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Abstract
Lung adenocarcinoma (LUAD) is the most common and lethal cancer worldwide. 
Radiotherapy (RT) is widely used at all stages of LUAD, and the development of 
immunotherapy substantially enhances the survival of LUAD patients. Although the 
emerging treatments for LUAD have improved prognosis, only a small fraction of pa-
tients can benefit from clinical therapies. Thereby, approaches assessing responses to 
RT and immunotherapy in LUAD patients are essential. After integrating the analysis 
of RT, immunization, mRNA, and clinical information, we constructed a signature 
based on 308 tumor-infiltrating B lymphocyte-specific genes (TILBSig) using a ma-
chine learning method. TILBSig was composed of 6 B cell-specific genes (PARP15, 
BIRC3, RUBCNL, SP110, TLE1, and FADS3), which were highly associated with 
the overall survival as independent factors. TILBSig was able to differentiate better 
survival compared with worse survival among different patients, and served as an 
independent factor for clinical characteristics. The low-risk TILBSig group was cor-
related with more immune cell infiltration (especially B lineages) and lower cancer 
stem cell characteristics than the high-risk group. The patients with lower risk scores 
were more likely to respond to RT and immunotherapy. TILBSig served as an ex-
cellent predicator for prognosis and response to immunotherapy and RT in LUAD 
patients.
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1  |   INTRODUCTION

Lung cancer is the most lethal malignancy, with a mortality 
rate ranking the highest (18.4% of the total number of deaths).1 
The histologic subtype of approximately 85% lung cancer is 
non-small cell lung cancer (NSCLC), in which lung adeno-
carcinoma (LUAD) accounts for up 40% cases.2–4 Among 
multiple clinical treatments including surgical resection, che-
motherapy, and targeted therapy,5,6 radiotherapy (RT) is used 
at all stages of LUAD as a routine treatment. Approximately 
77% lung cancer patients received RT,7 which elicits DNA 
damage and immunogenic cell death, induces tumor neoan-
tigen release, and activates immune system.8 However, the 
therapeutic effects of RT is unsatisfactory due to radioresis-
tance. A considerable proportion of LUAD patients has re-
lapses followed by RT.9 Therefore, seeking for appropriate 
therapies for patients of radioresistance is significant.

Tumor microenvironment (TME) includes tumor infil-
trated immune cells, among which, tumor-infiltrating lym-
phocytes (TILs) have profound effects on clinical outcomes.10 
It was reported that B cells had both positively and negatively 
regulatory effect on cancer progression.11 B cells exerted an-
titumor function by increasing T cell immunity,12 enhancing 
interferon-γ production, and assisting antitumor effects of na-
ture killer (NK) cells.11,13 In addition, B cells also inhibited 
immune responses, supported tumor growth, and promoted 
angiogenesis in TME.11,14 Moreover, B cells were reported to 
be correlated with extended prognosis in LUAD patients.15–17 
However, the roles of B cells are little known in LUAD pa-
tients with RT.

In our study, we first divided the patients into the RT sen-
sitivity (RS) and RT resistance (RR) groups using consen-
sus clustering method, and found that tumor-infiltrating B 
lymphocytes (TIL-Bs) had significantly difference between 
groups. TIL-B-specific genes were then identified based on B 
cell lines and other 19 immune cell lines. Furthermore, we es-
tablished a 6-genes signature based on TIL-B-specific genes 
(TILBSig). The tumor-infiltrating immune cells, immune-as-
sociated molecules, and cancer stem cell (CSC) characteris-
tics were compared between the high- and low-risk patients. 
The signature was validated and served as a predictive factor 
for the response of LUAD patients to immune checkpoint in-
hibitors (ICIs) treatment and RT.

2  |   MATERIALS AND METHODS

2.1  |  Data acquisition and preprocessing

The work flow chart is displayed in Figure S1. The gene 
expression data and the corresponding clinical information 
of LUAD patients were collected from the Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) and The 

Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.
gov). After removing the patients with follow-up time less 
than 30 days or no clear information about RT, 423 patients 
and their mRNA sequencing data (FPKM normalized) were 
selected from TCGA database. Among of the 57 TCGA-
LUAD patients receiving RT, 46 patients had records of ra-
diation responses. Two external validation sets (GSE37745 
and GSE30219) representing independent studies of LUAD 
were obtained from GEO based on Affymetrix HG-U133_
Plus 2.0 platform. A total of 188 LUAD patients (GSE37745: 
105 LUAD patients; GSE30219: 83 LUAD patients) with 
follow-up time longer than 30 days were included after ex-
amining the corresponding survival information of either 
data set. The gene expression profiles of LUAD cell lines 
were downloaded from the GEO database under accession 
number GSE57083 profiled by the Affymetrix HG-U133_
Plus 2.0 platform. The raw CEL files of GEO LUAD patients 
and LUAD cell lines were collected and uniformly processed 
using the Robust Multichip Average (RMA) algorithm for 
background correction and normalization. One genomic and 
transcriptomic data set (GSE78220) of patients with meta-
static melanoma treated with ICIs was downloaded from 
GEO and analyzed to determine the predictive value of our 
risk model (Table S1). Finally, we normalized all data sets 
using the min-max method.

2.2  |  Differential expression analysis of 
mRNAs between B cell lines and other immune 
cell lines

The raw CEL files of B cells and 19 other immune cell types 
were screened out from the GEO database-based Affymetrix 
HG-U133_Plus 2.0 platform under the accession numbers 
GSE6863, GSE8059, GSE13906, GSE23371, GSE25320, 
GSE27291, GSE27838, GSE28490, GSE28698, GSE28726, 
GSE37750, GSE39889, GSE42058, GSE49910, GSE51540, 
GSE59237, and GSE63626. All of the raw data were then 
background-corrected and quantile-normalized using RMA 
algorithm. R package “limma” was performed to identify 
differential expression genes (DEGs) between B cell lines 
and other immune cell lines based on |LogFC| >1 and FDR 
<0.05.

2.3  |  Radiosensitivity clustering

According to Kim et al. grouping method,18 we classified 
423 TCGA-LUAD patients into the RR and RS groups 
using consensus clustering (k = 2) with a subsampling ratio 
of 0.8 and a total of 1000 permutation tests. Chi-square 
tests were used to compare clinical features between the 
RR and RS groups.

http://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57083
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6863
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8059
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13906
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23371
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25320
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27291
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27838
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28490
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28698
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28726
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37750
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42058
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49910
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51540
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59237
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63626
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2.4  |  Construction of TILBSig

A total of 423 TCGA-LUAD patients were randomly divided 
into the training set (n  =  212) and the internal testing set 
(n = 211). Chi-square test showed that the baseline data of 
train and test groups were balanced (Table S2). Univariate 
and least absolute shrinkage and selection operator (LASSO) 
COX regression analysis were used to select the independ-
ent risk mRNAs that were highly expressed in B cell lines 
and downregulated in other immune cell lines. By multivari-
ate Cox regression analysis, we constructed the TILBSig. 
With survival and survminer R package, survival analysis of 
TILBSig was illustrated. The survivalROC R package was 
performed to construct time-dependent receiver operating 
characteristic (ROC) curve. GSE37745 and GSE30219 were 
regarded as two independent validation sets to verify the fea-
sibility of the signature.

2.5  |  Gene set enrichment analysis (GSEA)

To understand the underlying function of TILBSig, GSEA 
was performed for functional enrichment analysis of Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG). p < 0.05 was considered significant.

2.6  |  Statistical analysis

The Kaplan–Meier method was used to generate survival 
curves for the subgroups in each data set. The Wilcoxon 
rank-sum test was applied for comparisons of two groups, 
and Chi-square test was used for comparisons of more than 
two groups. Univariate Cox analysis was performed to cal-
culate the hazard ratios for univariate analyses. Independent 
prognostic factors were determined using a multivariate Cox 
regression model. Correlations were computed using the 
Spearman method, and their significance was assessed using 
a correlation test.

3  |   RESULTS

3.1  |  Identification of radiosensitive patients 
and B cell-specific genes

Consensus cluster analysis was used to stratify the patients. 
After that, the 423 TCGA-LUAD patients were divided into 
the clust1 and clust2 groups. Compared with patients who 
received RT in clust1, patients receiving RT in clust2 had 
better prognosis. Therefore, clust2 with good prognosis was 
defined as RS group, while clust1 was defined as RR group. 
(Figure 1A, B). The clinical characteristics including gender, 

