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Abstract

Background: Circadian rhythms are oscillating physiological and behavioral changes governed by an internal
molecular clock, and dysfunctions in circadian rhythms have been associated with ageing and various
neurodegenerative diseases. However, the evidence directly connecting the neurodegeneration-associated proteins
to circadian control at the molecular level remains sparse.

Methods: Using meta-analysis, synchronized animals and cell lines, cells and tissues from FUS R521C knock-in rats,
we examined the role of FUS in circadian gene expression regulation.

Results: We found that FUS, an oscillating expressed nuclear protein implicated in the pathogenesis of amyotrophic
lateral sclerosis (ALS) and frontotemporal dementia (FTD), exerted a novel feedback route to regulate circadian gene
expression. Nr1d1-encoded core circadian protein REV-ERBα bound the Fus promoter and regulated the expression of
Fus. Meanwhile, FUS was in the same complex as PER/CRY, and repressed the expression of E box-containing core
circadian genes, such as Per2, by mediating the promoter occupancy of PSF-HDAC1. Remarkably, a common
pathogenic mutant FUS (R521C) showed increased binding to PSF, and caused decreased expression of Per2.

Conclusions: Therefore, we have demonstrated FUS as a modulator of circadian gene expression, and provided novel
mechanistic insights into the mutual influence between circadian control and neurodegeneration-associated proteins.
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Background
Circadian rhythms are oscillating physiological and behav-
ioral changes governed by an internal molecular clock, and
rely on two transcriptional feedback loops to regulate the
expression of various core circadian genes [1–3]. BMAL1
and CLOCK transcriptionally activate E-box-containing
genes, including Per, Cry and Nr1d1/2. When the protein
products of Per, Cry and Nr1d1/2 build up, Nr1d1/
2-encoded REV-ERBα/β can repress the transcription of
Bmal1 by binding to retinoic acid–related orphan receptor
response (ROR) elements in the Bmal1 promoter [4, 5],
and PER and CRY proteins can join a mega-transcriptional

repressor complex with BMAL1 and CLOCK to shut down
the expression of E-box-containing genes [6–11]. The
strength of these two major transcriptional feedback loops
can be further fine-tuned by additional transcriptional
co-regulators [12–14]. For example, RNA/DNA-binding
protein PSF (also known as splicing factor proline and glu-
tamine rich) could act as a transcriptional co-repressor by
recruiting SIN3A-HDAC1 to rhythmically deacetylate Per1
promoter and repress the transcription of Per1[12].
There is a plethora of evidence connecting circadian

rhythm dysfunction to neurodegeneration [15, 16]. How-
ever, except for Ataxin-2 in Drosophila circadian loco-
motor behavior regulation [17, 18], there is little evidence
mechanistically links neurodegenerative disease-associated
proteins to the regulation of circadian clock. FUS is a nu-
clear protein implicated in the pathogenesis of ALS and
FTD [19–21]. Mutations in FUS cause early onset of ALS,
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and the accumulation of FUS is a common feature in FTD
neuropathology [21]. Furthermore, sleep disorders are
known to affect some ALS and FTD patients [22–24]. Fus
is suggested as a potential circadian regulated gene with
oscillating mRNA expression in mouse liver, prefrontal
cortex, skeletal muscle and other tissues [25, 26]; however,
its regulation by circadian clock has never been character-
ized and its role in circadian regulation is unknown. In
this study, we found that FUS is not only transcriptionally
regulated by REV-ERBα, but also modulates the expres-
sion of Per and Cry. Therefore, our study provides novel
insights into mutual regulation between circadian control
and neurodegeneration-related proteins.

