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Wearable robotic upper limb orthoses (ULO) are promising tools to assist or enhance

the upper-limb function of their users. While the functionality of these devices has

continuously increased, the robust and reliable detection of the user’s intention to

control the available degrees of freedom remains a major challenge and a barrier

for acceptance. As the information interface between device and user, the intention

detection strategy (IDS) has a crucial impact on the usability of the overall device. Yet, this

aspect and the impact it has on the device usability is only rarely evaluated with respect

to the context of use of ULO. A scoping literature review was conducted to identify

non-invasive IDS applied to ULO that have been evaluated with human participants,

with a specific focus on evaluation methods and findings related to functionality and

usability and their appropriateness for specific contexts of use in daily life. A total

of 93 studies were identified, describing 29 different IDS that are summarized and

classified according to a four-level classification scheme. The predominant user input

signal associated with the described IDS was electromyography (35.6%), followed by

manual triggers such as buttons, touchscreens or joysticks (16.7%), as well as isometric

force generated by residual movement in upper-limb segments (15.1%). We identify

and discuss the strengths and weaknesses of IDS with respect to specific contexts

of use and highlight a trade-off between performance and complexity in selecting an

optimal IDS. Investigating evaluation practices to study the usability of IDS, the included

studies revealed that, primarily, objective and quantitative usability attributes related to

effectiveness or efficiency were assessed. Further, it underlined the lack of a systematic

way to determine whether the usability of an IDS is sufficiently high to be appropriate

for use in daily life applications. This work highlights the importance of a user- and

application-specific selection and evaluation of non-invasive IDS for ULO. For technology

developers in the field, it further provides recommendations on the selection process of

IDS as well as to the design of corresponding evaluation protocols.

Keywords: intention detection, wearable robotics, upper limb orthosis, user studies, human robot interaction,

usability evaluation
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1. INTRODUCTION

Our upper limbs are essential for numerous tasks in our daily
lives, allowing us to interact physically and socially with our
environment. Functional limitations of the upper limbs, e.g., due
to impairment from neurological injury or disease, may have a
substantive impact on independence, health, and wellbeing of
the people affected, not only on physical but also on emotional,
cognitive, and behavioral levels (Poltawski et al., 2016). In
recent years, robotic wearable orthoses for the upper limbs,
i.e., for the shoulder, elbow, wrist, hand or fingers, emerged as
tools to compensate for functional impairments and therefore
aim to improve quality of life of their users. Orthoses assist
movements by being worn around and operated in parallel to
the user’s impaired limb (Tucker et al., 2015). The potential of
wearable upper-limb orthoses (ULO), in this context often called
“exoskeletons,” has further been exploited not only for people
with impairments but also to complement or augment upper
limb function of non-impaired users, e.g., by enhancing their
strength or endurance in specific tasks in their work environment
(Bergamasco and Herr, 2016; Thalman and Artemiadis, 2020).

However, wearable robotic orthoses are not yet easily available
and widely accepted by end-users. Previous studies have shown
that insufficient usability can lead to low user acceptance of
assistive technologies such as ULO, and consequently to high
device abandonment rates (Biddiss and Chau, 2007; Ravneberg,
2012; Sugawara et al., 2018). The usability of a device describes
how well it can be used by a specific user and context of use
(ISO 9241-11, 2018). A critical factor in the use of an ULO is
the way the user can trigger the desired robot motion. Thus,
we hypothesize that the intention detection strategy (IDS) as the
interface between users and their ULO plays an essential role in
the usability of the overall device perceived by the user. Therefore,
ensuring a high usability of an IDS is crucial to promote the
adoption of an ULO to its targeted context of use. The question
of whether a person is able and willing to use a specific IDS also
highly depends on the person’s residual sensorimotor capabilities
and the tasks for which the device is intended. As such, the
appropriateness of an IDS for an ULO depends not only on
its technical advantages and limitations but also on the target
user and the intended usage scenario. However, research papers
describing the development or application of IDS for ULO rarely
cover all these decisive factors.

Previous reviews have provided exhaustive overviews of
IDS for movement assistive devices. Lobo-Prat et al. (2014)
reviewed non-invasive IDS for active movement assistive
devices in general, not specifically focusing on ULO. Other

Abbreviations: ADL, activities of daily living; DOF, degrees of freedom; EEG,

electroencephalography; EMG, electromyography; EOG, electrooculography;

ERP, event-related potential; FMG, force myography; fMRI, functional

magnetic resonance imaging; fNIRS, functional near-infrared spectroscopy;

IDS, intention detection strategy; IMU, intertial measurement unit; MEG,

magnetoencephalography; MMG, mechanomyography; NASA-TLX, national

aeronautics and space administration task load index; QUEST, Quebec user

evaluation of satisfaction with assistive technology; SD, standard deviation;

SSVEP, steady state visually evoked potential; SUS, system usability scale;

ULO, upper-limb orthosis; ULS, upper-limb segment(s); USE, usefulness,

satisfaction, ease-of-use.

reviews were published focusing on specific strategies based on
electromyography (EMG) (Parajuli et al., 2019; Hameed et al.,
2020; Rodríguez-Tapia et al., 2020) or brain-computer-interfaces
(BCI) (Millán et al., 2010; Khan et al., 2020; Rashid et al.,
2020). However, the scopes of these reviews only cover a specific
section of the broad range of available IDS. Chu and Patterson
(2018) and du Plessis et al. (2021) published narrative reviews
discussing robotic devices for hand rehabilitation and assistance,
in which also IDS were briefly discussed. However, all these
existing reviews primarily focus on the concepts and technical
design of IDS. As such, a review systematically analyzing various
IDS with respect to their daily life applicability and usability is
yet missing.

Through this work, we aim to provide technology developers
with an evidence-based overview of the key aspects to consider
for the selection of appropriate non-invasive IDS for ULO
applications.We further present recommendations for the choice
of usability attributes to promote a more comprehensive and
standardized evaluation of IDS for ULO from a user-centered
point of view. This work is important, as it provides a novel
analysis of how different IDS are applied and in which context,
paving the way for more informed selection of IDS in wearable
robotics, which could ultimately improve the acceptance of
such technologies.

2. METHODS

This scoping review was conducted in compliance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses requirements extension for scoping reviews (PRISMA-
ScR) (Tricco et al., 2018).

2.1. Literature Search
A literature search was conducted in August 2021 on five
electronic databases (Web of Science, Scopus, PubMed, Embase,
and IEEE Xplore). An example of the search string used for Web
of Science is shown in Figure 1A. Search strings for the other
databases were built analogously but adapted to the databases’
specific requirements wherever needed.

2.2. Study Selection
In order to select eligible studies from the obtained manuscripts,
a set of criteria were predefined.

Inclusion criteria were: (I1) manuscripts describing the
evaluation of a human intent-controlled wearable or portable
ULO or non-invasive IDS used in combination with an ULO; (I2)
full-text manuscripts in English language.

Exclusion criteria were: (E1) manuscripts not providing
information on which IDS was used; (E2) IDS requiring invasive
interventions; (E3) evaluation not involving human participants
wearing the ULO during data collection; (E4) non-real-time
control of the ULO; (E5) third person, autonomous, purely
gravity-compensating, or master-slave controlled ULO (i.e., not
based on intent from the user); (E6) studies only considering
rehabilitative effects of the ULO over multiple sessions as
outcome; (E7) same IDS and ULO already assessed in a newer
included study by same authors.
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FIGURE 1 | Methods of manuscript search and study selection. (A) Exemplary search string used for Web of Science. Parallel blocks denote OR-operator, serial

blocks denote AND-operator, asterisk (*) denotes truncation-operator. (B) PRISMA-ScR flowchart for the conducted literature search. Flowchart adapted from Moher

et al. (2009).