pathological stage, T stage, and RT of LUAD patients were 
significantly different between the RR and RS groups 
(Chi-square test; gender, p  =  0.0005; pathological stage, 
p = 0.042; T stage, p = 0.034; RT, p = 0.04, Table 1). MCP 
counter algorithm allows the robust quantification of the ab-
solute abundance of eight immune and two stromal cell pop-
ulations. Its R package was used to estimate the abundance 
of immune cell infiltration in the 423 samples.19 Difference 
of infiltrated immune cells between the RS and RR groups 
is demonstrated in Figure 1C. T cells, monocytic lineages, B 
lineages, fibroblasts, cytotoxic lymphocytes, CD8T cells, en-
dothelial cells, and NK cells were enriched in the RS group, 
while neutrophils was enriched in the RR group. Moreover, R 
package “limma” was performed to identify DEGs between 
B cell lines and 19 other immune cell lines (all of the immune 
cell line data sets were obtained from GEO). A total of 393 
genes upregulated in B cells and downregulated in other im-
mune cells were selected as the B cell-specific genes based 
on |LogFC| >1 and FDR <0.05. (Figure 1D).

3.2  |  Identification and validation of B cell-
specific gene signature

To elucidate the potential implications of B cell-specific 
genes in prognosis, RT, and immunotherapy, 308 genes of 
the 393 upregulated genes in B cells from GEO database 
were found in TCGA data set. Univariate analysis was used 
to identify 22 prognosis-related genes, and LASSO COX 
regression analysis was then used to select 14 independent 
risk genes. At last, six genes were screened out to construct 
a B cell-specific gene signature using multivariate Cox re-
gression analysis. The signature was composed of 6 B cell-
specific genes (PARP15, FADS3, RUBCNL, BIRC3, SP110, 
and TLE1), all of which were independent risk factors for the 
overall survival (OS) (Figure 2A,B). The risk score of the 
signature for OS was identified: risk score = (−3.503) × (ex-
pression level of PARP15)  +  (−1.624)  ×  (expression 
level of FADS3)  +  (−2.0592)  ×  (expression level of 
RUBCNL) + 2.26 × (expression level of BIRC3) + 3.385 × (ex-
pression level of SP110)  +  2.286  ×  (expression level of 
TLE1). According to the medial risk score, patients in the 
TCGA training set were divided into the high- and low-risk 
groups. The low-risk group had better survival than the high-
risk group (p  <  0.0001, Figure 2C). The area under ROC 
curve (AUC) for 1-, 2-, 3-, 4-, and 5-year OS were 0.907, 
0.788, 0.777, 0.777, and 0.778 (Figure 2D). Stage and 
TILBSig were independent predicators of the OS in univari-
ate cox analysis (p = 0.031, p < 0.001) and multivariate cox 
analysis (p = 0.043, p < 0.001, Figure 2E).

The survival predictive ability of TILBSig was validated 
in TCGA testing set, GSE30219 and GSE37745. The progno-
sis of the low-risk group was better than that of the high-risk 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
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group. The area under ROC curve (AUC) for 1-, 2-, 3-, 4-, 
and 5-year OS were all over 0.6 for three validation gene 
sets. Stage and TILBSig were independent predicators of the 
OS in univariate cox analysis and multivariate cox analysis 
(Figure 3A–C, Figure S2). Therefore, TILBSig could serve 
as an excellent biomarker for OS prediction.

3.3  |  Relation between TILBSig and tumor 
microenvironment

In order to find association between TILBSig and immune 
infiltration, 10 immune subpopulations were analyzed 
using MCP counter. B lineages, T cells, myeloid dendritic 
cells, endothelial cells, fibroblasts, CD8+ T cells, mono-
cytic lineages, neutrophils, cytotoxic lymphocytes, and 
NK cells were enriched in the low-risk group. In contrast, 
no immune subpopulations were enriched in the high-risk 

group (Figure 4A). Furthermore, the expression of these 
six genes were particularly upregulated in B cell lines 
rather than LUAD cell lines, suggesting that the six genes 
were specifically expressed in B cells (Figure 4B–D). 
GSEA showed that TILBSig was closely associated with 
B cell receptor signaling pathway, regulation of stem cell 
differentiation, response to X ray, and innate immune re-
sponse (Figure 4E). Considering the fact that CSCs were 
positively correlated with tumorigenesis and radioresist-
ance,20 samples in TILBSig were ranked based on mR-
NAsi (tumor stemness index based on mRNA expression) 
and EREG-mRNAsi (tumor stemness index based on stem 
cell epigenetic regulation-related genes) (Figure 5A). The 
low-risk group had lower CSC characteristics than the 
high-risk group (Figure 5B). As a result, TILBSig was 
capable of recognizing patients with high CSC character-
istics. This was consistent with our enrichment analysis 
results.

