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Abstract

The recent availability of large-scale neuroimaging cohorts facilitates deeper charac-

terisation of the relationship between phenotypic and brain architecture variation in

humans. Here, we investigate the association (previously coined morphometricity) of

a phenotype with all 652,283 vertex-wise measures of cortical and subcortical mor-

phology in a large data set from the UK Biobank (UKB; N = 9,497 for discovery,

N = 4,323 for replication) and the Human Connectome Project (N = 1,110). We used

a linear mixed model with the brain measures of individuals fitted as random effects

with covariance relationships estimated from the imaging data. We tested 167 behav-

ioural, cognitive, psychiatric or lifestyle phenotypes and found significant mor-

phometricity for 58 phenotypes (spanning substance use, blood assay results,

education or income level, diet, depression, and cognition domains), 23 of which rep-

licated in the UKB replication set or the HCP. We then extended the model for a

bivariate analysis to estimate grey-matter correlation between phenotypes, which

revealed that body size (i.e., height, weight, BMI, waist and hip circumference, body

fat percentage) could account for a substantial proportion of the morphometricity

(confirmed using a conditional analysis), providing possible insight into previous MRI

case–control results for psychiatric disorders where case status is associated with

body mass index. Our LMM framework also allowed to predict some of the associ-

ated phenotypes from the vertex-wise measures, in two independent samples.

Finally, we demonstrated additional new applications of our approach (a) region of

interest (ROI) analysis that retain the vertex-wise complexity; (b) comparison of the

information retained by different MRI processings.
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1 | INTRODUCTION

The field of MRI studies is at a turning point owing to the recent avail-

ability of large data sets to researchers, including the UKB (Miller

et al., 2016) and HCP (Van Essen et al., 2012; Van Essen et al., 2013)

samples. These data sets promote the replication of previous findings,

but also the identification of small(er) associations and the expansion

of the range of phenotypes available for study (e.g., psychiatric symp-

toms and lifestyle factors). Furthermore, the boost in statistical power

may allow the simultaneous use of all the brain complexity data of

current MRI acquisitions rather than relying on data reduction tech-

niques (e.g., the region-of-interest [ROI] approach). In addition, these

community samples can complement the typical case–control para-

digm by identifying confounders of MRI analyses or by studying

related traits (e.g., cognition domains relevant in Alzheimer's disease).

However, “big-data” neuroimaging offers a number of statistical chal-

lenges (on top of the obvious computing ones)(Smith &

Nichols, 2018): (a) the curse of dimensionality (the number of tests

may increase faster than the sample size) which requires efficient

methods and appropriate control of multiple testing; (b) the possibility

that (small) associations result from confounding (via another variable,

or acquisition noise); (c) the difficulty to generate prediction from

complex data sets.

Here, we propose a linear mixed model (LMM), efficiently

implemented to tackle several of these big-data neuroimaging chal-

lenges. Our approach allows performing association and prediction

analyses on tens of thousands of participants with more than

650,000 vertex-wise morphological measurements of grey-matter

structure per individual. Specifically, we overcame the curse of

dimensionality by estimating the total correlation of all cortical and

subcortical measurement at vertices with a phenotype of interest

(previously coined morphometricity [Sabuncu et al., 2016], here we

prefer the more specific brain-morphometricity). Using the same

framework, we also estimate the total association of a trait with dif-

ferently processed MRI images as well with subset of the vertex-

wise data corresponding to specific brain features, hemispheres or

regions of interest (ROI). We further introduce multi-trait LMMs

that can quantify shared morphometricity between traits (grey-

matter correlation). Grey-matter correlation can help generate

hypotheses about putative confounders (that may be regressed out

in a conditional analysis) or about the origin of brain-mor-

phometricity. Finally, we show how the same LMMs can be used to

construct grey-matter scores that achieve brain MRI-based predic-

tion in independent samples. As such, our approach unifies associa-

tion and prediction analyses, in order to unravel the brain-phenome

relationships (Rosenberg, Casey, & Holmes, 2018) in big-data

neuroimaging.

To demonstrate the applicability and usefulness of our methods,

we analysed two of the largest MRI data sets available (UKB [split into

discovery N = 9,888 and replication N = 4,561] and HCP [N = 1,110])

and considered a wide range of phenotypes spanning demographics,

blood cell composition, diet, psychiatric and traumatic history, physical

capacities and substance use. We discuss our results in the context of

the recent commentary article of Smith & Nichols (Smith &

Nichols, 2018). We have released our image processing and analysis

software/scripts as well as all summary statistics to facilitate replica-

tion and re-use of the results.

2 | MATERIALS AND METHODS

2.1 | UK biobank sample(s)

The UK biobank (UKB) participants were unselected volunteers from

the United Kingdom (Sudlow et al., 2015) living near the imaging cen-

tres (Manchester for 96.5% of our sample, Newcastle for the

remaining 3.5%). Exclusion criteria included: presence of metal

implant, recent surgery and health conditions problematic for MRI

imaging (e.g., hearing, breathing problems or extreme claustrophobia)

(Miller et al., 2016). MRI acquisition parameters have been reported

previously (Miller et al., 2016) and are summarised in Appendix S1.

We split the available UKB data into a discovery and replication

sample based on their imaging date. The discovery sample consisted

of 9,497 adults aged 62.5 on average (SD = 7.5, range 44.6–79.6) and

comprised 52.4% of female participants (see Appendix S2 for details

of processing and QC; Data set S1 for description of excluded partici-

pants). The UKB replication sample (N = 4,323) was on average

63.1 years old (SD = 7.46, range 46.1–80.3) with 52.1% of females

(see Data set S1, Appendix S2).

We included 168 variables grouped in several categories: demo-

graphics, cognition, physical test, psychiatry, recent feelings, stress

and traumas, substance use, miscellaneous, brain measurements,

blood assay and diet (see Data set S2 for details). When longitudinal

observations were available for a participant, we used the one col-

lected as part of the imaging assessment or the closest in time to that.