The reasons for choosing these exclusion criteria were
either because the focus of the considered manuscript was
not within the review targeting user evaluation of IDS (E1,
E2, E5, E6), because the methods of the study did not
sufficiently reflect the actual intended use of the ULO in
daily life, i.e., the validity of the user evaluation results
for application in daily life was not given (E3, E4), or
because the core information of the study was duplicated,
e.g., pilot study and subsequent full study (E7). In case a
manuscript discussed an evaluation protocol consisting of
multiple methods, of which not all comply with the exclusion
criteria (e.g., offline and online assessment of reliability within
the same manuscript), the manuscript was included, but
only the methods complying with the defined criteria were
considered for the data extraction. In case a manuscript did

not provide sufficient information to determine its compliance
with a specific exclusion criterion, the manuscript was included,
provided that it complied with all the other criteria. Since this
scoping review aims to provide an overview of all the studies
evaluating ULO controlled by an IDS, no critical appraisal was
conducted and thus no studies were excluded based on their
methodological quality.

Screening of the manuscripts based on these eligibility criteria
was conducted by three unblinded reviewers (JG, JD, JTM)
using the online systematic review management tool Covidence
(Veritas Health Innovation Ltd., Australia). For title and abstract
screening, the first half of the manuscripts was screened by two
reviewers independently, and a third reviewer was consulted
in case of disagreements. Single screening of the second half
of manuscripts and subsequent full texts screening was split
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between the three reviewers, and a second reviewer was consulted
in case of uncertainty.

2.3. Data Extraction
A data extraction form was developed in a spreadsheet
software (Microsoft Excel, Microsoft Corporation, USA) and
piloted by two reviewers (JG, JD). Subsequent data extraction
was conducted in Excel by the leading reviewer (JG) to
ensure consistency.

The core part of the data extraction consisted of usability
evaluation findings reported in the studies, which were structured
according to a list of 12 usability attributes. The international
standard ISO 9241-11 defines usability as “the extent to which
a system, product, or service can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction
in a specified context of use” (ISO 9241-11, 2018), whereas in
this work, we considered IDS as the “system, product, or service”
of interest. The 12 usability attributes presumed to be relevant
for IDS were selected based on the findings of a recent survey
on common practices in usability evaluation of wearable robots
(Meyer et al., 2021). For the purpose of grouping information
within this review, each usability attribute was also assigned
to one of three usability dimensions: “effectiveness” defined as
“the accuracy and completeness with which users achieve specified
goals”, “efficiency” as “the resources set in relation to the results
achieved,” and “satisfaction” as “the extent to which the user’s
physical, cognitive, and emotional responses that result from the
use of a system, product, or service meet the user’s needs and
expectations” (ISO 9241-11, 2018). The list of usability attributes
and the corresponding usability dimensions is shown in Table 1.
General usability assessments which could not be assigned to
a specific attribute were not included in the data extraction
since they do not provide sufficiently detailed information to
be synthesized.

Besides the usability attributes, the data extraction form
included technical information to provide an overview of
existing IDS and information about the context of use, i.e.,
the ULO for which the IDS was used, the target user, and
the intended application. Lastly, information about the user
evaluation methods used in the studies was extracted, including
information about the used test protocol and the number and
kind of participants.

2.4. Data Synthesis
2.4.1. Synthesis of Assessed Usability Attributes
Depending on the aim of a study, only a subset of usability
attributes might be considered relevant by technology developers
and was thus included in the study protocol. In order to
investigate which usability attributes were assessed the most,
the number of studies in which a particular usability attribute
was evaluated was determined. An attribute was counted
as “assessed,” if it was evaluated or discussed quantitatively
or qualitatively in a study. Depending on whether a study
assessed the usability attribute directly based on the defined
user evaluation protocol or indirectly based on the observation
or interpretation of the study authors, the collected data
was categorized as “data-driven finding” or “indirect finding,”

TABLE 1 | Predefined list of usability attributes and their definitions applied in

regards to IDS.

Group Attribute Definition applied

Effectiveness Reliability Does the IDS perform its

requested functions under stated

conditions?

Robustness Does the IDS continue to

function in the presence of invalid

inputs or stressful or changing

environmental conditions?

Efficiency Mental workload How mentally demanding is the

generation of a command?

Physical workload How physically demanding is the

generation of a command?

Temporal workload How much time does the

generation of a command take

(incl. computational time, excl.

practice and classifier training)?

Learnability What influence does practice

have on the ability to generate a

command?

Ease-of-use How easy does the user find the

generation of a command?

Cost What are acquisition and/or

maintenance costs (financial or

time)?

Satisfaction Naturalness How natural does the generation

of a command feel to the user

compared to unimpaired

movement?

Comfort How physically comfortable and

ergonomic does the user

perceive the IDS during use?

Simplicity of setup How simple is the setup of the

IDS (e.g., to calibrate, or to don

& doff)?

Enjoyability How much did the user enjoy

using the IDS (e.g., in terms of

mood, motivation, frustration)?

respectively. The methods with which each attribute was assessed
were summarized and will be described in Section 3.2.

2.4.2. Synthesis of Types of IDS
To classify the IDS, the four-level classification scheme for IDS
proposed by Lobo-Prat et al. (2014) was adapted. Following the
user-centered scope of this review, we considered the user’s body
part that generates the command, i.e., the local source of the input
signal, as level 1. This source directly relates to the user’s residual
functional capabilities and thus their ability to use a specific IDS.
On level 1, the IDS were assigned to three groups. “IDS sourcing
from targeted upper-limb segment(s)” were defined as those
related to the physiological execution of the desired movement,
e.g., actuation of the finger joints of the ULO initiated by residual
movement of the fingers or activation of the finger muscles in
the ipsilateral forearm. On the contrary, “IDS sourcing from non-
targeted upper-limb segments” were defined as those not relating
to the physiological execution of the desired movement but still
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sourcing from the upper limb. It should be noted that the “non-
targeted upper-limb segment(s)” does not necessarily imply that
the source is contralateral to the upper limb targeted by the ULO.
For example, actuation of the finger joints of the ULO could
be initiated by muscle activation from the ipsilateral upper-arm
or from the forearm muscles contralateral to the ULO. “IDS
sourcing from other body parts” were defined as all remaining
IDS, e.g., sourcing from the brain or the tongue. Levels 2–4 of the
classification scheme were defined similarly to Lobo-Prat et al.
(2014) as: the corresponding physiological phenomena related to
the IDS used (level 2), the corresponding measured signals (level
3), and the used sensors to measure these signals (level 4).

When analyzing the findings from the usability evaluations
(Section 3.3), the IDS are discussed on level 2, since the most
distinct differences in perceived usability were expected on that
level. In the following, each IDS from level 2 are described
in three parts: first, by a general introduction of the principle
and overall strengths and benefits, second by reviewing studies
which used the described IDS, and third, by synthesizing results
with respect to usability attribute data extracted from the
included studies. For the IDS where no usability attribute data
was reported in the studies, this is stated accordingly. Due to
the heterogeneity and partially qualitative nature of this data, the
results of the synthesis will be described narratively, and IDS are
compared to each other only on a qualitative level where possible.

3. REVIEW

3.1. Characteristics of Included Studies
After the full-text screening of 348 manuscripts, 93 eligible
studies were identified and included in the data extraction. The
flowchart of study inclusion is given in Figure 1B. Included
studies were published between 2000 and 2021, whereas 50.5%
were published since 2018. A condensed version of the data
extraction tables, including references to all included studies,
can be found in Supplementary Material 1. The complete,
detailed data extraction table can be obtained from the authors
upon request.