Methods
Animals
All animal works were performed in accordance with
the regulations by the Animal Care and Use Committee
of the Institute of Neuroscience, Shanghai Institutes for
Biological Sciences.
The detailed procedures for the establishment of the

FUS-R521C knock-in rats via CRISPR/Cas9, and the
characterization of the animals were described elsewhere
(T.Z. et al, Neurobiology of Aging, in press; Additional file 1).
Briefly, Cas9 mRNA, single guide RNA (sgRNA) targeting
the C-terminus of rat Fus gene, and donor DNA were
injected into the cytoplasm of zygotes of the Sprague Dawley
rats (Additional file 1: Figure S1). The sequence for sgRNA
and donor DNA are: TGAGCACAGACAGGATCGCA (sgRNA),
TTAATCTAACAAATAATTTTTTCTTTCAGG GGTGAGCACAG
ACAGGATTGCAGGGAGAGGCCATATTAGCCTGACTCCTGAAG
TTCTGGAACAGCTCTTC (donor DNA). The presence of
inserted mutation was determined by PCR followed by se-
quencing. The potential off-target effects in F0 (founder) rats
were estimated using Cas-OFFinder [27] and assessed by
PCR-sequencing. Multiple rounds of breeding were carried
out to eliminate off potential off target effects. The Nr1d1
knock-out mice were described previously [5].

Cell culture, transfection and synchronization
Rat embryonic fibroblasts (REFs) were collected from
E13.5-15.5 embryos using pregnant rats from heterozygous
R521C FUS knock-in rats mating pairs. Mouse embryonic
fibroblasts (MEFs) were collected from E13.5-E15.5 em-
bryos using pregnant mice from heterozygous Nr1d1
knock-out mice mating pairs. REFs, MEFs, HEK293T cells
(ATCC) and Neuro-2a (ATCC) cells were cultured at 37 °C
in 5% CO2 in DMEM (for REFs and HEK293T cells, Gibco
c11965) or DMEM/F-12 (for Neuro-2a cells, Gibco c11330)
medium, supplemented with 10% fetal bovine serum
(Gibco, 10099) and antibiotics (Penicillin and streptomycin,
HyClone, SV30010).
Cells were transfected using Lipofectamine 2000 reagent

(Invitrogen, 11668) for over-expression or Lipofectamine

RNAiMAX (Invitrogen, 13778) for gene silencing. Control
plasmids (GFP) or scrambled siRNA (Ctrl) were used to
make sure equal amount of the constructs were trans-
fected in each condition. Typically, cells were harvested
48 hrs for over-expression and 72 hrs for RNAi silencing
after transfection.
Neuro-2a cell were synchronized as described previ-

ously [13]. Briefly, 48 hrs after siRNA silencing or 24 hrs
after over-expression, the cultural medium for trans-
fected cells were changed to 50% horse serum (Gibco,
16050)-50% DMEM/F12 for 2 hrs followed by culturing
in 1%-FBS-containing DMEM for 22 hrs before harvest-
ing. For REFs synchronization, 48 hrs after transfection,
cells were cultured in DMEM (with 1% FBS and antibi-
otics) containing 10μM forskolin (Sigma, F3917) for 2
hrs, followed by culturing in the low serum condition
until the end of the experiment (DMEM with 1% FBS)
as described [28]. The synchronization of MEFs was as
described [29, 30]. MEFs were treated with 100nM
Dexamethasone for 1 hr when cells reach confluence,
then the cells were cultured in the low serum condition
(DMEM with 1% FBS) for 36 hr followed by harvesting.

Circadian tissue collection
For Fig. 1a-c, 7-week-old male wild-type C57BL/6 mice
(SLAC Laboratory Animal, Shanghai) were maintained in
a light-tight, ventilated, temperature (22 °C) and humidity
(60%)-controlled animal facility with free access to food
and water. The lighting schedule was 12 hr light:12 hr
dark (lights on at 7 a.m.). To measure the endogenous cir-
cadian gene oscillation, entrained mice were then released
to a constant low irradiance light condition (~30 Lux,
measured at the bottom of cage) for one week. Starting at
CT-8 (circadian time), five mice were sacrificed every 4
hrs, for 24 hrs. Tissues were quickly dissected and frozen
immediately in solid carbon dioxide for further analysis.
For Fig. 1d, the detailed method for sleep deprivation

(SD) was as described [31]. Briefly, SD was initiated at
ZT-0 hr (Zeitgeber time), ZT-6 hr, ZT-12 hr and ZT-18
hr by gentle-handing method for 5.5 hrs, mice were then
sacrificed within the next 30 min.
For Fig. 2d, 3.5-month-old Nr1d1-knockout mice and

littermate wild-type control mice were entrained in the
12 hr:12 hr light:dark condition for more than a week
then released to constant dark condition for five days.
Three pairs of littermate mice were sacrificed at CT-0 hr
and two pairs of mice were sacrificed at CT-12 hr under
the dim red light. Tissues were quickly dissected and
frozen immediately in solid carbon dioxide for further
analysis.