2.2 | UKB image processing

We processed the T1w and T2w images using FreeSurfer 6.0

(Fischl, 2012) to extract cortical surface area and thickness, and we

used the ENIGMA-shape protocols to measure the structure of seven

subcortical volumes (hippocampus, putamen, amygdala, thalamus, cau-

date, pallidum and accumbens) (Boris A. Gutman, Madsen, Toga, &

Thompson, 2013; B. A. Gutman, Wang, Rajagopalan, Toga, &

Thompson, 2012). In FreeSurfer, we processed T1w and T2w together

to enhance the tissue segmentation, hence a more precise skull strip-

ping and pial surfaces definition. When the T2w was not acquired or

not usable, we processed the T1w image by itself.

We retained the full cortical information by using the

(“fsaverage”) cortical mesh for cortical thickness and surface area. This

corresponded to about �149,900 cortical vertices for each hemi-

sphere and modality. In addition, we extracted subcortical radial thick-

ness and log Jacobian determinant (surface deformation, somewhat

analogous to a relative surface area [Roshchupkin et al., 2016]) for

13,560 vertices across the seven subcortical volumes (Boris
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A. Gutman et al., 2013). Overall, the imaging data used in the analyses

comprised 652,283 vertex measurements per individual: 299,009 for

cortical thickness, 299,034 for cortical surface area, 27,120 for sub-

cortical thickness and 27,120 for subcortical curvature.

For comparison with ROI based processing, we extracted cortical

thickness and surface area of 34 cortical regions (Desikan et al., 2006;

Fischl et al., 2004) and volumes of the subcortical structures

(ENIGMA processing). To further the comparison of processing

options, we extracted cortical measurements from smoothed

fsaverage meshes (fwhm 5, 10, 15, 20 and 25 mm) as well as

(unsmoothed) coarser meshes provided by FreeSurfer: fsaverage6

(149,091 vertices across all hemispheres and modalities), fsaverage5

(37,455 vertices), fsaverage4 (9,457 vertices) and fsaverage3 (2,414

vertices).

2.3 | Human connectome project sample

Human connectome project (HCP) participants were recruited from

ongoing longitudinal studies of the Missouri Family Study and had to

be between 22 and 35 years of age. Inclusion and exclusion criteria

have been described previously (Van Essen, Ugurbil, et al., 2012) (see

Appendix S1 for the MRI acquisition parameters, Appendix S2 for

QC). As per the HCP “1200 Subjects data release” (first of March

2017), 1,113 participants were scanned on the 3T MRI and under-

went extensive behavioural testing. Participants were mostly (54.4%)

females and were 28.8 years old on average (SD = 3.7, range 22–37).

The sample comprised 286 monozygotic twins (138 complete pairs)

and 169 dizygotic twins (78 complete pairs). In addition, siblings and

half siblings of twins were also recruited which resulted in 445 distinct

families in the sample.

For the HCP sample, we included 161 variables, some of which

were also available in the UKB (e.g., demographics, cognition, physical

assessment, blood assay or psychiatry). We also included: personality,

emotion, mental health assessment (Semi-Structured Assessment for

the Genetics of Alcoholism [SSAGA] and Adult Self Report [ASR]

[Thomas M Achenbach, 2009; T. M. Achenbach, Dumenci, &

Rescorla, 2003]), detailed cognition, Pittsburgh sleep index (PSQI)

(Buysse, Reynolds 3rd, Monk, Berman, & Kupfer, 1989), or results

from the urine drug tests (see Data set S2).

2.4 | Image processing in the HCP

The FreeSurfer processing was performed by the HCP team (Glasser

et al., 2013; Marcus et al., 2013; Van Essen, Glasser, Dierker,

Harwell, & Coalson, 2012) using an optimal combination of automated

and manual steps (Appendix S3). We downloaded the segmented

images (Marcus et al., 2011) and performed the ENIGMA-shape analy-

sis (Boris A. Gutman et al., 2013; B. A. Gutman et al., 2012) to extract

vertex-wise measurements of the subcortical volumes. As with the

UKB sample, a total of 652,283 vertex measurements were extracted

for each individual.

2.5 | Covariates used

Our baseline model included commonly used covariates in MRI ana-

lyses: acquisition variables (UKB imaging wave, processing with T1w

or with combined T1w + T2w), age, sex, and head size (intra-cranial

volume [ICV] as well as left and right total cortical surface area and

cortical thickness that correspond to the measurements used here). In

a follow-up analysis, we included other covariates such as height,

weight and BMI to evaluate their confounding effect on the reported

associations. As some of the covariates are correlated we report the

adjusted R2 (from linear regression in R3.3.3 (R Development Core

Team, 2012)) calculated by adding progressively the covariates (same

order as above). The associations with covariates was highly concor-

dant between the two UKB samples (Figure S1).

2.6 | LMM for association and prediction

We aimed to estimate the proportion of variance of a trait captured

by brain features, which Sabuncu et al., called “morphometricity”

(Sabuncu et al., 2016). To do so we consider the following LMM

(Figure 1) that allows estimating the association between a phenotype

and M vertices even when M is greater than the sample size (N):

Y=Xβ+b+ e ð1Þ

where YN,1 is the phenotype considered with N the number of

observations, XN,c is a matrix of c covariates (as such does not include

any vertex variable), βc,1 is a vector of fixed effects, b is a vector of

random effects with b~N 0,Bσ2b
� �

and e is a vector of error terms with

e~N 0, Iσ2e
� �

. In this formulation IN, N is the identity matrix as we assume

the error terms to be independent and identically distributed. BN, N is

a matrix of variance–covariance between individuals calculated from

all vertex measurements, which we will refer to as the brain related-

ness matrix (BRM, Figure 1). Off-diagonal elements of the BRM reflect

the grey-matter similarity between two individuals (see Appendix SA).