An overview of the distribution of the intended scenarios of
use of the ULO, as well as the actuated upper-limb segments
by these ULO, is given in Figures 2A,B, respectively. 83.9%
of the ULO were intended to be used as assistive and/or
rehabilitative device, whereas the occurrences of these two
groups were relatively well balanced. The actuated joints or
movements of these ULOs were finger joint(s) (70.9%), elbow
joint (24.7%), shoulder joint (16.1%), wrist joint (11.8%), and
forearm pronation/supination (1.1%). Figure 2C summarizes
which scenarios of use were intended for which IDS sourcing
from specific body parts (i.e., classification level 1). Assistive
applications were targeted in 56.9% of ULO with IDS sourcing
from targeted upper-limb segments and in 70.7% of ULO
with IDS sourcing from non-targeted upper-limb segments.
Rehabilitative applications were targeted in 43.1 and 41.5%,
respectively of the same groups. For IDS sourcing from other
body parts, those from brain signals were more often targeting
rehabilitative applications (58.8%) while those sourcing from
eyes, jaw, tongue, and vocal cords were more often targeting

assistive applications (62.5%). Most industrial applications were
targeted for ULO with IDS sourcing from targeted upper-limb
segments (75%).

A distinctive eligibility criterion of this scoping review was the
exclusion of studies that did not involve any human participants
in the evaluation of the ULO controlled by the specific IDS.
On average, 5.044.41 (SD 4.41) participants were involved in
the studies, of which 2.07 (SD 3.42) participants belonged to
the stated target population. Overall, at least one target user
was involved in 40.9% of studies, whereas 46.2% involved only
participants not belonging to the target population, and 12.9%
did not provide sufficient information to determine whether the
participants belonged to the target population.

A total of 28 different IDS were disclosed in the included
studies and were organized in Table 2 according to the proposed
four-level classification scheme. Of the 93 included studies, 69
used IDS with sources from the targeted upper-limb segments, 40
used IDS with sources from non-targeted upper-limb segments,
and 26 used IDS with sources from other body parts. The total
number of 133 exceeds the number of included studies (n = 93)
as some studies reported more than one and up to four IDS.
A total of 14 studies assessed ULOs with multimodal IDS, i.e.,
multiple different IDS used simultaneously, whereas 20 studies
assessed ULOs, which allowed to choose between different IDS
and compare performance.

3.2. Usability Attributes and Methods of
Evaluation
Out of the twelve usability attributes defined in Table 1, the
studies assessed on average 1.47 (SD 1.50) different attributes
related to the IDS, whereas 31 studies did not assess a single
attribute specifically related to the IDS. From all reported
assessments of usability attributes, 75.5% were direct data-driven
findings. The three attributes related to the IDS which were
assessed themost were “reliability” (36.6%), “temporal workload”
(29.0%), and “ease of use” (22.6%). “Cost,” “naturalness,” and
“comfort” were the least assessed attributes being reported
in only two studies each. Usability attributes assigned to the
usability dimensions “effectiveness” and “efficiency” appeared to
be more frequently assessed, compared to attributes assigned to
“satisfaction.” The frequency of assessment of usability attributes
along with the distribution of direct data-driven findings and
indirect statements is shown in Figure 3. The methods of
assessing individual usability attributes are further discussed
below, in order of decreasing frequency of occurrence in the
included studies.

3.2.1. Reliability
Reliability was the most frequently assessed attribute, with all
data-driven findings being reported in 35 studies. In the context
of IDS, reliability is alternatively also often called accuracy and
describes how good an IDS performs its requested functions
under stated, non-varying conditions. However, in real-time
control, the stated, non-varying conditions are often difficult to
adhere to, making a clear differentiation between reliability and
robustness difficult.
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FIGURE 2 | Overview of characteristics of upper limb orthoses (ULO) assessed and sources of input signals. (A) Distribution of contexts of use of ULO over all

included studies. (B) Distribution of contexts of use in relation to the upper limb segment (ULS) actuated by the ULO. (C) Distribution of contexts of use of ULO in

relation to the source of input signal.

Some studies did report reliability qualitatively based on user
feedback (e.g., Song and Chai, 2013). However, most of the
included studies did express it as the number or percentage
of successes or errors (e.g., Park et al., 2019) or classification
accuracy of the IDS (e.g., Lu et al., 2019). Some subdivided these
classes further according to the type of success or error (e.g., Zhou
et al., 2019), i.e., true/false positives or true/false negatives. Many
studies compared their achieved success or error rates to those
of other studies to rate their IDS. However, no studies reported
a generally accepted target value a good IDS should achieve in
terms of reliability.

3.2.2. Temporal Workload
The temporal workload was assessed in 28 studies of which
all presented data-driven findings. We defined the temporal
workload of an IDS as the time delay between actual user intent
and its detection, including the time required for the user to
give the input and computational time. Most studies measured
temporal workload by task duration (e.g., Zhang et al., 2019) or
task speed by means of blocks per minute in the standardized
Box and Block Test (e.g., Yurkewich et al., 2020b), therefore not
only measuring the actual temporal workload of the IDS, but
also including the inherent mechanical delay of the ULO and the

time required for conducting the task. This is therefore only a
valid option to rate temporal workload if these two parameters
are approximately constant, i.e., when used to compare two
different IDS used in combination with the same ULO and for
the same task. Other studies have only measured the delay as the
computational time between signal acquisition and classification
or movement onset of the ULO (e.g., Delijorge et al., 2020), or
the minimum possible time between two consecutive movements
(e.g., Ortner et al., 2011). Some studies rated the temporal
workload in term of the participant’s subjective perception
through non-standardized feedback (e.g., Ngeo et al., 2013), or
through the NASA-TLX questionnaire by Hart and Staveland
(1988) (e.g., Badesa et al., 2020).

3.2.3. Ease-of-Use
The ease of use was assessed in 21 studies, of which nine were
based on indirect findings. Since there is no formal definition
of the ease-of-use, for this review, it was loosely defined as how
easy the user found controlling the device using the IDS, i.e., it
sums up whether they managed to use it with few explanations
and low mental or physical workload. In literature, the term
“intuitiveness” is sometimes used interchangeably with “self-
explanatory” (Mohs et al., 2006), “familiar” or “using readily

Frontiers in Neurorobotics | www.frontiersin.org 6 February 2022 | Volume 16 | Article 815693

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


G
a
n
te
n
b
e
in

e
t
a
l.

In
te
n
tio

n
D
e
te
c
tio

n
fo
r
U
p
p
e
r-L

im
b
O
rth

o
se

s
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Muscle activation EMG Electrodes 0 0 22 8 5 1 0 0 5 4 2 0 x x x x 47 47 47

Muscle contraction FMG Force sensors 0 0 3 1 0 0 0 0 1 0 0 1 x x x x 6 6 6

Isometric force Exerted force/torque Force/torque sensors 13 0 6 0 0 0 1 0 0 0 0 0 x x x x 20 20 20

IMUs 0 0 1 2 0 0 0 1 0 0 0 x x x x x 4
Kinematics

Load cells 0 0 0 0 0 0 0 0 0 0 1 x x x x x 1
5

UL movement

Joint rotation Bending sensors 4 0 x x 0 0 0 3 x x 0 x x x x x 7 7

12

Tongue movement Magnetic field Magnet sensor x x x x x x x x x x x x 1 x x x 1 1 1

EOG Electrodes x x x x x x x x x x x x x x 2 x 2 2
Eye movement

Corneal reflection Cameras x x x x x x x x x x x x x x 1 x 1 1
3

EEG Electrodes x x x x x x x x x x x x x x x 16 16 16
Brain activity

fNIRS Optodes x x x x x x x x x x x x x x x 1 1 1
17

Speech Sound Microphones x x x x x x x x x x x x x 4 x x 4 4 4

Buttons/switches x x x x x x 15 x x x x x x x x x 15

Joysticks x x x x x x 4 x x x x x x x x x 4N/A Manual trigger

Touchscreens x x x x x x 3 x x x x x x x x x 3

22 22

17 0 32 11 5 1 23 4 6 4 3 1 1 4 3 17
Total level 1

65 41 26
132

The four-level classification scheme was adapted from Lobo-Prat et al. (2014). Columns show the first level (source of input signal), rows show second to fourth levels (physiological phenomenon, signal, sensor). The numbers indicate

the number of included studies, which used the corresponding IDS, (x) indicates technically impossible IDS. Total number of included studies per IDS for each level is indicated. ULS, upper limb segment; EMG, electromyography; FMG,

force myography; EOG, electrooculography; EEG, electroencephalography; N/A, not applicable. Shades of grey from dark to bright represent four classification levels from 1 to 4.
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FIGURE 3 | Frequency of assessment of usability attributes. List of usability attributes ranked by the percentage of studies, in which they were assessed. Colors

indicate the assigned usability grouping. Dark bar sections indicate “data-driven findings,” bright bar sections indicate “indirect findings.”

transferred, existing skills” (Raskin, 1994) and thus, in the
broader sense, also relating to “easy to use.” However, a uniform
definition of the term has not been established yet (Naumann
et al., 2007). Therefore, for studies reporting “intuitiveness,” we
interpreted from the given context whether the information was
related to ease-of-use.