Dual-luciferase assay
Firefly luciferase reporter constructs directed by the in-
tact mouse Fus promoter (~1.5kb upstream) or the
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promoter with predicted REV-ERBα-binding site (350 bp
[32]) deleted were PCR amplified from mouse genomic
DNA and cloned into firefly luciferase reporter vector
(pGL3-Basic Vector, Promega, E1751). Firefly luciferase
reporter constructs directed by mouse Per2 promoter
(1.7 kb) [33] was a gift from Dr. Hung-Chun Chang’s
lab. Cells were transfected with firefly luciferase reporter
with renilla luciferase reporter (pRL-SV40 Vector, Pro-
mega, E2231) as internal control. According to the tech-
nical manual of Dual-Luciiferase Reporter Assay System
(Promega, E1910), 48 hrs after transfection, cells were
eventually lysed with Passive Lysis Buffer. Then, trans-
ferred 20μL of cell lysate into 100μL of LARII reagent

and the luminescence of firefly luciferase reporter was
read by the tube luminometer (Titertek Berthold). Next,
added 100μL of Stop & Glo reagent and put the tube
back to the luminometer again and read the luminescence
for internal renilla luciferase control. For each experiment,
samples were analyzed in duplicates. Sequences of siRNAs
were listed in Additional file 2: Table S1.

Plasmids, siRNA, and Antibodies
FLAG-mouse REV-ERBα and FLAG-PSF, FUS, R521C
and 1-360 FUS were generated by PCR cloning. The
primary antibodies used are: rabbit anti-PSF (Sigma,

Fig. 1 Fus is a circadian regulated gene. a-c. Western blot showing the protein expression of FUS in the liver (a), hypothalamus (b) and cortex (c)
of free-running wild-type mice (CT: circadian time), the quantification was shown on the left (mean ± s.e.m.; N = 5 mice were sacrificed at each
time point). d mRNA expression level of Fus in the whole brain of sleep-deprived mice using microarray datasets [31] (mean ± s.e.m.; N = 3
experiments, t-test, *:P≤0.05). (e, f) mRNA expression level of Fus and Tdp-43 in the liver [37] (e) and brain stem [38] (f) of mouse. The lowest
value for the dataset in each graph was set as 1 to determine relative fold change
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PLA0181; WB: 1:2,000, IP: 1:100; ChIP: 1:100), mouse
anti-FUS (Santa Cruz, sc-4H11; WB: 1:1,000), mouse
anti-DYKDDDDK-Tag (FLAG) (Abmart, M2008;
WB:1:5,000), mouse anti-DYKDDDDK-Tag conjugated
protein A/G beads (Abmart, M200018; IP and ChIP:
35uL beads per each assay), mouse anti-PSF antibody
(Sigma, P2860; WB: 1:1,000), rabbit anti-CLOCK (Cell
Signaling Technology, D45B10; WB:1:3,000), rabbit

anti-BMAL1 (CST, D2L7G; WB: 1:3,000), rabbit
anti-PER2 (Abcam, ab179813; WB: 1:1,000), mouse
anti-ACTIN (Abmart, M20010; WB: 1:5,000), rabbit
anti HDAC1 (Abcam, ab7028; ChIP: 1:150; WB:
1:2,000), mouse anti-TUBULIN (Abmart, T40103; WB:
1:5,000), mouse-anti GAPDH (Proteintech, 60004-1-Ig;
WB: 1:10,000). Primer sequences are included in Add-
itional file 2: Table S1.