Finally, σ2e and σ2b are the variance components for the random effects

e and b. For context, this model is analogous to that used in complex

trait genetics to estimate SNP-based heritability, where a Genetic

Relatedness Matrix (GRM) replaces the BRM (Yang et al., 2010; Yang,

Lee, Goddard, & Visscher, 2011), or that used to estimate the propor-

tion variance in a phenotype captured by all DNA methylation or gene

expression measures of the genome (Zhang et al., 2019). The element

i,j of the BRM can be calculated as the inner product of brain

measurements of individuals i and j: bi,j =

PM

1

zi,mzj,m

M . Here, zi, m represents

the value of vertex m for individual i centred and standardised over all

individuals, zj, mrepresents the value of vertex m for individual j

centred and standardised over all individuals, M is the total number of

vertices or brain features included. In matrix notation,B= ZZ0
M with

ZN,M being a matrix of the centred and standardised brain observa-

tions. We estimated the proportion of the trait variance captured by
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the grey-matter measurements as: R2 =
σ2b

σ2
b
+ σ2e

(Figure 1) using the

REstricted Maximum Likelihood (REML)(Patterson &

Thompson, 1971) implemented in OSCA (OmicS-data-based Complex

trait Analysis) (Zhang et al., 2019). We tested whether the mor-

phometricity was different from 0 using a likelihood ratio test (see

Appendix S5 for details).

We extended the LMM above to jointly estimate the variance

accounted for by the different modalities (cortical thickness, cortical

area, subcortical thickness, subcortical area).

Y=Xβ+b1 +b2 +b3 + b4 + e

with bi ~N 0,Biσ2bi
� �

, i� 1; 4ð Þð Þ, and all other parameters left unchanged.

Each Bi is constructed from the vertex-wise measurements of a single

modality, with σ2bi the corresponding association and
σ2b1 + σ

2
b2 + σ

2
b3 + σ

2
b4

σ2
b1

+ σ2
b2

+ σ2
b3

+ σ2
b4

+ σ2e
the brain-morphometricity.

Next, we sought to estimate the correlation between two traits that

is attributable to the same grey-matter variation, which we call grey-

matter correlation rGM (Figure 1). This can be achieved by fitting a bivari-

ate LMM, a direct extension of the models presented above

(Thompson, 1973). We restricted our bivariate analysis to variables that

were significantly associated with grey-matter structure. We derived the

residual correlations (rE) from the phenotypic (r) and grey-matter correla-

tions estimated by GCTA (Genome-wide Complex Trait Analysis) (Yang

et al., 2011) (option not yet included in OSCA). We calculated its SE

using the delta method (Appendix S6 and [Bijma & Bastiaansen, 2014;

Lee, Yang, Goddard, Visscher, & Wray, 2012; Visscher, 1998]).

We detailed power calculations for the LMMs (Appendix S7, Vis-

scher et al., 2014), which showed that in the UKB discovery sample

we had good power to detect a small morphometricity (R2 > 2.2%) but

only a moderate grey-matter correlation (rGM > 0.35). Statistical

power was a lot reduced in the HCP due to the smaller sample size.

We demonstrated two further utilities of LMMs for neuroimaging

data analyses. First, we conducted post hoc analyses to test the asso-

ciations with each modality and each cortical (Desikan et al., 2006) or

subcortical structure. We used BRMs specific to each region and brain

measurement (Figure 1), which bridges the gap between ROI and

vertex-wise analyses. Second, we define as “best” processing the MRI

cortical processing that maximises the association with a trait of inter-

est, from the minimal number of features (vertices). Thus, we evalu-

ated which of our FreeSurfer processing (fsaverage—no smoothing;

fsaverage—smoothing fwhm5, 10, 15, 20, 25; fsaverage6, 5, 4, 3—no

smoothing; ENIGMA ROI processing) maximised the brain-

morphometricity for all the UKB traits (See Appendix S2 for details

about QC). As the ENIGMA processing only consists of

F IGURE 1 Summary of the analyses and methods. The data used in the analyses are detailed at the top, and include phenotypes, covariates
and vertex-wise measurements. Calculation of the brain relatedness matrix from the vertex-wise data are also described. The two LMM
formulations are equivalent, though the first one emphasises how morphometricity relates to the brain relatedness matrix and the second
emphasises the joint effects of all vertex-wise measurements. The boxes at the bottom provide brief interpretations of the new methods and
concepts. Morphometricity estimate may be restricted to vertex-wise measurements within a ROI, to estimate the phenotype-ROI association
that takes into account all local variations within the ROI. Morphometricity may also be used to compare the information retained by different
MRI image processing (“Best processing”). Grey-matter correlation measures the shared morphometricity between traits, or in other words the
correlation between the vertex-phenotypes associations for each phenotype. BLUP scores are predictors of the random effect, and make the
hypothesis that the vertex-phenotypes marginal joint associations weights are normally distributed. BLUP prediction, expressed in proportion of
phenotypic variance, is capped by the morphometricity
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150 measurements, we used linear models (multiple regression and

adjusted R2) to estimate the brain-morphomometricity.

Finally, we derived brain prediction scores using the Best Linear

Unbiased Predictors (BLUP, Figure 1) (Henderson, 1950, 1975; G. K.

Robinson, 1991) and evaluated them in the UKB discovery sample

using a 10-fold cross-validation design. In addition, we derived BLUP

brain prediction scores constructed from the UKB discovery sample,

and applied them to the UKB replication and HCP participants to

evaluate the “out of sample” predictive performance. BLUP estimates

the predicted values of the random effects (b or Zu, see [1] and

Figure 1) (Goddard, Wray, Verbyla, & Visscher, 2009; G. K.

Robinson, 1991). In short, BLUP scores integrate the correlations

between vertices to derive weights that correspond to the joint

effects of all the vertices (Figure 1). BLUP have desirable statistical

properties: they are unbiased and are best predictors in the sense

that they minimise the mean square error in the class of linear unbi-

ased predictors (Henderson, 1975; G. K. Robinson, 1991), leading to

more accurate prediction than other linear predictors (M. R. Robinson

et al., 2017; Vilhjalmsson et al., 2015).