The indirect findings related to ease of use were mostly
based on observations whether the users managed to use the
IDS without problems (e.g., Ambrosini et al., 2014a) or without
further instructions (e.g., Park et al., 2019). Data-driven findings
were based on direct qualitative user feedback (e.g., Xing
et al., 2008) or reported quantitatively with different scales and
questionnaires including a custom numbered rating scale (e.g.,
Bermúdez i Badia et al., 2014), Usefulness, Satisfaction, Ease-
of-use (USE) questionnaire by Lund (2001), the Quebec User
Evaluation of Satisfaction with Assistive Technolgy (QUEST 2.0)
questionnaire by Demers et al. (2002) (e.g., Yurkewich et al.,
2020a) or the SystemUsability Scale (SUS) by Brooke (1996) (e.g.,
Shafti and Faisal, 2021).

3.2.4. Learnability
A total of 16 studies assessed learnability, five reporting indirect
statements. The learnability describes how much practice is
required to be able to use the IDS appropriately or what influence
prolonged use of an IDS has on the achieved performance.
The included studies have described the learnability by three
different metrics. Most of the studies did report how much
practice participants needed until they were able to control the
device according to their intent with acceptable performance.
For indirect statements, this was done by observation (e.g.,
Hennig et al., 2020), data-driven findings were supported by
measuring the required practice time (e.g., Yurkewich et al.,
2020b) or by the participant’s subjective perception on the
ease of learning on a customized Likert-scale (e.g., Yap et al.,
2017b) or as a subcategory on the SUS (e.g., Shafti and Faisal,

2021). Others reported the learning effect, e.g., the improvement
of performance, which was observed for the same users after
repeated use of the IDS (e.g., Webb et al., 2012). A small number
of studies have also investigated learnability by comparing the
performance of experienced and inexperienced users (e.g., King
et al., 2014).

3.2.5. Robustness
In contrast to the reliability, the robustness describes how an IDS
performs under varying conditions, e.g., invalid user inputs, or
stressful or changing environments. Some studies did assess the
robustness analogously to the reliability by measuring success
or error rates under varying conditions, e.g., with changing arm
positions (Park et al., 2020), when distracting the participant
(Ortner et al., 2011), or when the ULO is used with or without
arm support (Park et al., 2019). Others provided a qualitative
indication of the robustness of the IDS by identifying factors that
do or do not influence its performance (e.g., Siu et al., 2018).

3.2.6. Simplicity of Setup
Simplicity of IDS setup was discussed in seven studies. Six studies
reported indirect, qualitative statements related to donning and
doffing (Dwivedi et al., 2019), sensor placement (Meeker et al.,
2017), or ease of calibration (Pedrocchi et al., 2013). One study
assessed the donning and doffing process of the overall system
systematically, but not of the IDS specifically (Lambelet et al.,
2020).

3.2.7. Enjoyability
Enjoyability was reported in five studies. The enjoyability sums
up the user’s mood, motivation, or frustration while using the
IDS. One study reported enjoyability from indirect statements
based on observation of the participants (Delijorge et al., 2020).
The other studies reported enjoyability in terms of general
qualitative direct user feedback (Ortner et al., 2011), numbered
rating scales reporting “perceived fun” (Bermúdez i Badia et al.,
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2014), a visual-analog scale rating “mood” and “motivation”
(Chowdhury et al., 2018) or frustration as subsection of the
NASA-TLX (Badesa et al., 2020).

3.2.8. Physical Workload
The physical workload was assessed in three studies. The reported
physical workload provides an indication of how physically
demanding the generation of a command is to the user. One
study assessed physical demand using the NASA-TLX (Badesa
et al., 2020) and one reported qualitative user feedback about the
effort of use (Ambrosini et al., 2014a). The third study made an
indirect statement about the appropriateness of the IDS in terms
of the user’s tendency to fatigue easily (Park et al., 2019).

3.2.9. Mental Workload
Three studies assessed mental workload of the IDS. The mental
workload describes how much mental/cognitive effort the user
perceives or needs to exert while using the IDS. One of the
included studies assessed mental demand using the NASA-TLX
(Badesa et al., 2020), and two studies assessed the mental fatigue
or exhaustion either by subjective comparison to other IDS
(Soekadar et al., 2015) or on a visual-analog scale (Chowdhury
et al., 2018).

3.2.10. Naturalness
Two studies, both based on indirect statements, assessed
naturalness. The naturalness describes how “natural” controlling
the ULO by the specific IDS feels, compared to the normal,
physiological initiation of the assisted or augmented movements.
In contrast to what was described in the “ease-of-use”-section,
the term “intuitive” is sometimes also used interchangeably with
“natural” or “subconscious” (Lobo-Prat et al., 2014). Therefore,
for studies that reported intuitiveness, we interpreted from the
given context whether the information was related to naturalness.
Both studies described their IDS qualitatively as “intuitive”
(Kooren et al., 2016) or “more intuitive” compared to another
IDS (Park et al., 2020).

3.2.11. Comfort
Comfort were assessed in two studies, defined as the physical
comfort or ergonomics perceived by the users during use. Both
studies reported comfort based on qualitative user feedback,
either in general (Delijorge et al., 2020), or related to specific
aspects related to ergonomics, such as weight or obstruction of
movement (Hennig et al., 2020).

3.2.12. Cost
With only two assessments, cost (together with naturalness and
comfort) was the least assessed attribute. Costs were defined
as the financial effort to acquire or maintain usage of an IDS.
However, both included studies discussed only acquisition, either
as absolute price of the overall system (Webb et al., 2012) or
relative to the performance of the IDS, i.e., cost-effectiveness
(Araujo et al., 2021).

3.3. Types of Intention Detection Strategies
3.3.1. Muscle Activation
Using electromyography (EMG), i.e., electric signals generated
during muscle activation, was the most commonly used IDS,
being used in 40.2% of the studies. Measuring the EMG signal
as IDS has clear benefits for applications in daily life. The
signal acquisition is relatively easy and feasible with standard
commercially available hardware and the emerging use of
dry, wireless electrodes allows their integration into wearable
armbands such as the Myo armband (Thalmic Labs, Kitchener,
Ontario, Canada; Meeker et al., 2017; Mohammadi et al., 2018;
Park et al., 2019, 2020; Lambelet et al., 2020; Yurkewich et al.,
2020a) or sleeves (Dwivedi et al., 2019), enabling very simple
donning and doffing. However, EMG signals also have some
inherent limitations. They are not robust against changing
electrode placement, the electrical impedance of the skin, sweat,
or muscular fatigue (Hameed et al., 2020). Further, for some
users, EMG activation patterns might not be sufficiently strong or
reproducible for effective intention decoding (Riley and Bilodeau,
2002; Park et al., 2020).