Fig. 2 REV-ERBα activates the circadian expression of FUS. a ChIP-seq analysis showing REV-ERBα binding signals on the Fus promoter.
The black bar below indicates the Fus promoter region (WT-P in Fig. 2c) used in the Fus promoter-luciferase construct, while the grey
area in the middle of black bar indicates the region harboring the REV-ERBα-binding site based on ChIP-seq data [32]. b ChIP-qPCR
showing the binding of FLAG-REV-ERBα to the Fus promoter in Neuro-2a cells (Fus-1 and Fus-2 are two pairs of primers specific for
regions located in the predicted REV-ERBα binding sites in Fig. 2a; FLAG-GFP was used as the control; mean ± s.e.m.; N = 4 experiments;
t-test; *:P≤0.05). c Luciferase activity of the intact (WT-P) and REV-ERBα-binding site deleted (Del-P) Fus promoter-luciferase constructs in
Neuro-2a cells after siRNA silencing (mean ± s.e.m.; N = 4 experiments; t-test; ***:P≤0.001). The right panel showed the knock-down
efficiency of Nr1d1-targeting siRNA (mean ± s.e.m.; N = 4 experiments; t-test; ***:P≤0.001; Ctrl represents scrambled control siRNA; NS:
non-significant). d FUS expression level in synchronized wild-type or Nr1d1 knock-out (KO) MEFs. Quantification result was shown in the
bar graph (mean ± s.e.m.; three lines of wild-type MEFs and four lines of Nr1d1 KO MEFs were generated from two pregnant Nr1d1
heterozygous mice, t-test; **: P≤0.01). e FUS expression level in the liver of free-running wild-type and Nr1d1 knock-out mouse at
indicated time point, quantification result was shown in the right bar graph (N = 3 pairs of littermates for CT-0 hr and N = 2 pairs for
CT-12 hr; mean ± s.e.m.; two-way ANOVA with Sidak's multiple comparison test, *:P≤0.05, **:P≤0.01). f Activating/repressive functional
prediction analysis based on the published REV-ERBα ChIP-seq data [32] and transcriptional profile in Nr1d1 knock-out mice [53]. Genes
are cumulated by the rank on the basis of the regulatory potential score from high to low according REV-ERBα ChIP-seq data (x-axis).
The red and purple lines represent the percentage of up-regulated (UP) or down-regulated (DOWN) genes that harbor REV-ERBα binding
sites from Nr1d1 knock-out microarray data, respectively. The black dashed line indicates the non-differentially (NON) expressed genes among
REV-ERBα-binding genes. P values that represent the significance of the UP or DOWN group distributions are compared with the NON group by the
Kolmogorov-Smirnov test. The right panel is an example showing the fraction of up-regulated (red) or down-regulated genes (purple) that contain
REV-ERBα binding sites when the top 2,000 peaks from the ChIP-seq data were included (gray dash line in the left panel). The cumulative fractions of
genes that are down-regulated in Nr1d1 knock-out mice indicate that REV-ERBα could also act as an activator
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Immunoblotting, immunoprecipitation and chromatin-
immunoprecipitation
The procedure for western blotting was as described
previously [34]. Briefly, animal tissue samples or cul-
tured cells were lysed in RIPA buffer (150 mM NaCl, 50
mM Tris buffer (pH=8.0), 1% NP-40, 1% deoxycholate
and 0.1% SDS) with protease inhibitors (Roche,
5892970001). After centrifugation at 12,000 rpm for 15
min at 4 °C, the concentration of soluble fraction was
measured by BCA Protein Assay Kit (Tiangen) and the
soluble fraction was boiling in 5× loading buffer at 100 °C
for 15 min. Around 40 μg of protein was loaded per lane
for western blotting.
The procedure for immunoprecipitation was de-