2.7 | Prediction accuracy of BLUP versus LASSO

We compared prediction accuracy achieved by BLUP scores to that of

LASSO (least absolute shrinkage and selection operator)

(Tibshirani, 1996) for phenotypes with significant brain-morphometricity

(baseline covariates). LASSO penalises vertices coefficients of the linear

regression, leading to select a subset of vertices (and their weights) that

maximise prediction accuracy. We used the LASSO function

implemented in the bigstatsr R package (Privé et al., 2018) and esti-

mated the hyper-parameter using cross-model selection and averaging

on fivefolds within the UKB discovery sample. For each grey-matter

score, we reported the prediction R2 on the UKB replication sample and

tested the difference in prediction using a Wilcoxon test on the absolute

errors of the BLUP and LASSO predictors.

2.8 | Data and code availability statement

Data used in this manuscript are held and distributed by the HCP and

UKB teams. We have released the scripts used in image processing and

LMM analyses to facilitate replication and dissemination of the results

(see URLs). We have also released BLUP weights to allow meta-analyses

or application of the grey-matter scores in independent cohorts.

3 | RESULTS

3.1 | Associations between phenotypes and all
grey-matter structure vertices

For the phenotypes of interest, we summarised in circular barplots

(Figure 2) the proportion of phenotypic variance associated with all

652,283 vertex-wise grey-matter measures (brain-morphometricity,

R2) as well as with baseline covariates (see Methods). Figure 2 shows

only the results that were significant after Bonferroni correction

(pUKB_discovery < 2.8e−4 and pHCP < 2.9e−4). The full results are avail-

able in Data set S3, S4 (see Figure S2 for positive control associations

with global measures of the brain).

Grey-matter structure was strongly associated (R2 > 0.40) with

age, sex, as well as weight, BMI waist and hip circumference but also

with maternal smoking around birth (R2 = 0.39) and number of ciga-

rettes previously smoked (R2 = 0.27) (Figure 2). We identified many

other phenotypes significantly associated with grey-matter structure

(Figure 2, Data set S3) including other measures of build (e.g., height,

body fat percentage, basal metabolic rate), substance use

(e.g., amount of alcohol drank each day), household income level and

education level, strength (e.g., hand grip, acceleration), cognition

(e.g., fluid IQ), blood assay (e.g., white blood cell count), diet (cheese

intake), but also perhaps more surprisingly with being a twin or overall

health rating. We also found associations with clinical phenotypes

such as diabetes, depression score and depression symptoms. We rep-

licated 23 of the 58 associations listed above in the UKB replication

sample (p < .05/58; Figure S3, Data set S4). We did not detect any

significant association between grey-matter structure and other psy-

chiatric variables (diagnoses and symptoms), self-reported stresses

and traumas, or neuroticism (Data set S3). The interested readers may

also find the morphometricity estimates for the full UKB sample

(inverse-variance weighted meta-analysis) in Data set S3.

In the UKB (discovery), results and conclusions did not change

regardless of fitting a single random effect or several random effects

each corresponding to one of the grey-matter modalities (Figure S4).

In the HCP, we observed three extra significant associations between

grey-matter structure and cocaine (urine test), self-reported number

of times used cocaine or hallucinogens. Similar to the association

found with opiate (urine test), these results warrant replication due to

the small number of positive participants. Finally, the HCP results did

not change when excluding related individuals (Appendix S8).

3.2 | Adjustment for possible confounders

The large associations between grey-matter structure and height,

weight, BMI, waist and hip circumference (Figure 2) led us to perform

a sensitivity analysis to evaluate their contribution to the brain-

morphometricity of the traits studied. We repeated the analysis fur-

ther controlling for height, weight and BMI, which yielded lower R2

estimates (Figure S5) and fewer significant associations with grey-

matter structure. Thus, when correcting for height in the UKB, 4 of

the 58 associations with grey-matter structure did not remain signifi-

cant: household income, monocyte percentage, beef intake, and time

spent using computer, Data set S3). Such finding is consistent with

the reported association between body size and income or socioeco-

nomic status in the UKB (Tyrrell et al., 2016). When further correcting

for weight and BMI another 14 associations did not remain significant

including educational attainment, frequency drinking alcohol, most
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diet items (cereal, dried fruits, poultry, processed meat), time spent

driving, red blood cell count, frequency of walks and small exercise.

Notably, the brain-morphometricity of the depression score could be

completely explained by differences in weight and BMI (R2base-

line = 0.050, SE = 0.018; R2baseline + height = 0.048, SE = 0.017, R2
baseline

+ height + BMI + weight < 0.001, SE = 0.007), and none of the associations

between grey-matter structure and depression symptoms remained

significant conditioning on weight and BMI (Tiredness, Anhedonia,

Poor appetite-overeating, R2
baseline + height + BMI + weight < 0.014). Yet,

even after controlling for body size, we still detected a significant

morphometricity for cheese intake as well as time watching TV (Data

set S3), suggesting that these behaviours are associated with brain

structure irrespective of body size. The morphometricity estimates in

the UKB replication sample aligned with those from the discovery

sample (cor = 0.90), except for age and sex that showed larger associ-

ations with grey-matter structure in the replication analysis (Figure S6).

In the HCP data set, after controlling for body size, four of the

27 associations did not remain significant (Data set S4) though we

had limited power to detect associations smaller than R2 of 0.2 in this

sample (see Appendix S7).

In light of these results, we chose a conservative approach to con-

trol for body size variables in the main text, though the analyses using

baseline covariates can be found in the supplementary. We

acknowledge (see discussion) that this may be overly conservative, by

implicitly making strong assumptions about body size acting as a con-

founding factor. On the other hand, it avoids reporting associations

that may be fully or in part caused by differences in body shape.