Purely binary or proportional controllers were used to control
hand orthoses (DiCicco et al., 2004; Fujita et al., 2016; Dunaway
et al., 2017; Lince et al., 2017; Yap et al., 2017a; Fardipour et al.,
2018; Wang et al., 2018; Gerez et al., 2019, 2020; Yoo et al.,
2019; Bos et al., 2020; Nam et al., 2020; Yurkewich et al., 2020a),
and wrist (Yoo et al., 2019; Lambelet et al., 2020; Nam et al.,
2020), elbow (Ambrosini et al., 2014a; Bermúdez i Badia et al.,
2014; Fujita et al., 2016; Dunaway et al., 2017; Koh et al., 2017;
Nam et al., 2020), or shoulder orthoses (Ambrosini et al., 2014a;
Fujita et al., 2016; Scheuner et al., 2016; Zhou et al., 2021).
Three studies did not provide unambiguous information about
the used control method (Pedrocchi et al., 2013; Mohammadi
et al., 2018; Rose and O’Malley, 2019). A total of 15 studies used
pattern recognition-EMG techniques to control hand orthoses
(Ngeo et al., 2013; Kawase et al., 2017; Meeker et al., 2017; Siu
et al., 2018; Burns et al., 2019; Dwivedi et al., 2019; Farinha
et al., 2019; Lu et al., 2019; Park et al., 2019, 2020; Secciani et al.,
2019; Zhang et al., 2019), and wrist, elbow, or shoulder orthoses
(Kiguchi, 2007; Kawase et al., 2017; Kilic, 2017; Lotti et al., 2020).
To do so, up to 12 EMG channels were used (Kiguchi, 2007),
controlling up to a maximum of six different states (Dwivedi
et al., 2019; Lu et al., 2019; Zhang et al., 2019). Various studies
reported conventional, i.e., binary or proportional, EMG control
as being easy to understand or use (Gerez et al., 2019; Yoo
et al., 2019; Yurkewich et al., 2020a). Yurkewich et al. (2020a)
further reported an average reliability of 84.7% (n = 9, stroke)
to control three states of a 1-DOF hand orthosis using the Myo
armband with eight electrodes. Bos et al. (2020) found a strong
training effect in a force tracking task using a proportionally
controlled 1-DOF hand orthosis (n = 1, duchenne muscular
dystrophy). For pattern recognition-EMG techniques, primarily,
reliability, robustness, and temporal workload were reported.
Siu et al. (2018) determined how much faster the ULO can be
controlled by EMG compared to exerted forces. They found
average anticipation times, i.e., the time that EMG detects intent
earlier than the increase of pressure measured at the thumb,
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between 190 and 290ms. Lotti et al. (2020) achieved a delay below
53.8 ms in 95% of trials, also suggesting that this IDS might be
faster than other approaches based on interaction forces. The
reported reliability varied largely between and within studies
from 40% (six states, n = 1, stroke; Lu et al., 2019) up to 96.4%
(six states, n = 6, neurologically intact; Zhang et al., 2019). The
achieved reliability has been shown to depend on a number of
factors, e.g., chosen classifier (Dwivedi et al., 2019), impairment
of the subject (Lu et al., 2019), or co-activation of surrounding
muscles (Park et al., 2019). Although some studies have shown
very high reliability, this large variability and dependence on
many factors indicate that pattern recognition techniques might
not yet be robust enough for applications in daily living. For the
other studies, no relevant usability attributes related to this IDS
were reported.

3.3.2. Muscle Contraction
Various approaches have been explored to measure mechanical
muscle contraction: either by means of low-frequency
vibrations of the muscle fibers, i.e., mechanomyography (MMG)
(Courteville et al., 1998; Ibitoye et al., 2014), or by measuring
a change in muscular stiffness patterns, i.e., force myography
(FMG), also referred to as kinetic imaging, muscle pressure
mapping, pressure distribution mapping, or tactile myography
(Xiao and Menon, 2019). The operating principle and target
application of FMG is very similar to EMG. Therefore, these IDS
share some benefits, i.e., physiological operating principle and
the possibility to integrate the sensors into wearables (Kudo et al.,
2014; Dwivedi et al., 2019), but also related inherent limitations,
i.e., sensor placement or muscular fatigue. Sensors mechanically
measuring the muscle contraction are robust to moisture and
not susceptible to electromagnetic noise (Fajardo et al., 2019;
Xiao and Menon, 2019).

No studies were found using MMG, but six studies used
FMG as IDS for ULO. Dwivedi et al. (2019) integrated five
resusable FMG sensors and three EMG sensors into a textile
sleeve to differentiate between six grasp types of a soft robotic
glove. Yap et al. (2016) integrated three FMG sensors into a
textile band worn on the contralateral forearm to differentiate
between finger flexion and extension. Moromugi et al. (2013)
and Kim et al. (2012) used pressure sensors on the fore- or the
upper arm to control one DOF of a hand or elbow orthosis,
respectively. Fajardo et al. (2019) presented a system using two
optical fiber sensors which measure the muscle deformation by
the displacement of the fibers. A special application of FMG as
IDS was presented by Kudo et al. (2014), where they used FMG
signals from the temporalis muscle. They integrated soft force
sensors into a headphone-like interface to trigger the grasp of a
1-DOF hand orthosis.

Dwivedi et al. (2019) achieved classification accuracies above
87% for six grasp types, requiring <0.12s processing time (n
= 2, impairment not reported). Yap et al. (2016) compared the
temporal workload in terms of task time between using a button
and FMG, where they found a 2% higher task time for FMG (n =
1, neurologically intact). For the remaining studies, no data about
the usability of their IDS was reported.

3.3.3. Upper Limb Movement
Intention can be interfered from joint rotation or kinematics
of upper limb segments, allowing natural and easy operation.
However, this IDS depends on sufficient residual upper-limb
function, thus being primarily applicable for devices targeting
augmentation of neurologically-intact users, or orthoses
to support people with limited, but residual upper limb
functionality. For people with more severe impairments or full
paralyses, these IDS are not a feasible alternative.

Seven studies used bending sensors to detect finger (Ab Patar
et al., 2014; Popov et al., 2017; Xiloyannis et al., 2018; Park et al.,
2019) or wrist motion (Kaneishi et al., 2019; Rose and O’Malley,
2019) to control hand orthoses, or wrist motion to control a
shoulder-elbow-orthosis (Koo et al., 2009). Four studies detected
residual upper limb movement by using inertial measurement
units (IMUs) attached to a segment of the upper limb. Song et al.
(2012) and Wang et al. (2020) attached IMUs to the forearm
and the upper arm to control elbow and shoulder orthoses,
respectively. In both cases, the initiated movement measured by
the IMU was directly converted to the actuated movement of
the ULO. Yurkewich et al. (2020b) attached a single IMU to
the dorsal side of the hand and triggered opening and closing
of a 1-DOF hand orthosis when the rotational velocity of the
hand exceeded a predefined threshold. Zhou et al. (2021) used
kinematics measured by IMUs at the upper arm and the trunk
to control a 1-DOF industrial shoulder exoskeleton. Park et al.
(2020) measured shoulder movement (i.e., a shrug) using a
shoulder harness with integrated load cell. Although perceived as
less natural than EMG, they presented this IDS as an alternative
for users who can’t modulate sufficient EMG signals.

Ab Patar et al. (2014) and Koo et al. (2009) both qualitatively
reported ease of use of the IDS. Yurkewich et al. (2020b)
compared their IMU-based strategy to a conventional button,
where they found lower temporal workload, but also longer
practice needed and lower reliability than for the button (n =
11, stroke). Five participants reported that they would prefer the
IMU- over the button mode, if the former would work more
reliably. Zhou et al. (2021) compared their IMU-based strategy
to control by threshold-based EMG. They found the former to be
more reliable and robust, but slightly slower than the EMG based
method (n = 8, neurologically intact). The remaining studies did
not present any relevant usability attributes related to this IDS.

3.3.4. Isometric Force Generation
Similar to joint rotation or UL kinematics, the intent can
be detected by measuring isometric forces when initiating a
movement of the upper limbs. Since the initiation of the
desired motion is (partly) restricted by the mechanical structure
of the ULO, isometric forces or torques will be measurable
between upper limb and ULO or between ULO and the
physical environment. However, same as for IDS based on
upper limb movements, this IDS depends on sufficient residual
upper-limb function.