scribed previously with minor modification [35]. Briefly,
transfected HEK293T cells (10 cm-plate, 48 hrs after
transfection) or the whole brain of rats were lysed in
NP-40 buffer (150mM NaCl, 1% NP-40, 50 mM Tris
buffer (pH=8.0) and 0.25% deoxycholate) with protease
inhibitors. After centrifugation at 12,000 rpm for 15
min at 4 °C, 1 mg of protein lysates were pre-cleaned
with IgG for one hour, followed by incubation with the
mouse anti-DYKDDDDK-Tag conjugated protein A/G
beads (Abmart, M200018) overnight. Pre-cleaned brain
lysates were incubated with primary antibodies or con-
trol IgG overnight, followed by incubation with protein
A/G sepharose beads (Santa Cruz, sc2003) for one
hour. The beads were then washed and immunoprecipi-
tated proteins were eluted by boiling in loading buffer.
ChIP assays were performed with serum-shocked

synchronized Neuro-2a cells as previously described
[36]. Briefly, Neuro-2a cells cultured in 15-cm plates
were washed twice by PBS and cross-linked with 1%
formaldehyde for 15 min. Cross-linked cells were
washed by ice-cold PBS and collected. The nuclear
fractions were extracted by high-salt buffer followed
by sonication three times for 10s at the maximum
setting (SCIENTZ, Scientz-II D). The fragmentation
of sonicated chromatin was evaluated by agarose gel
electrophoresis and the sonication condition was opti-
mized to achieve ideal fragment size of 200 – 1,000
bp. After centrifugation for 10 min at 12,000 rpm,
the supernatants were immunocleared with 2μg
sheared salmon sperm DNA (Sigma, D1626), IgG and
protein A/G sepharose beads for 2 hrs at 4 °C, and
immunoprecipitated with indicated antibodies over-
night followed by incubation with salmon sperm
DNA and protein A/G sepharose beads. Precipitates
were de-crosslinked at 65 °C for 8 hrs and DNA was
purified with Universal DNA Purification Kit (Tian-
gen, DP214) and used in quantitative PCR. For qPCR,
1.5 μL from 60 μL DNA extraction were used with
specific primer pairs (Additional file 2: Table S1) and
SYBR Green (BIO-RAD, 170888).

Bioinformatics analysis
For Fig. 1d, Fus expression pattern in sleep deprived
mouse brain was obtained from GSE9442 [31]. For Fig.1e
and f, mouse liver and brain stem circadian microarray
data were from GSE119237 [37] and GSE54650 [38] re-
spectively. The circadian oscillation of gene expression
was determined by fitting the circadian time-series data to
cosine functions with 24 hours’ period and shifting phases
as described previously [26]. For Fig. 2a, REV-ERBα and
REV-ERBβ ChIP-seq data in mouse liver were mapped to
mouse genome (mm9) by bowtie2 program [39] (default
parameters). MACS program [40] was applied to identify
the binding sites (MACS 1.4.2, default parameter) from
ChIP-seq data. For Fig. 2f, BETA program [41] were ap-
plied to evaluate the activating/repressive function of
REV-ERBα in mouse liver from the genome-wide data
(with parameters:--df=0.05 -d 30000 -k BSF --da 500).

Statistical analysis
Data are presented as mean ± s.e.m. and were analyzed by
Prism 7 software (GraphPad). Two-tailed unpaired t-test
was used to compare the means of two groups. One-way
ANOVA followed by Newman-Keuls multiple compari-
sons test was used for multiple comparisons. Two-way
ANOVA followed by Sidak multiple comparison test was
used for analysis gene expression in various time points.

Results
FUS is a circadian clock-regulated gene
We first examined the protein expression of FUS in
various mouse tissues, including the peripheral circa-
dian clock center liver [42, 43], hypothalamus which
harbors central circadian pacemaker suprachiasmatic
nucleus[44], and cortex (Fig. 1a-c). FUS expression
showed clear circadian oscillation although the patterns
varied in different tissues. Since sleep deprivation (SD) af-
fects the expressions of many core circadian genes [31, 45,
46], we compared the expression of Fus in the normal and
SD conditions by a meta-analysis of published microarray
datasets [31] (Fig. 1d). The basal level of Fus mRNA was
decreased and oscillation amplitude was diminished in
sleep-deprived mice (Fig. 1d). These results suggested that
the expression of Fus was regulated by circadian clock.
Furthermore, the oscillation of Fus expression was much
stronger than Tdp-43, another ALS and FTD-associated
nuclear protein [47–50] in mice, suggesting that FUS may
exert a more active role in circadian rhythm (Fig. 1e, f ).
To investigate the underlying mechanism of circadian