3.3 | Grey-matter correlations

We estimated grey-matter correlation (rGM) between the phenotypes

that showed significant brain-morphometricity in the univariate ana-

lyses (Figure 2). rGM can be interpreted as the correlation between the

grey-matter vertices associations with each trait. We controlled for

height, weight and BMI on top of the baseline covariates, leaving a

conservative set of 35 UKB (18 HCP) phenotypes (Figure 3; Data set

S5 [UKB], Data set S6 [HCP]). In the UKB, we observed significant

positive grey-matter correlations between cognition domains, sub-

stance use phenotypes or between measures of physical activity

(Figure 3). In addition, we found unexpected large grey-matter corre-

lations. For example, cheese intake and forced expiratory volume

were both correlated (rGM = 1.0, SE = 0.11) with fluid intelligence, and

waist circumference was correlated with overall health rating and

pulse rate (rGM > 0.67). Overall, 9 out of the 26 significant correlations

replicated in the UKB replication sample (p < .05/26 that is, p < 1.9e−3,

F IGURE 2 Circular barplot of the associations (R2) between phenotypes and grey-matter structure vertices (morphometricity). For clarity, we
only plotted the significant associations in the UKB discovery (Panel a) and HCP sample (Panel b). We applied Bonferroni correcting to account
for multiple testing in each sample. The black bars represent the 95% confidence intervals of the morphometricity estimates. For context, we also
present the association R2 between phenotypes and covariates of the baseline model, as per the legend under the barplot. As some covariates
may be correlated, the R2 was calculated by adding progressively the covariates in that order: acquisition and processing variables (labelled
“other”), age, sex and head size (ICV, total cortical thickness and surface area). Age and sex were not included as covariates when studying them
as phenotypes. See Data set S3, S4 for full results. See Figure S1 for positive control associations
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Table S1). In the HCP, we also observed positive grey-matter cor-

relations between cognition domains or between the two tobacco

related phenotypes. Though, unlike in the UKB, we found a signifi-

cant rGM between IQ dimensions and education level (Figure 3,

Data set S6).

For completeness, we estimated grey-matter correlations under

the baseline model (Figure S7), which reveals many large grey-matter

correlations between measures of body size and diet, blood assay,

activity levels and depression symptoms and score. These results fur-

ther highlight that in the phenome, the brain-morphometricity of

some traits may be accounted for by the covariation between these

phenotypes and body size measurements. In particular, depression

score was correlated (rGM = 1) with weight, BMI waist or hip circum-

ference, consistent with its brain-morphometricity lowered to 0 when

controlling for body size (Figure S7).

3.4 | Associations with grey-matter structure of
specific cortical and subcortical regions

We investigated the brain-morphometricity of traits by estimating

the association with grey-matter structure of specific cortical

(Desikan et al., 2006) and subcortical regions, correcting for multiple

testing (Bonferroni significance threshold of 0.05/[164*39] = 7.2e

−6 in the UKB, 1.2e−5 in the HCP). We found many significant

ROIs associations with UKB phenotypes, including age, sex, mater-

nal smoking around birth, fluid intelligence, diabetes or substance

use (Figure S8 and Data set S7). In particular, the associations

between grey-matter structure and body size were pervasive

(72/164 significant ROIs associations with height, 109 with waist

circumference, 105 with BMI) (Figure S9, Data set S8), suggesting

that when acting as confounders height, weight or BMI could lead

to false positives in many brain regions. We replicated 633 of the

975 significant ROI-trait associations (p < .05/975, see Data set S9

for results on UKB replication sample). Most replicated associations

were found with age, sex and body size variables, though we also

replicated associations between subcortical volumes and hand grip

strength or time spent watching TV (Data set S7–S9). Overall, some

of the trait-ROIs associations were partially redundant as indicated

by a sum of R2 (over ROIs) greater than the morphometricity (see

Appendix S9 for detailed results and discussion, Data set S10 for

results in HCP).

3.5 | Better cortical processing

We compared the brain-morphometricity estimates obtained by vary-

ing the cortical processing options: smoothing of the cortical meshes

and applying coarser FreeSurfer meshes. We found that applying

smoothing (5–25 mm) or reducing the cortical mesh complexity

F IGURE 3 Matrices of grey-matter correlations (upper diagonals) and residual correlations (lower diagonals) between all the variables
showing significant morphometricity after controlling for baseline covariates, as well as height, weight and BMI. Panel (a) shows the results for the
UKB and Panel (b) the HCP results. We excluded phenotypes used as covariates (age, sex, head and body size) as regressing them out makes
them orthogonal (i.e., not associated) with the remaining traits. We used conservative significance thresholds of 0.05/(35*34) = 4.2e−5 for UKB
and 0.05/(18*17) = 1.6e−4 for HCP that account for the total number of correlations performed in each sample. Correlations significant after
multiple testing correction are indicated by a star. Blocks circled in black indicate the different phenotype categories used previously (see
Figure 2). rGM is a measure of the shared brain-morphometricity between 2 traits. Contrasting rGM and residual correlation (rE) indicate how much
of the phenotypic co-variance is attributable to individual's resemblance in term of grey-matter structure vs. other factors (brain or nonbrain
resemblances)
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always led to a lower point estimate of brain morphometricity in the

UKB discovery (Figure 5) and replication (Figure S10, Data sets S11,12

for full tables) samples. These differences were significant for a handful

of variables (incl. age, sex, maternal smoking or body size) using a strin-

gent definition of significance based on overlapping confidence inter-

vals (Table S3). Thus, the fsaverage cortical mesh with no smoothing

may be deemed a better processing approach for at least some of the

phenotypes considered. Similarly, we found that the vertex-wise

approach always yielded greater association R2, thus retained more

information than a ROI based dimension reduction (Figure S11).

3.6 | Ten-fold cross-validation in the UKB and
prediction into the UKB replication sample

For each UKB participant, we calculated (BLUP) grey-matter scores

relative to phenotypes showing significant brain-morphometricity. As

in sections above, for height, weight and BMI we controlled for base-

line covariates and further regressed out body size for all other

phenotypes.

In the 10-fold cross-validation analysis, most grey-matter scores

significantly correlated (positively) with their corresponding pheno-

types (significance threshold of 0.05/39 = 1.2e−3, Table 1, S3,

Figure 4). Albeit significant, prediction accuracy was overall low (typi-

cally r < 0.10, including r = 0.11 for sex, r < 0.09 with cognition,

r = 0.08 for alcohol intake, r = 0.06 with smoking status) except for

age (r = 0.60) and maternal smoking around birth (r = 0.26). We found

similar prediction results in the UKB replication sample, with 29 associ-

ations reaching significance at p < 1.2e−3 (Table 1, S3). Prediction

accuracy into the UKB replication sample was on par for most traits,

though slightly greater for age and sex compared with the cross-

validation results (Figure 4, Table 1, S3). This is consistent with a

larger training sample being used and larger morphomometricity

observed in the replication set (Figure S6).