In the case of hand orthoses, force, or torque sensors were
attached to the tips of the actuated fingers to control grasping
proportionally or by a threshold-based trigger (Xing et al., 2008;
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Song and Chai, 2013; Heo and Kim, 2014; Ma et al., 2016; Prange-
Lasonder et al., 2017; Chowdhury et al., 2018; Siu et al., 2018;
Triolo et al., 2018; Xiloyannis et al., 2018; Park et al., 2019; Zhou
et al., 2019; Hennig et al., 2020; Sandison et al., 2020). Hong
et al. (2019) have triggered hand orthosis opening and closing
by a strain gauge attached to the non-actuated ipsilateral thumb.
For wrist, elbow or shoulder orthoses, the sensors were placed
between the respective upper arm segment and mechanical
structure of the ULO (Sasaki et al., 2005; Kiguchi, 2007; Lee et al.,
2008; Yonezawa et al., 2013; Kooren et al., 2016; Kapsalyamov
et al., 2019).

Using a strategy where the hand orthosis closed when the
pressure between finger tips and objects to be grasped exceeded a
predefined threshold, Zhou et al. (2019) and Hennig et al. (2020)
found false positive rates of 9.9% (n = 3, spinal cord injury) and
6.9% (n = 3, neurologically intact), respectively. Other studies
reported qualitatively that the IDS was intuitively controlled (n
= 1, neurologically intact; Kooren et al., 2016), easy to use (n =
3, neurologically intact; Xing et al., 2008), and that the sensors
directly embedded in the ULO allow for quick and easy setup
(Sandison et al., 2020). Park et al. (2019) compared multimodal
control (pattern recognition-EMG, pressure sensor on thumb,
bending sensors on each finger) to pure EMG control of a 1-DOF
hand orthosis and found higher reliability but higher temporal
workload for the multimodal control when used without passive
arm support (n = 4, stroke). For the other studies, no relevant
usability attributes related to this IDS were reported.

3.3.5. Brain Activity
Brain-computer interface (BCI) research has been a focus
of interest for the past decades, maturing the technology
from simple communication devices in controlled laboratory
environments to more practical application for rehabilitation
(Mane et al., 2020) or assistive technologies in daily life (Millán
et al., 2010; Kübler, 2020). For example, at the CYBATHLON
2016, pilots used four commands (i.e., three active commands
and one “rest” command) to maneuver a BCI-controlled avatar
through a virtual racetrack (Riener, 2016; Novak et al., 2018).
Undeniably, the most significant advantage of BCIs is that they
do not rely on any residual motor control. In the most severe
case of paralysis, for people with total locked-in syndrome, a
neurological disorder that results in a complete inability for any
muscular movement, BCIs represent the sole viable approach for
communication and interaction with their surrounding (Kübler,
2020). Still, it has been shown that BCIs fail to correctly detect the
desired state for an estimate of 20% of people, presumably due to
the complete inability of the users to modulate respective brain
signals, so-called BCI illiteracy (Allison et al., 2010; Blankertz
et al., 2010). This apparently inevitable limitation effectively
excludes a large subset of potential users of BCI. In terms
of daily life applicability, the rather complicated setup and
hardware required might not yet be sufficiently easy to use for
users without extensive technical knowledge (e.g., calibration or
donning and doffing).

The most common non-invasive technique to measure brain
activity is electroencephalography (EEG), i.e., using electrodes
placed on the scalp to measure the electrical activity of groups

of nerve cells from the cerebral cortex. For multichannel
measurements, arrays of electrodes, e.g., incorporated in
wearable caps, are used to ease donning and doffing and ensure
the precision of placement (Teplan, 2002). On the highest level,
BCIs can be grouped into endogenous and exogenous techniques.
In endogenous techniques, the subject can actively operate the
BCI at free will by performing (motor execution) or imagining
to perform (motor imagery) a specific task. A meta-analysis
by Hétu et al. (2013) has shown that motor imagery activates
fronto-parietal, subcortical and cerebellar regions of the brain.
However, although there are some regions which are involved
in motor execution as well as motor imagery, the latter does not
consistently activate the primary motor cortex (Hétu et al., 2013).
Therefore, a clear distinction between these two strategies is
required. In contrast, in exogenous techniques, the brain activity
elicited by external stimuli is used to operate the BCI (Nicolas-
Alonso and Gomez-Gil, 2012). These technique use event-related
potentials (ERP) based on changes in the EEG signal evoked
in response to external sensory, motor, or cognitive events (Sur
and Sinha, 2009), e.g., focusing on flickering icons on a screen
(Pedrocchi et al., 2013), or steady-state visually evoked potentials
(SSVEP), based on EEG response evoked by visual stimuli at
specific frequencies (Guger et al., 2012), e.g. focusing on two
light-emitting diodes flickering at different frequencies (Ortner
et al., 2011).

From all included studies, 16 used EEG-based systems based
on motor imagery (Pfurtscheller et al., 2000; Webb et al., 2012;
Xiao et al., 2014; Soekadar et al., 2015; Bi et al., 2017; Cantillo-
Negrete et al., 2018; Kapsalyamov et al., 2019; Zhang et al.,
2019; Badesa et al., 2020; Araujo et al., 2021), motor execution
(Fok et al., 2011; King et al., 2014; Lee et al., 2017; Chowdhury
et al., 2018), SSVEP (Ortner et al., 2011), or ERP (Pedrocchi
et al., 2013; Delijorge et al., 2020) to control the ULO. One
included study by Lee et al. (2017) exploited brain activation
not directly by EEG, but indirectly by measuring hemodynamic
responses, using functional near-infrared spectroscopy (fNIRS),
i.e., the varying concentration of oxygen in the blood in activated
nerve cells in the cerebral cortex (Naseer and Hong, 2015).
They used an fNIRS-setup in a motor-execution study to trigger
the opening and closing of a 1-DOF hand orthosis. All BCI
studies differentiated only between two states, e.g., “open/close”
or “confirm/reject.”

From the 17 studies, 15 assessed reliability, achieving
classification accuracies in a controlled laboratory environment
between 70% (n = 8, neurologically intact; Cantillo-Negrete et al.,
2018) and 91.5% (n = 1, neurologically intact; Araujo et al.,
2021). However, the variance in performance could not be traced
back to an individual factor, but may be influenced by many.
The included studies varied largely in terms of, e.g., the number
and type of electrodes used [from one (Ortner et al., 2011)
up to 40 (Zhang et al., 2019)], the type of signal modulation
(motor imagery, , motor execution , SSVEP , or ERP ), unrejected
motion artifacts, or the chosen classification approach. However,
BCI performance also largely depends on the user’s ability to
modulate brain signals of sufficient quality (Allison et al., 2010).
Practice and experience of the user are widely considered as
influential aspects to promote BCI performance (Millán et al.,
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2010), as underlined by Webb et al. (2012), and King et al. (2014)
in their motor imagery-based study who both showed higher
accuracies in the second session (n = 4, neurologically intact)
or for BCI-experienced compared to BCI-naive users (n = 6,
neurologically intact), respectively. On the contrary, Ortner et al.
(2011) did not find differences in reliability between experienced
and naive participants and between sessions in an exogenous
application (n = 6, neurologically intact). Ten studies further
assessed the temporal workload of EEG-based BCIs in the order
of 2–10 s (Ortner et al., 2011; Webb et al., 2012; King et al.,
2014; Xiao et al., 2014; Bi et al., 2017; Zhang et al., 2019). The
fNIRS-motor execution study by Lee et al. (2017) reported 78%
classification accuracy andmeasured time from signal acquisition
to movement onset as 5.84 ms (n = 6; neurologically intact).