F I G U R E  1   Definition process of the RS versus RR groups and the identification of TIL-B-specific genes. A, Consensus clustering for LUAD 
patients. B, Kaplan–Meier curves for the OS in receipt of RT. C, Difference of immune subpopulations fraction between the RR and RS groups. D, 
Volcano plot for the differential genes between B cell and other immune cells.
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3.4  |  TILBSig as a predicator 
to radiotherapeutic and 
immunotherapeutic responses

The correlation between TILBSig, clinical response of RT, 
and immunotherapy were subsequently explored. Patients 
from TCGA-LUAD data set were stratified to the high-risk 
RR, high-risk RS, low-risk RR, and low- risk RS groups 
based on TILBSig. The low-risk RS group had the best prog-
nosis compared with the other three groups, whereas the 
high-risk RR group showed the worst survival (Figure 6A). 
Consistently, the RR groups had higher risk scores than the 
RS groups (Figure 6B), and patients with lower risk scores 

showed higher radiosensitive rate (83%) than those with 
higher risk scores (73%, p = 0.014, Figure 6C). Afterward, 
ROC curve revealed that TILBSig obtained an AUC of 0.679 
for predicting response to RT (Figure 6D). More importantly, 
patients in the low-risk groups had higher complete response 
(CR) rate (85%) for RT than those in the high-risk groups 
(55%, p = 0.046, Figure 6E). Comparison results also indi-
cated that patients with CR had much lower risk scores than 
those with stable disease (SD) or progressive disease (PD, 
p = 0.031, Figure 6F).

Because of the significant immune infiltration differ-
ence between the high- and low-risk groups, we investigated 
the predictive ability of TILBSig for immunotherapeutic 

Variable RR (n = 93) RS (n = 330) Total (n = 423) X-squared p-value

Gender 12.082 0.0005

Female 36 197 233

Male 57 133 190

Age 0.597 0.74

<65 y 44 149 193

≥65 y 46 174 220

Unknown 3 7 10

Stage 8.9879 0.042

I 40 195 235

II 27 75 102

III 16 42 58

IV 7 14 21

Unknown 3 4 7

T 9.2337 0.034

T1 22 127 149

T2 53 166 219

T3 10 22 32

T4 4 9 13

Unknown 4 6 10

N 1.905 0.75

N0 57 217 274

N1 18 60 78

N2 14 36 50

N3 0 2 2

Unknown 4 15 19

M 3.5747 0.16

M0 62 206 268

M1 7 13 20

Unknown 24 111 135

RT 4.2105 0.04

Yes 19 38 57

No 74 292 366

The bold p-values indicate the statistically significant difference. 

T A B L E  1   Patient characteristics.
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responses. As the expression levels of programed cell death-1 
(PD1) and programed death-ligand 1 (PD-L1) showed no 
significant difference between the high- and low-risk groups, 
another important immune checkpoint molecule, cytotoxic 
T lymphocyte-associated antigen 4 (CTLA-4) was included 
to obtain the cross talk between TILBSig and immunother-
apy. The expression of CTLA-4 was negatively related with 
risk scores (p < 0.05, Figure 7A,B). Patients with lower risk 
scores and higher CTLA-4 had the longer survival time, while 
the patients with higher risk scores and lower CTLA-4 had 
the worse prognosis (p < 0.0001, Figure 7C). Current studies 
on tumor-associated antigens were most successful in mela-
noma, which was a tumor with stronger immunogenicity than 
others.21 If immunotherapy was not effective in melanoma, 
it is likely to be ineffective in other tumors such as rectal 

cancer, lung cancer, stomach cancer, and so on. Considering 
the lack of immunotherapy data for lung cancer, we selected 
the melanoma immunotherapy data set (GSE78220) to verify 
TILBSig. Survival analysis suggested that the patients with 
lower risk scores in metastatic melanoma treated with ICIs 
had favorable clinical outcome (Figure 7D). Furthermore, 
the response rate of immunotherapy was higher in the low-
risk (61%) group (33%, p = 0.005, Figure 7E). Finally, AUC 
for CTLA-4 inclined to 0.731 after combing with TILBSig, 
which was 0.648 for CTLA-4 and 0.624 for TILBSig in 
ROC curve for ICI response prediction (Figure 7F). Tumor 
Immune Dysfunction and Exclusion (TIDE) was a compu-
tational method to model two primary mechanisms of tumor 
immune evasion, which could predict ICB responses (http://
tide.dfci.harva​rd.edu/). The lower the TIDE score, the better 