When not correcting for body size, 56/58 BLUP scores signifi-

cantly correlated with the observed values in the 10-fold cross valida-

tion and 42 associations replicated using the UKB replication sample

(p < .05/58, See Figure S12 and Data set S13). Predicted age corre-

lated with chronological age (r = 0.72 in the discovery, r = 0.70 in the

replication), while predicted sex also strongly associated with the

observed value (AUC of 0.90 and 0.89). Grey-matter scores of body

shape (under the baseline covariates) were also significantly correlated

with the observed values (r = 0.25 for height, r = 0.29 for body fat

percentage, r = 0.39 for weight and hip or waist circumference,

r = 0.45 for BMI). Finally, grey-matter scores of BMI correlated posi-

tively with depression symptom count (r = 0.10, p-value<1e−14), as

expected from the brain-morphometricity of depression being limited

by the covariation with body size. It even outperformed the grey-

matter score built from the depression score itself (r = 0.05, p-

value<1e.5).

F IGURE 4 In sample and out of
sample prediction accuracy as a function
of the total association R2. Labels
highlight some of the significant
prediction having the greatest accuracy.
As predicted by the theory, the prediction
accuracy is capped by the total
association R2 (points below the
diagonal). We limited the prediction
analysis to phenotypes showing a
significant brain-morphometricity in the
UKB discovery sample
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BLUP achieved similar to superior prediction accuracy (R2) com-

pared to LASSO brain scores across the 58 phenotypes (Figure S13,

Data set S13). BLUP significantly outperformed LASSO (Wilcoxon test

on absolute errors, p < .05/58) in predicting hip circumference, alcohol

intake and number of correct symbol matches (cognition).

3.7 | Out of sample prediction—Application in the
HCP sample

Of sample prediction validates that the morphometric associations are

generalizable to independent brain images, beyond population and

scanner differences. For traits only available in the UKB (e.g., waist cir-

cumference) we used a proxy in the HCP (e.g., BMI). Grey matter

scores for age, sex, and being a twin significantly correlated with the

observed values (rage = 0.15, rsex = 0.25, rtwin-status = 0.31, Table 1,

Table S3 and Figure 4). Grey-matter score for maternal smoking

around birth correlated with smoking status (r = 0.19). None of the

other grey-matter scores significantly correlated with a similar HCP

variable.

Without correcting for body size, 19 BLUP scores correlated to

corresponding variables (Data set S13, Figure S12). For example,

scores for BMI, body fat percentage, hip or waist circumference also

correlated positively with BMI (r = 0.21, p-value<1.2e−3), while scores

F IGURE 5 Comparison of brain-morphometricity estimates varying cortical processing options in FreeSurfer. The reduction of brain-
morphometricity as a function of mesh smoothing is presented on the left panel (a), while the right panel (b) shows the effect of reducing the cortical
mesh complexity. The black bar indicates the lower bound of the 95% confidence interval of the fsaverage-no smoothing estimate (identical to results
presented in Figure 2, except that covariates R2 are not plotted here to simplify the figure). Brain-morphometricity estimates below the 95%CI lower
bound cannot be deemed significantly lower. Rather the 95%CI are presented for context and to remind that all estimate from Figure 2 do not have the
same SE. See Table S3 for a conservative list of phenotypes with significantly reduced morphometricity compared with fsaverage—no smoothing
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for height and weight also correlated with the observed phenotypes

(rHeight = 0.17, rWeight = 0.19). Finally, scores build from diet items or

quantifying activity levels significantly predicted BMI in the HCP.

4 | DISCUSSION

We have introduced a set of analyses, that rely on LMM (Figure 1) to

perform association and prediction, while being suited to tackle the

challenges of big-data in neuroimaging (Smith & Nichols, 2018). We

have demonstrated their applications in two of the largest MRI

cohorts available for research (UKB (Miller et al., 2016) and HCP (Van

Essen et al., 2013)) using a fine-grained processing of anatomical MRI

that consisted in >650,000 grey-matter measurements per individual.

In LMMs, the overall effect of the high dimensional vertex-wise mea-

sures is modelled by a single random effect, with a variance–

covariance structure calculated from the vertex-wise data: the brain

relatedness matrix (BRM, Figure 1). BRM off-diagonal elements repre-

sent the relative global similarity between grey-matter structure of

two people. The model is equivalent to fitting all vertices as a set of

random effects, constraining the association effect sizes to be nor-

mally distributed (Figure 1), which can be seen as an extension of mul-

tiple regression when the number of variables exceeds the number of

participants. This framework allows estimating new sample character-

istics such as the total association (morphometricity Sabuncu

et al., 2016) between a phenotype and vertex-wise brain data or grey-

matter correlations that quantify how much phenotypes may be simi-

larly associated with grey-matter. In addition, it offers to build

performant brain-based predictors that do not require hyper-

parameter estimation.

Our analyses replicated and extended previous morphometricity

reports (Sabuncu et al., 2016) (Figure 2, Data set S3, S4). We have

demonstrated that our methods produce robust, replicable results (-

Figure S3, S6, S10, Table S1, S3) that were partly transferrable on a

completely independent sample (the HCP) despite large differences

between the samples (Table S2, Data set S13). We have shown addi-

tional utilities of this LMM framework such as the ROI based associa-

tion test that retained the vertex-wise complexity of a brain region

(Figure S8–S8, Appendix S9, Data set S7–S10), rather than

summarising them by a single average measure, effectively bridging

the gap between ROI/atlas based and vertex-wise analyses. Our

results aligned with previously published associations with sex

(Ritchie et al., 2018), BMI (Cole et al., 2013; Gupta et al., 2015; Kurth

et al., 2013; Masouleh et al., 2016; Medic et al., 2016; Opel

et al., 2017) or substance use (Cardenas, Studholme, Gazdzinski,

Durazzo, & Meyerhoff, 2007; Gallinat et al., 2006; Gillespie

et al., 2018; Hanlon et al., 2016; Pitel, Segobin, Ritz, Eustache, &

Beaunieux, 2015) (see details in Appendix S9). We showed another

application of LMMs for big-data neuroimaging: to compare the

amount of information retained by different MRI image processing.