regulation of Fus, we performed a bioinformatics ana-
lysis of published ChIP-seq datasets of core circadian
proteins and found that only REV-ERBα, not even
REV-ERBβ, bound within a 350 bp region in the Fus
promoter [32], although the Fus promoter lacked a con-
sensus REV-ERBα-binding site, the retinoic acid–related
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orphan receptor response (ROR) element (Fig. 2a,
Additional file 3: Table S2). We confirmed the binding
of REV-ERBα to the Fus promoter using chromatin im-
munoprecipitation (Fig. 2b). Silencing the gene encoding
REV-ERBα, Nr1d1, reduced the expression from the Fus
promoter, and deletion of the REV-ERBα-binding region
relieved the effect of Nr1d1 silencing (Fig. 2c). Intri-
guingly, removing the 350 bp region containing the
REV-ERBα-binding site led to a REV-ERBα-independent
increase of Fus promoter-luciferase activity, indicating
that this region harbored a repressor-responsive element.
Furthermore, the protein expression of FUS was reduced
in Nr1d1 knock-out MEF cells (Fig. 2d) as well as in the
liver of Nr1d1 knock-out mice (Fig. 2e), although the
number of Nr1d1 knock-out mice in our experiment
was restricted by limited availability due to reduced fer-
tility of these mice [5, 51]. Although REV-ERBα was
usually reported as a transcriptional repressor [32], it
regulated FUS as an activator in a way very similar to a
Drosophila Nr1d1 homolog, E75 [52], suggesting its
versatile action depending on the presence of other tran-
scriptional co-factors. To evaluate the global transcrip-
tional regulation by REV-ERBα, we conducted an
activating/repressive functional prediction analysis [41]
based on the published REV-ERBα ChIP-seq data [32]
and transcriptional profile from the Nr1d1 knock-out
mice [53], and found that REV-ERBα could activate a
large number of genes it binds (Fig. 2f ). These results
indicate that Fus is a REV-ERBα-regulated circadian
gene.

FUS regulates the expression of core circadian genes
The diurnal expression of core circadian genes, such as
Per and Cry, are regulated by complicated negative feed-
back loops involving transcriptional and post-translational
regulation [1–3]. Since FUS is nuclear protein known to
regulate gene expression [54], we assessed whether FUS
may affect the expression patterns of some key genes
in circadian control. We knocked-down the expres-
sion of endogenous Fus in synchronized Neuro-2a
cells and found the mRNA levels of Per2 and Cry1
were generally increased with silenced expression of
FUS at various time points during a diurnal cycle
(Fig. 3a-c). Conversely, restoring the expression of
FUS blunted the activation of Per2 and Cry1 by FUS
depletion (Fig. 3d, e). These results suggest that FUS
is a potential circadian regulator.

FUS facilitates the recruitment of co-repressor complex to
the promoters of Per genes
We have previously shown that FUS interacts with PSF
[35]. Interestingly, PSF is in the PER/CRY, BMAL1,
CLOCK protein complex and negatively regulates the ex-
pression of Per1 by recruiting the Sin3A-HDAC1 complex