F I G U R E  2   Development of the TILBSig in the TCGA training set. A, LASSO Cox regression analysis for B cell-specific genes. B, Forest 
plot visualizing the HRs of multivariate Cox analysis of six mRNAs in the TILBSig with the OS. C, Survival analysis between the high- and low-
risk groups stratified by the TILBSig in TCGA training set. D, Time-dependent ROC curve for TCGA training set. E, Forest plot visualizing the 
HRs of univariate Cox and multivariate Cox analysis of the TILBSig and clinicopathological factors in TCGA training set

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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the effect of immunotherapy.22,23 Our result showed that the 
TIDE score of the low-risk group was significantly lower 
than that of the high-risk group, indicating that the low-risk 
group could benefit more from immunotherapy. In conclu-
sion, TILBSig might be a potential factor for distinguishing 
LUAD patients who respond to RT and immunotherapy.

4  |   DISCUSSION

TME has important roles in modulating tumor progression, 
in which TILs play paramount functions. Cytotoxic T lym-
phocytes and NK cells have enormous effects on immuno-
therapy. Recently, TIL-Bs were reckoned as vital factors in 

antitumor immunity,24,25 including generating antibodies and 
anticancer cytokines, presenting cancer-related antigens and 
killing tumor cells directly in TME.26,27 Additionally, pa-
tients with lung or ovarian cancer showed favorable prog-
nosis when they had high ratios of B cells, mature dendritic 
cells, and CD8+ T cells instead of only CD8+ T cells.26,28,29 
Thus, TIL-Bs in tumors might serve as potential markers 
for survival prediction. Moreover, there were increased ev-
idences suggesting that RT had a key role in treatment of 
most LUAD patients.7 Radiation exerts lethal DNA dam-
age in irradiated tumor cells, which improves outcomes of 
these patients in terms of local control.8 However, not all pa-
tients could benefit from RT, with a considerable of LUAD 
patients showing radioresistance and suffering from tumor 

F I G U R E  3   Validation of the TILBSig in the TCGA testing set and two external independent data sets. A, Kaplan–Meier survival curve, 
time-dependent ROC curve, and multivariate Cox analysis of the TILBSig and clinicopathological factors in TCGA testing set. B, Kaplan–Meier 
survival curve, time-dependent ROC curve, and multivariate Cox analysis of the TILBSig and clinicopathological factors in GSE30219. C, Kaplan–
Meier survival curve, time-dependent ROC curve, and multivariate Cox analysis of the TILBSig and clinicopathological factors in GSE37745 
cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
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metastasis.9 Combined application of tumor RT and ICIs has 
achieved enormous progress in enhancing antitumor treat-
ment outcome.30–33 After introducing ICIs to clinical treat-
ment, combination of ICIs and RT in LUAD increased the 
chances of distant cancer regression in tumor metastatic re-
gion.34 This phenomenon derived from immunostimulatory 
effects of RT, which stimulated release of tumor-associated 
antigens and immune molecules.35 Due to the inextricable 
association between these two therapies, we creatively con-
structed TILBSig aiming at identifying patients who respond 
to both RT and ICIs.

In our study, patients from TCGA-LUAD were divided into 
the RS and RR groups using consensus clustering method. 
Clinical characteristics analysis showed that gender and stage 

were significantly associated with the RR and RS groups, 
which indicated that female patients and patients at lower 
stages might be more sensitive to RT (Table 1). Furthermore, 
we found that TIL-Bs were significantly different between 
the RR and RS groups, suggesting that TIL-Bs served as an 
important factor in LUAD RT. A 6-B cell-specific-genes sig-
nature based on TIL-B-specific genes was constructed. In 
the TILBSig, 3 B cell-specific genes (PARP15, FADS3, and 
RUBCNL) were correlated with better prognosis, while the 
other three (BIRC3, SP110, and TLE1) were correlated with 
poor survival. PARP15, polymerase family member 15, was 
originally confirmed as a risk-related gene in diffuse large 
B cell lymphomas, and might be potential predictors of he-
matological toxicity associated with RT for acute myeloid 