We found that using the most complex cortical mesh (“fsaverage”)

with no smoothing maximised the brain-morphometricity across all

phenotypes studied, though further statistical testing of the difference

is required (Table S3). This suggests there is meaningful information in

fine grained grey-matter data that is lost when performing local aver-

ages (via smoothing, coarser mesh or average over a ROI). More work

TABLE 1 Summary of the prediction accuracy (R2) of the BLUP grey-matter scores

In sample prediction (UKB) Prediction into UKB replication Out of sample prediction (HCP)

r p-value R2 AUC (SE) r p-value R2 AUC (SE)

HCP variable

predicted r p-value R2 AUC (SE)

Age 0.64 0.0e+00 0.41 0.68 0.0e+00 0.46 Age 0.15 3.1e−08 0.024

Sex 0.26 0.0e+00 0.067 0.58 (0.0059) 0.33 9.8e−305 0.11 0.8 (0.0064) Sex −0.25 8.0e−42 0.061 0.68 (0.016)

Part of multiple birth 0.078 4.1e−14 0.0061 0.66 (0.022) 0.13 1.5e−03 0.016 0.72 (0.065) Being a twin 0.31 1.1e−28 0.098 0.69 (0.016)

Body fat percentage# 0.29 0.0e+00 0.085 0.31 7.7e−190 0.095 BMI 0.21 5.6e−13 0.045

Waist circumference# 0.39 0.0e+00 0.16 0.38 2.0e−205 0.14 BMI 0.21 3.5e−13 0.046

BMI# 0.45 0.0e+00 0.2 0.45 7.4e−235 0.20 BMI 0.21 2.4e−12 0.042

Hip circumference# 0.38 0.0e+00 0.15 0.36 7.3e−143 0.13 BMI 0.21 5.2e−13 0.045

Height# 0.25 6.5e−318 0.062 0.23 2.6e−132 0.054 Height 0.17 1.8e−17 0.03

Weight# 0.39 0.0e+00 0.15 0.39 5.8e−231 0.15 Weight 0.19 1.2e−12 0.036

Maternal smoking

around birth

0.26 9.8e−132 0.069 0.66 (0.0067) 0.25 1.7e−08 0.063 0.65 (0.027) FTND score 0.19 8.9e−04 0.037

Note: We constructed BLUP scores for the 39 UKB variables showing significant morphometricity and evaluated their predictive power in the UKB

(10-fold-cross validation) and HCP sample. When the phenotype corresponding to the grey-matter score was not available in the HCP, we chose the clos-

est available (e.g., waist circumference grey-matter score evaluated against BMI). We evaluate the prediction accuracy by fitting GLM controlling for height,

weight and BMI as well as for the baseline covariates (acquisition, age, sex and head size); except for (#) denoting associations not controlling for height,

weight and BMI. Rows in bold indicate significant association after correcting for multiple testing (p < .05/39 = 1.3e−3) both in and out of sample. This

reduced table only shows prediction results significant in all three scenarios, see Table S2 for full table of results. We reported the AUC (for discrete vari-

ables) as it is independent of the proportion of twins and males, thus differences in AUC likely reflect differences in morphometricity between the UKB

and HCP samples.
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is needed to compare our surface-based approach (Fischl, 2012) to

volume based processing (Flandin & Friston, 2008), or evaluating the

putative added value of including the T2w image (on top of the

T1w). To finish on processing, in the UKB we combined vertex-wise

data estimated from T1w and T1w + T2w which is meant to improve

grey-matter segmentation, though few studies quantified it (Lindroth

et al., 2019). Here, we confirmed a difference in cortical thickness

between processing groups (Lindroth et al., 2019)(Figure S2), though

our data driven QC (Appendix S2) excluded 80% of the 400-odd par-

ticipants processed using T1w only (flagged as outliers). We

corrected for processing type in the analyses and the good replica-

tion of the UKB associations (Figure S3, S6, Table S1) in addition to

the out of sample prediction (Figure 4) suggest that our results are

robust.

Beyond the large morphometricity estimates found for age and

sex, BMI, weight, waist and hip circumference, and both passive and

active smoking (Figure 2, Data set S3), we found many small(er) asso-

ciations, with a wide array of phenotypes, including some more unex-

pected ones [e.g., self-reported diet, being a twin, happiness with

one's health, blood assay results (Figure 2, Data set S3)]. Such findings

may echo the concerns raised by Smith and Nichols about the pres-

ence of many (small) confounded associations in big-data neuroimag-

ing (Smith & Nichols, 2018). The fact that we replicated the

morphometricity in another UKB sample, does not completely rule

out a confounding effect, as the same bias [e.g., healthy bias in recruit-

ment (Fry et al., 2017)] may be present.

We illustrated this concern using the example of body size (BMI,

weight, height), which showed large, replicated morphometricity and

was available in both cohorts. We evaluated its contribution to the

reported morphometricity by performing conditional analyses and

bivariate LMMs. Both approaches yielded the same conclusions: a

large fraction of the morphometricity detected was attributable to

body size (Figure S7, Data set S3). However, co-variation does not

necessarily imply confounding (which requires establishing direction

of effects) but may instead point to intermediate phenotypes or arise

from the pervasive pleiotropy across the human phenome (Solovieff,

Cotsapas, Lee, Purcell, & Smoller, 2013). In addition, we are dealing

with associations, meaning that (except for exposures such as age or

sex) the trait-vertex associations responsible for the morphometricity

may be a cause and/or a consequence of the phenotypes. For exam-

ple, there is a known association between BMI and depression, with

evidence of pleiotropy, but also of a causal effect of BMI on depres-

sion (Wray et al., 2018), though we do not know which of BMI and

grey-matter structure cause the other and cannot label body size a

confounder. Thus, a conservative interpretation is that mor-

phometricity of the depression score is limited to the shared variation

with body size in the UKB (Data set S3, Figure S7). However, our find-

ings shed a new light on previously published results, as even the larg-

est case–control international initiatives [e.g., ENIGMA-MDD

(Schmaal et al., 2016; Schmaal et al., 2016)] may reflect, at least in

part, variance shared between depression and BMI (Cole et al., 2013).