[12]. Using co-immunoprecipitation assay, we found that
FUS could similarly bind PER2, BMAL1, and CLOCK
(Fig. 4a). To evaluate the possibility that FUS and PSF
may cooperatively repress Per2 promoter-luciferase activ-
ity, we transfected PSF, in the presence or absence of FUS
RNAi construct, and found that over-expression of PSF
could reduce the Per2 activation by FUS RNAi (Fig. 4b).
Next, we found that while the knock-down of either FUS
or PSF led to increased Per2 promoter-luciferase activity,
double knock-down did not produce an additive effect,
suggesting that PSF and FUS operate through a common
repressor complex (Fig. 4c). After analyzing the promoter
loading of PSF at different circadian time in synchronized
Neuro-2a cells, we found that during the observation win-
dow between 22 to 40 hrs after synchronization, the 28-hr
time point showed the peak PSF binding (Fig. 4d). We
then assessed the effect of FUS on the loading of PSF and
HDAC1 onto the promoters of Per1, and Per2 at this time
point. FUS depletion led to reduced promoter occupancy
of PSF and HDAC1 (Fig. 4e, f ). Collectively, our results in-
dicate that FUS may facilitate the recruitment of
co-repressor complex PSF-HDAC1 to the promoters of
Per genes.

Mutation in Fus leads to abnormal circadian gene
expression
Mutations in Fus cause early onset of ALS and FTD
[19–21, 55–57]. To evaluate whether pathogenic muta-
tions may affect circadian regulation by FUS, we exam-
ined the expression of Per2 and Bmal1 in REFs derived
from FUS R521C knock-in rats available in the lab.
R521C is one of the most common FUS point mutations
[58–61]. Both the Per2 promoter activity and mRNA ex-
pression were decreased (Fig. 5a, b).We then assessed
the interaction between PSF and FUS-R521C. We found
that FUS-R521C showed a much stronger binding to
PSF than the wild-type FUS and the binding between
FUS and PSF required the C-terminus of FUS (Fig. 5c).
Furthermore, we confirmed the increased binding be-
tween FUS R521C and PSF in the brain tissue from
FUS-R521C knock-in rats (Fig. 5d). We have also de-
tected the binding between PSF and other two
C-terminus-located FUS pathogenic mutations, R518K
and P525L (Fig. 5e). Surprisingly, unlike R521C, FUS
P525L showed significantly weaker binding with PSF
than wild-type FUS (more in Discussion). Taken to-
gether, our results suggest that mutations in Fus could
lead to abnormal circadian gene expression.

Discussion
In summary, we have identified ALS/FTD-associated
FUS as a novel modulator for the circadian gene expres-
sion. The FUS expression is positively regulated by
REV-ERBα. Meanwhile, FUS is a component of the
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PER-CRY-BMAL1-CLOCK mega-complex, and it re-
presses the expression of Per by recruiting PSF-HDAC1.
Therefore, besides transcriptionally repressing Bmal1,
REV-ERBα could negatively regulate the expression of
Per genes via the action of FUS.
The regulation of FUS by REV-ERBα suggests that

dysregulated circadian clock could lead to the abnormal
expression of FUS, as demonstrated by the reduction of
FUS expression in sleep-deprived mice (Fig. 1d). Since
the change in Fus expression is detrimental to neuronal
health and contributes to the pathogenesis of ALS and
FTD [58, 62, 63], our results have provided new mech-
anistic insights into the role of circadian dysfunction as
a risk factor for neurodegeneration. Because of the

importance of FUS, dramatic fluctuation of FUS would
not be desirable for the organism. It is not surprising to
observe the moderate but reproducible regulation of
FUS by REV-ERBα. In addition, it is possible that other
circadian regulators may also participate in the regula-
tion of FUS expression.
Although we have described a mechanism related to

the transcriptional regulation by FUS, other functions of
FUS could also contribute to circadian gene regulation.
For example, FUS is a key regulator in RNA splicing [64,
65]. However, published RNA splicing targets by FUS do
not contain core circadian genes [64]. Whether the
RNA-binding property of FUS is involved in circadian
gene regulation remains to be elucidated.