F I G U R E  4   Functional analysis of TILBSig. A, Volcano plots for difference of immune subpopulations fraction between the high- and low-
risk groups. B–D, Boxplots for the differential of genes expression between B cell lines and LUAD cell lines. E, Enrichment analysis of GO and 
KEGG pathways for TILBSig-related genes.
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leukemia, cervical cancer, nasopharynx cancer, and tongue 
cancer.36–40 FADS3, as a fatty acid desaturase, was located 
along with FADS1 and FADS2,41 which were reported to be 
associated with the occurrence and development of NSCLC 
and colon cancer.42,43 Promoter methylation of RUBCNL 
was identified as a potential biomarker for early diagnosis 
of cervical cancer.44 BIRC3, baculoviral IAP repeat-contain-
ing protein 3, as an apoptosis inhibitor, was overexpressed 
in multiple cancers and led to development of malignant tu-
mors.45–50 Upregulation of BIRC3 promoted prostate cancer 
development and inhibited NK cell activities.51,52 SP110 was 
reported as a commonly deregulated gene in mammary can-
cer and an early inducement in melanoma and nonmelanoma 
skin cancer.53,54 TLE1 promoted EMT in A549 lung cancer 
cells via suppressing E-cadherin.55,56 All the six genes were 
potentially prognostic markers in LUAD.

To investigate the OS prediction of TILBSig, ROC curve 
of TILBSig was estimated. Results for AUC demonstrated 
that TILBSig had a good association with clinical progno-
sis in both training and validation sets. Further univariate 

and multivariate cox analysis confirmed that TILBSig could 
act as an independent factor for the OS prediction. By com-
paring enrichment of immune subpopulations between the 
high- and low-risk groups, B cells were the most abundant 
cell in the low-risk group. Other gene signature in LUAD 
also showed B cells were highly infiltrated in the low-risk 
group. A 10-immune-related-genes signature constructed by 
Jiaona Zhu et al. 57 and IPSLUAD signature developed by Jie 
He 58 were predicted the prognosis of patients well. Both of 
the two gene signatures suggested that B cells were highly 
infiltrated in the low-risk group, but the role of B cells in 
tumor immune infiltration was not explored. Compared with 
their signatures, TILBSig had a higher AUC value in terms 
of predicting prognosis, indicating a better predictive ability 
of TILBSig. In addition, the six TILBSig genes were highly 
expressed in B cell lines compared with LUAD cell lines. 
These results suggested that the TILBSig might be a potent 
biomarker of both B cell infiltration and patient prognosis.

RT was reported to stimulate immune cell recruitment 
to radiation field and to improve the antitumor effects of 

F I G U R E  5   Tumor stemness index characterization of the TILBSig. A, An overview of the association between known clinical features and 
TILBSig and mRNAsi/EREG-mRNAsi. B, Violin plots of mRNAsi/EREG-mRNAsi distribution in the high- and low-risk groups
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the immune system.59 RT could trigger damaged dou-
ble-stranded DNA via eliciting immunogenic cell death.60 
Through Cyclic GMP-AMP synthase (cGAS)-stimulator of 
interferon genes (STING) pathway, RT promoted production 
of type 1 interferon bridging innate immune response and 
adaptive immune response.61 Moreover, Jones and Shuxian 
et al. found that radiation-induced tumor regression via stim-
ulating immunity activation and increasing B and NK cell 
infiltration.62,63 All of these results were consistent with our 
research. In our study, GO and KEGG analysis revealed that 
TILBSig was highly associated with positive thymic T cell 
selection, response to X ray, positive regulation of type 1 
interferon production, and regulation of stem cell differen-
tiation. We speculated that the better prognosis of patients 
in the low-risk group might be related to the activation of 

the immune system by RT. In addition, several studies illus-
trated that CSCs had pivotal roles in tumor progression and 
radioresistance. Better local control was observed in tumors 
with lower levels of CSCs when applied to the same radi-
ation dose.64,65 In accordance with impacting radiosensitiv-
ity ability of CSCs, higher CSC index in the high-risk group 
validated our TILBSig as a marker to differentiate RR and 
RS patients (Figure 5). Finally, by comparing the difference 
of RT response between the high- and low-risk groups, we 
found that the low-risk TILBSig group possessed higher RS 
and CR rates than the high-risk group, which partially vali-
dated our previous conclusion (Figure 6).