More work is needed to understand body size contribution to publi-

shed results linking grey-matter anatomy to psychiatric disorders

(MDD, bipolar, schizophrenia and substance use are all associated

with BMI [Luppino et al., 2010; McElroy & Keck, 2012; Rajan &

Menon, 2017; Saarni et al., 2009; Wray et al., 2018]) or sexually

dimorphic traits (likely associated with height and weight). In addition,

body size may be differently associated with the phenome across

countries or age groups, which may limit the replication of findings

and predictive abilities of body size dependent scores. Finally, the

possible confounding effects of body size are exacerbated in small

case–control samples, leading to increased chances of false positive

associations (Button et al., 2013; Ioannidis, 2005). Note that body size

being associated to many brain regions (Figure S9), its confounding

effect could lead to widespread cortical or subcortical false positives.

A different example may be that of cheese intake, previously

given as an absurd example of putative association likely confounded

by socioeconomic status (Smith & Nichols, 2018), and for which we

found a significant (replicated) morphometricity, even after correcting

for body size (Figure 2, Data set S3). Consistent with the hypothesis

of a confounded association, our bivariate analysis identified large rGM

(rGM = 1) between cheese intake and household income level, or fluid

intelligence (Figure S7), though the latter was significant only when

controlling for body-size (Figure 3). Thus, grey-matter correlation may

allow hypothesis-generation about the origin of the morphometricity

signal and could help better identifying putative confounders. If con-

firmed, such confounded morphometricity would not translate into

significant prediction into the general population (where IQ may not

be associated with cheese intake) or into another sample/country

with different dietary habits.

Beyond the confounding/mediating effect between phenotypes

one should also be wary of known MRI acquisition artefacts and con-

founds (Smith & Nichols, 2018). Here, we focused on well-studied

MRI modalities (T1w and T2w) which may be among the least sensi-

tive to artefacts, especially that acquisition was performed on a single

MRI machine and processed using standard image processing pipe-

lines (Fischl, 2012). However, we detected significant mor-

phometricity for pulse rate, bone mineral density and indirect

measures of breathing rate/depth (Smith & Nichols, 2018), even after

controlling for body size (Data set S3). In addition, the large grey-

matter correlations between pulse rate and overall health rating, and

between forced expiratory volume and fluid intelligence (Figure 3),

suggest they might indeed act as confounders. More work is needed

to extend the list of acquisition confounders studied (e.g., head

motion), and more power is needed to detect finer grained rGM with

the phenotypes of interest (Appendix S7). Finally, note that rGM would

also capture correlated measurement errors between traits (e.g., when

two traits are associated with head motion).

Next, we constructed BLUP scores that estimate the random

effects of the LMM and demonstrated their predictive abilities in

independent samples [UKB replication and to a lower extend in the

HCP, (Figure 4, S12, Table 1, S2, Data set S11), which differs in term

of scanner and sample composition]. In addition to its statistical prop-

erties (unbiased, best predictor in the class of linear predictors), we

demonstrated that BLUP achieved similar (to greater) prediction accu-

racy compared with LASSO based prediction, while being more
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computationally efficient than most traditional machine learning

approaches as it does not require hyper-parameter estimation. Note

that prediction relates naturally to association which is apparent from

our model formulation (Figure 1). Thus, the morphometricity value

represents the upper asymptote achievable in linear prediction [-

Figure 4, (Dudbridge, 2013)]; in addition, grey-matter correlation indi-

cates when transfer learning is possible between the two variables.

The limited prediction accuracy currently prevents BLUP scores being

used in the clinical settings. However, they open the way to new ana-

lyses on samples already collected, for which information was not or

could not be collected. Further application of our BLUP grey-matter

scores include studying correlates of brain age or predicted age differ-

ence (difference between predicted and chronological age)

(Cole, 2017; Cole et al., 2017; Liem et al., 2017).

Despite good statistical power in theory (Appendix S7), the low

numbers for some of the binary variables may explain the lack of asso-

ciations found with psychiatry (e.g., schizophrenia, ADHD), stresses,

traumas (Data set S3), which would have to be confirmed using a

larger UKB sample or case–control samples [see results in (Sabuncu

et al., 2016)]. Similarly, a lot of the trait variance remains unaccounted

for by the grey-matter structure variation (Figure 2) which calls to

study brain regions not extracted here (e.g., brain stem, cerebellum),

other processing options (e.g., volume based processing), or MRI

images (diffusion weighted, fMRI) to further characterise the

phenotypes.

Our approach is suited to studying other MRI contrasts and even

multiple MRI modalities at once by fitting several random effect com-

ponents (Figure S4). In addition, the efficient implementation in the

OSCA software (Zhang et al., 2019) means the analyses are scalable

to the future full UKB sample of 100,000 participants, which should

improve power and BLUP prediction accuracy (Dudbridge, 2013).

Beyond the global or regional associations reported here, future ana-

lyses should aim at identifying the vertices that contribute to the mor-

phometricity. An existing method is mass-univariate vertex-wise

analysis, though this comes as a huge increase of multiple testing bur-

den and may still be underpowered with the current sample sizes

(Smith & Nichols, 2018).

URLs

Summary-level data (BLUP weights): https://cnsgenomics.com/

content/data and https://cloudstor.aarnet.edu.au/plus/s/

T1gyJyQsF6wTMjF; Code used for the analyses and plots is down-

loadable at https://github.com/baptisteCD/Brain-LMM and viewable

at https://baptistecd.github.io/Brain-LMM/index.html; OSCA: http://

cnsgenomics.com/software/osca/; ENIGMA processing protocols:

http://enigma.ini.usc.edu/protocols/imaging-protocols/;
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