Fig. 3 FUS regulates the expression of core circadian genes. a, b mRNA expression levels of Per2 (a) and Cry1 (b) in synchronized Neuro-2a cells
after siRNA silencing (mean ± s.e.m.; N = 4-6 experiments; two-way ANOVA with Sidak’s multiple comparison test, * represents the significant
P-value of overall two-way ANOVA analysis, ***:P≤0.001, # represents the significant P-value of Sidak’s multiple comparison test, #:P≤0.05,
##:P≤0.01, ###:P≤0.001). c Western blot showing the knock-down efficiency of Fus-targeting siRNA (mean ± s.e.m.; N = 3-4 experiments; t-test; ****:
P≤0.0001). d, e RT-qPCR showing the mRNA expression of Per2 and Cry1 in cells with indicated transfection conditions in serum shock-synchronized
Neuro-2a cells (mean ± s.e.m.; N = 8-9 experiments; One-way ANOVA with Newman-Keuls multiple comparisons test; *:P≤0.05; **:P≤0.01)
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Our data suggest that the FUS C-terminus, a mutation
hot spot [66], may mediate the binding between FUS
and the PSF-containing protein complex. Consistent

with a recent report [67], pathogenic mutations such as
R518K and P525L (Fig. 5e) could affect the binding be-
tween FUS and PSF. Therefore, some pathogenic

Fig. 4 FUS is in the repressor complex and mediates the recruitment of PSF-HDAC1 to the promoters of E box-containing genes. a Co-immunoprecipitation
of FLAG-FUS with PER2, BMAL1 and CLOCK in HEK293T cells. b, c Per2 promoter-luciferase reporter activity in synchronized Neuro-2a cells after transfection
and siRNA silencing with indicated conditions. Cells were first transfected with indicated RNAi constructs at 0 hr, followed by expression plasmid transfection
at 24 hr if needed. Cells were synchronized at the 48 hr point for 2 hrs, and harvested for analysis at the 72 hr time point (mean ± s.e.m.; N = 3 experiments
in duplicates; One-way ANOVA followed by Newman-Keuls multiple comparisons test; *:P≤0.05, **:P≤0.01). d ChIP-qPCR showing the promoter loading of
PSF relative to IgG control. Neuro-2a cells were harvested at indicated time points after serum shock synchronization (mean ± s.e.m.; N = 3-5 experiments;
One-way ANOVA followed by Dunnett's multiple comparison test; *:P≤0.05). e, f ChIP-qPCR showing the effect of FUS silencing on the binding of
endogenous PSF (e) or HDAC1 (f) onto the E box-containing promoters of circadian genes. Neuro-2a cells were harvested at 28 hrs after serum shock
synchronization (IgG as the ChIP control, mean ± s.e.m.; N = 3-5 experiments; t-test; **:P≤0.01)
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mutations in Fus will conceivably lead to altered recruit-
ment of the repressor complex and affect the transcrip-
tion of core circadian genes. It will be of great interest in

the future to determine whether FUS mutation-induced
circadian gene dysregulation may contribute to or fur-
ther exacerbate the neurodegeneration process.

Fig. 5 The pathogenic R521C mutation of FUS leads to abnormal expression of core circadian genes. a Luciferase activity of transfected PER2-promoter-
luciferase in the wild-type (WT) and FUS R521C knock-in (KI) REFs (mean ± s.e.m.; N = 3 experiments; t-test; *:P≤0.05). b mRNA expression levels of Per2 in
synchronized REFs (mean ± s.e.m.; N = 6 experiments; two-way ANOVA, *:P≤0.05). c Co-immunoprecipitation of FLAG-GFP, wild-type or R521C-FUS and a
FUS C-terminus deletion construct (1-360 residues) with endogenous PSF in HEK293T cells (mean ± s.e.m.; N = 5 experiments; t-test; **:P≤0.01). d
Co-immunoprecipitation of endogenous PSF with FUS in the whole brain tissue of the wild-type and FUS R521C knocked-in rats. e Co-immunoprecipitation
of FLAG-tagged wild-typed and R518K and P525L FUS with endogenous PSF in HEK293T cells (mean ± s.e.m.; N = 3 experiments, t-test, *:P≤0.05)
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Conclusions
We have identified ALS/FTD-associated FUS as a
modulator of circadian gene expression, and pro-
vided new mechanistic evidence supporting the mu-
tual influence between circadian disturbance and
neurodegeneration.
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