3.3.6. Tongue Movement
Movement of the tongue has been used to control computers
or assistive devices for people with severe motor disabilities
(Struijk, 2006). In general, since there is no evident natural
relation between tongue- and upper-limb movement, users need
to learn which inputs result in the desired actions, requiring
high initial mental effort. Many conditions leading to upper-
limb impairment do not affect tongue movement, making the
approach feasible for a broad group of target users with impaired
upper-limb function. However, the need for a distinctive tongue
movement makes using the device and talking simultaneously
impossible, potentially restricting the use for some applications
in daily life.

Tongue movement was used in only a single study. Kim
et al. (2013) used a headset that positions four magnetic
sensors near the user’s cheek to trace the movement of
a small magnetic tracer temporarily glued to the tip of
the user’s tongue. The position of the tracer in the oral
cavity was then mapped to the angle of an actuated 1-DOF
wrist orthosis for rehabilitation. The study compared three
control methods (tongue movement binary up/neutral/down,
proportional left/right, or proportional anterior/posterior) in
a trajectory tracking task, where participants achieved highest
tracking accuracies with the proportional left/right control (n =
3, neurologically intact).

3.3.7. Eye Movement
Eye movement plays a crucial role in human motion planning
by gathering information about the object or the environment
to be manipulated before initiating the movement (Land, 2006).
Visual input, e.g., from tracking the user’s eye motion or gaze
point, can thus be used to guide the movement of the upper
limb supported by the ULO for reaching or grasping tasks
(Cognolato et al., 2018). Sincemost neurological deficits resulting
in limited upper limb functionality do not affect eye movement,
eye-tracking is a feasible IDS for a broad target population.
Different eye-tracking techniques exist, two prominent examples
being video-oculography, measuring the position of the eye by
the corneal reflection with video cameras or electrooculography
(EOG), i.e., measuring the difference in the electrical potential
between the retina and cornea through electrodes placed in
the area around the eye (Barea et al., 2002). The natural

relationship between eye movement and movement intention
and comparably simple calibration methods (Pedrocchi et al.,
2013) makes eye movement-based IDS easy to learn and to
use to control ULO. However, an inherent challenge of this
IDS is to differentiate between non-specific visual scanning and
actual movement intent. Thus, eye-tracking is often used in
combination with other IDS.

Three of the included studies used IDS based on eye
movement. Soekadar et al. (2015) proposed an EOG-EEG-based
system, where the users could look to the left or to the right
to approve or reject the EEG-based movement decisions. Zhang
et al. (2019) used EOG to detect eye movements to the left or
right and double blinks to select between two grasp types or
switch between different multimodal IDS (EOG, EMG, or EEG).
The third included study, Shafti and Faisal (2021) used an IDS
involving corneal reflection measurements using eye-tracking
glasses and object recognition. They triggered the movement of
the ULO when the user fixated a specific area of the object to
be grasped.

When using EOG in combination with EEG, Soekadar et al.
(2015) found a significant improvement in reliability and
participants reported lower mental workload and higher ease-of-
use, compared to only using EEG (n = 5, neurologically intact, n
= 1 brachial plexus injury). Zhang et al. (2019) found that, after
a training phase of under 2 min, participants were able to use
the EOG-based IDS with an accuracy of 94.2% and an average
temporal workload of 1.2 s per action (n = 6, neurologically
intact). For the object recognition technique used by Shafti and
Faisal (2021), they achieved a 96.6% success rate at first attempt
and all participants rated learnability and ease-of-use between 3
and 5 out of five points on the SUS (n = 5, neurologically intact).

3.3.8. Speech
Nowadays, using voice control is predominantly known for
controlling consumer electronics such as smartphones or home
automation systems. However, it has also been used in medical
technologies such as wheelchairs (Simpson and Levine, 2002),
surgical robots (Zinchenko et al., 2017), or ULO. Similar to
eye movement, voice control is feasible for a broad target
population with a wide range of impairments, as long as
speech is not drastically affected. The number of distinguishable
states is theoretically infinite, practically limited only by the
computational power, the used software, and the potential
need for internet connectivity for recognition. However, in a
noisy environment with interfering sources of sound or voices,
the performance accuracy may be affected. For other specific
scenarios, e.g., in an otherwise quiet environment such as the
theater or during spoken conversations with other people, some
users may find the need to pronounce distinct words disturbing.

Voice control was used in four studies to trigger themovement
of the ULO, where the user needed to pronounce a specific
word to actuate three (Ochoa et al., 2009; Kim et al., 2018), six
(Dalla Gasperina et al., 2019), respectively seven (Wang et al.,
2018) states of the ULO. Each word was assigned to a specific
action of the ULO, e.g., corresponding to opening and closing of
a hand orthosis (Ochoa et al., 2009) or controlling the position
end-effector of a shoulder-elbow-wrist exoskeleton by words
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corresponding to the six main directions in the cartesian space
(Dalla Gasperina et al., 2019). Wang et al. (2018) is the only study
assessing usability aspects of voice control. They found correct
recognition rates above 94% with recognition times between 47
and 50 ms (n = 2, impairment not reported).

3.3.9. Manual Triggers
Manual triggers, i.e., buttons, joysticks, or touchscreens, are often
the first IDS of choice for ULO. Most users are accustomed to
the use and look of these interfaces since these are commonly
known from other conventional devices in daily life. Although
the relationship between the operation principle of these IDS
and their initiated action is not natural, they are mostly self-
explanatory and require minimal to no training or calibration.
They are generally easy to use and provide high reliability and
robustness since they are not dependent on any physiological
signal or complex processing. The number of states or actions
of the ULO can be increased arbitrarily, e.g., by increasing
the number of buttons, however only at the expense of
increased cognitive workload for the user. Manual triggers are
commercially available in many variants, and can be placed
anywhere, e.g., directly on the ULO, on a body part of the user, or
on the table, enabling easy adaptability to the users’ capabilities.
However, using touchscreens, joysticks, and—depending on their
size and placement—buttons usually requires some residual
function and movement accuracy in the upper limbs from the
users. Further, using an upper limb segment—in most cases the
fingers or the hands—to control the trigger restricts their use for
bimanual or simultaneous tasks, which considerably limits the
applicability in daily life tasks.

In 21 studies, conventional manual triggers such as
buttons/switches (Ochoa et al., 2009; Pedrocchi et al., 2013;
Ambrosini et al., 2014a; Yap et al., 2016, 2017a; Meeker et al.,
2017; Fardipour et al., 2018; Otten et al., 2018; Butzer et al., 2019,
2021; Farinha et al., 2019; Correia et al., 2020; Gerez et al., 2020;
Muehlbauer et al., 2021), joysticks (Hasegawa and Oura, 2011;
Dalla Gasperina et al., 2019; Ismail et al., 2019; Tiseni et al.,
2019), or touchscreens (Yap et al., 2017b; Mohammadi et al.,
2018; Sandison et al., 2020) have been used.

Presumably due to the simplicity of these manual triggers and
the previous familiarity of most users with them, none of these
studies assessed usability attributes specifically only related to
these IDS. Instead, many of the included studies used these inputs
as baseline to compare to alternative IDS, such as EMG or IMU-
based systems (Ambrosini et al., 2014a; Yap et al., 2016; Meeker
et al., 2017; Yurkewich et al., 2020b). Other studies used them in
combination with other IDS to control only a subset of actions,
e.g., to select grasp type before using a different IDS as trigger
(Gerez et al., 2020).

4. DISCUSSION

This scoping review provides a comprehensive overview of
studies evaluating non-invasive IDS in combination with ULO
for applications in daily life. Further, it describes methods of
usability evaluation used in these studies. By including only
studies that involved human participants in the evaluation, a

focus was set on the appropriateness of the IDS from a user point
of view. The basic operation principles, as well as the usability
of the proposed IDS, were reviewed and discussed. In addition,
evidence of their appropriateness for different target users,
type of devices, and usage scenarios were gathered, considering
predominant usability attributes. This work extends existing
reviews in the field (Lobo-Prat et al., 2014; Chu and Patterson,
2018; du Plessis et al., 2021) by refreshing the current state of
the art in IDS (as reflected by more than half of the included
studies being published within the last 3 years), as well as by
analysing these under a different angle, giving less priority to the
technical aspects, but focusing on the usability evaluation of IDS
with real users.

