a bacterial

biofilm may be viewed as a collection of cells

that is confined within its extracellular matrix,

which continuously controls the number of cells

in the biofilm through regulated cell death and

lysis mechanisms. This rather ruthless control of

cell numbers has other benefits: for example, it

increases the release of proteins and DNA from

the bacteria, and these materials are then incor-

porated into the extracellular matrix in order to

strengthen biofilm structure. Mashruwala et al.
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now demonstrate that hypoxia stimulates the

release of proteins and DNA from the bacteria

via cell lysis and that the depletion of extracellu-

lar protein and DNA (by protease or DNase

treatments respectively) limits hypoxia mediated

biofilm formation.

How does decreased respiration activate cell

lysis? The critical component appears to be a

signaling system called SrrAB, which is activated

when an electron transporter called menaqui-

none remains chemically reduced. Once the

SrrAB system has been activated, it increases

the amount of the enzyme AtlA, a main player in

cell destruction, and lowers the number of wall

teichoic acids. In a healthy cell, the negative

charge of the wall teichoic acids attracts protons

and maintains an acidic microenvironment in the

cell wall, which limits the activity and attachment

of AtlA to the cell surface (Rice and Bayles,

2008; Biswas et al., 2012; Schlag et al., 2010).

Mashruwala et al. also show that when the num-

ber of wall teichoic acids is low due to SrrAB

activity, AtlA attaches more efficiently to the cell

wall and is active enough to cause cell lysis.

How is this response ‘programmed’? In partic-

ular, is cell lysis an active response initiated by

the cell following hypoxia, or is it a passive

response due to an inability to adapt? The work

of Mashruwala et al. clearly demonstrates that

when various components of the programmed

cell lysis pathway are inactive, cell lysis can be

averted despite hypoxia. This suggests that cell

lysis does not result from a general inability to

adapt to hypoxia but rather is a bona fide pro-

grammed mechanism. However, outstanding

questions remain. For instance, it is not clear why

hypoxia only triggers lysis in some cells, despite

all cells being genetically identical. Also, more

research is needed to fully understand the rela-

tionship between cell lysis and programmed cell

death during the development of a biofilm and

how these processes overlap.
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Biswas R, Martinez RE, Göhring N, Schlag M, Josten
M, Xia G, Hegler F, Gekeler C, Gleske AK, Götz F, Sahl
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