ICIs were popularly used in cancer patients to improve 
prognosis, especially PD-1, PD-L1, and CTLA-4 antibod-
ies.66,67 Despite the satisfactory outcome, only a limited 

F I G U R E  6   TILBSig could predict RT response in LUAD patients. A, Survival analysis among four patient groups stratified by the 
TILBSig and RT-Clust (RR and RS groups). B, Violin plot of TILBSig risk score distribution in the RR and RS groups (Wilcoxon rank-sum test, 
p = 0.0071). C, Rate of the RR and RS patients in the high- or low-risk groups in the TCGA-LUAD patients (Chi-square test, p = 0.014). D, ROC 
curve measuring the predictive value of the TILBSig to RT response. (E) Rate of clinical response to RT in the high- and low-risk groups in the 
TCGA-LUAD patients treated with RT (complete response [CR], stable disease [SD], progressive disease [PD]; Chi-square test, p = 0.046). F, 
Violin plot of TILBSig risk score distribution in different clinical response to RT (Wilcoxon rank-sum test, p = 0.031).
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proportion of patients benefited from ICIs. As a result, as-
sessing patients with potential clinical responses to ICIs is 
urgent. Previous researches indicated that the immunomodu-
latory interaction between B cell infiltration and checkpoint 
gene expression might affect the prognosis of patients and 
be related to the response of patients to immunotherapy.24 
Consistently, Beth and Amaria et al. showed that B cell sub-
sets in melanoma and renal cell carcinoma were highly in-
filtrated in patients who responded to ICIs compared with 
nonresponse patients, implying that TIL-Bs might act as a 
proxy to predict ICI therapeutic responses.68,69 Considering 
the important roles of TIL-Bs in patients’ responses to 
ICIs, we further explored the relationship among TIL-Bs, 
immune checkpoints, and ICIs. After examining the gene 

expression difference of immune checkpoints between the 
high- and low-risk groups, CTLA-4 had significant differ-
ence. Furthermore, our results indicated that TILBSig could 
distinguish responders from nonresponders well for ICI-
treated patients in metastatic melanoma immunotherapy 
data set. Especially, when we combined CTLA-4 expres-
sion with TILBSig to predict patients’ response to ICIs, the 
predictive ability (AUC = 0.731) was significantly higher 
than that of CTLA4 expression (AUC = 0.648) or TILBSig 
(0.624) alone. These results suggested the TILBSig might 
represent tumor immunosuppression status and predict 
ICI responses in lung cancer patients. Therefore, TILBSig 
not only had prognostic values for ICI-treated patients, 
but also had the ability to distinguish responders from 

F I G U R E  7   TILBSig could predict the immunotherapeutic benefits. A, Violin plot of CTLA-4 expression distribution in the low- and high-
risk groups (Wilcoxon rank-sum test, p = 0.0094). B, Association between CTLA-4 expression levels and TILBSig risk scores. C, Survival analysis 
among four patient groups stratified by the TILBSig and CTLA-4 expression. According to the median expression of CTLA-4, the patients were 
divided into high- and low-CTLA-4 groups. D, Kaplan–Meier curves for patients with high and low risk in the GSE78220 cohort. E, Rate of 
clinical response to immunotherapeutic in the high- and low-risk groups in the GSE78220 cohort (complete response [CR], partial response [PR], 
progressive disease [PD]; Chi-square test, p = 0.005). F, ROC curves measuring the predictive value of the TILBSig, CTLA-4 expression, and 
combination of TILBSig and CTLA-4 expression in the GSE78220 cohort. G, Differences in TIDE scores between the high- and low-risk groups 
(Wilcoxon rank-sum test, p = 0.039).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
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nonresponders. According to our TILBSig, patients in the 
low-risk group would benefit more from RT combined 
with immunotherapy. Altogether, our research showed that 
TILBSig had a good ability to predict the responses to im-
munotherapy and RT.

5  |   CONCLUSIONS

In summary, our study constructed an immune/radiation-
relevant gene signature based on 6 tumor-infiltrating B lym-
phocytes-specific genes, and the gene signature had a good 
ability to predict prognosis, RT, and immunotherapeutic re-
sponses in LUAD patients. The patients in the low-risk group 
might be more likely to benefit from the combined therapy of 
RT and immune checkpoint inhibitors.
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