4.1. Considerations When Selecting an
Appropriate IDS
4.1.1. IDS Presented in This Scoping Review
The included studies revealed the breath of IDS that were
used to control ULOs in the literature. On the level of
the physiological phenomenon (level 2), IDS were presented
based on muscle activation, muscle contraction, force exertion,
residual upper limb movement, brain activity, tongue and
eye movement, speech, and manual triggers. A previous
review conducted by Lobo-Prat et al. (2014) investigated IDS
for all active movement assistive devices such as prostheses
and orthoses for the upper and lower limbs or powered
wheelchairs. They presented some IDS which were not found
in the included studies of this review: based on brain activity
[magnetoencephalography (MEG), functional magnet resonance
imaging (fMRI)], muscle contraction [MMG, sonomyography
(SMG)], and head movement. Some of these IDS are not suitable
for ULO since they are either not wearable (fMRI, MEG) or
too cumbersome to use (SMG) (Lobo-Prat et al., 2014). MMG
however, although it has been used only rarely and primarily in
upper limb prosthetic control so far (Silva et al., 2005;Woodward
et al., 2015), might be a viable option for ULO as well. It
was already used by Antonelli et al. (2009) to control lower
limb orthoses, allows wearability, and has similarities in signal
acquisition and processing to EMG and FMG. IDS based on head
movement are primarily used for powered wheelchair control
(Kupetz et al., 2010; Solea et al., 2019). However, this IDS is
primarily used for people for whom head movement is one of
the sole possible movements. Thus, although generally possible,
this might not be the most desirable option to control ULOs.

Further, there are other studies presenting IDS which were
neither presented in Lobo-Prat et al. (2014) nor in this review.
Kojima et al. (2017) and Cunningham et al. (2018) presented
a supernumerary robotic arm and thumb, respectively, which
were controlled through toe or ankle motion. To control flexion
and extension of a wearable supernumerary finger, Hussain
et al. (2017) embedded EMG sensors in a baseball cap to detect
EMG signals from the frontalis muscles, which are contracted
by moving the eyebrows upwards. Similarly, Kocejko (2017)
used binary one-channel EMG to detect contractions of the
temporal is muscle while tightening the jaw to select from
three gestures of an arm prosthesis. Commercially available
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sip-and-puff systems were used for wheelchair control (Grewal
et al., 2018) or communication devices (Jones et al., 2010) only.
Although all these IDS are relatively rarely used due to their
limited applicability to broader contexts of use, these could be
additional options for specific ULO beyond the ones presented in
this work.

4.1.2. Avoiding the Restriction of Other Body

Functions
This review has identified the strengths and weaknesses of IDS
used in combination with ULO in specific contexts of use. As
depicted by the vast majority of studies using IDS sourcing
from the targeted upper-limb segments, the use of signals
related to the physiological movement execution, whenever
possible, is preferred bymost users and researchers. The rationale
behind linking the actual intention to its physiological motor
consequence is two-fold: the IDS does not restrict other body
functions, and neuroplasticity, i.e., the reorganization of the
central nervous system in response to intrinsic or extrinsic
stimuli (Cramer et al., 2011), may be enhanced. Therefore, for
contexts of use where recovery is considered realistic and the
primary target, using physiological signals as IDS may promote
a rehabilitative effect. Based on this, we expected that other IDS
based on non-physiological movement, e.g., manual triggers or
IDS sourcing from other body parts than the targeted upper-
limb segments or the brain, were primarily considered when the
physiological signals are either not sufficiently strong, or if the
ULO targets assistive rather than therapeutic applications. The
found distribution of the intended scenario showed tendencies
which strengthen this assumption, however they were not
sufficiently strong to make an unambiguous conclusion.

By far, the IDS exploited the most is EMG. However, EMG
showed some challenges and inherent limitations, currently
restricting its transfer to real-life applications. These limitations
encouraged researchers to explore alternative IDS, such
as mechanically measuring muscle contraction or residual
movement. However, evidence demonstrating an absolute
superiority of these IDS over EMG is still scarce. For users
who do not have sufficient residual muscle activity and motor
function in their upper limbs, IDS sourcing from other body
parts are an alternative. The wide variety in terms of the source of
the signal offers adaptability to the user’s individual capabilities
and preferences. However, except for inputs from the brain, these
IDS do not resemble the physiological movement generation.
Thus, IDS sourcing from other body parts than the ULO are
not perceived as natural and require the users to learn which
input—usually a specific motion or activation of a muscle—
results in the desired movement. Further, their biggest drawback
is that they can only be used at the expense of restricting other
body functions during use. Therefore, for these IDS, it is crucial
to individually weigh the impact such a restriction might have
against the potential benefit the ULO would provide in the
intended usage scenario. Unquestionably, in theory, BCIs offer
a vast potential as the most natural and most broadly applicable
IDS. However, the current state of non-invasive BCI research
for ULO has not yet managed to overcome the usability hurdle
(i.e., in terms of robustness, temporal workload, and simplicity

of setup) to be used in real applications outside the controlled
laboratory environment.

4.1.3. Balancing Performance and Complexity
In many studies, the rationale behind the usability attributes
assessed is not always explicitly or sufficiently stated. While some
requirements are unambiguously given by the application (i.e.,
number of states to be controlled or functional capabilities by
the targeted user), others might call for a more in-depth focus
on the user and the intended usage scenario. Unfortunately,
in most studies, information on the latter is provided on a
very high level or lacks completely. A central decision when
selecting an appropriate IDS is the trade-off between high
performance (i.e., high reliability and robustness) and low
complexity (i.e., high ease of use and learnability and low
workload for the user). As a guiding principle, the IDS achieving
the highest usability are those which are as simple as possible
but as complex as needed to achieve the required performance.
In commercial devices, mostly incorporating a relatively low
number of states, presumably simpler IDS (e.g., push-buttons
or conventional EMG control methods) are currently used. The
same reliance on simpler solutions can also be observed for
assistive technologies provided to persons with sensorimotor
disabilities for use in daily life. However, in-depth evaluations
of the usability of simple IDS might not have been considered
worth investigating by scientific researchers. This potential bias
toward more complex IDS leads to the speculation that simpler
IDS are underrepresented in the field (and in this review) in
comparison to their apparent high usability for commercial
devices. However, especially for applications requiring multiple
states to be controlled simultaneously, the trade-off between
complexity and performance is often harder to find. The required
performance seems to be very challenging to achieve with
the choice of a single IDS, which is usually simple but only
applicable to a low number of states or very complex itself,
i.e., pattern recognition techniques in EMG or BCI research.
Thus, many studies combined multiple different IDS for a
single application. Such multimodal approaches have been
successfully implemented to improve the overall functionality
of the IDS. Some studies used multiple IDS to increase the
reliability of controlling a single state (e.g., opening/closing of
a 1-DOF hand orthosis using EEG and EOG; Soekadar et al.,
2015), while others used multiple IDS to simultaneously control
one state each (e.g., selection of movement type by buttons
and movement trigger by EMG signals; Gerez et al., 2020).
However, although each implemented IDS separately might
be comparably simple to use, simultaneously providing inputs
sourcing from different body parts may become cognitively
challenging. Although not included in the scope of this review,
promising approaches to tackle this issue are shared-control
methods (Losey et al., 2018). These methods combine high-
level control by the user with autonomous low-level control
by the robots, e.g., through camera-based object recognition
(Markovic et al., 2015; Fajardo et al., 2018) to relieve the physical
and mental burden from the users, while still leaving them
in control.
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4.2. Considerations When Evaluating an
IDS
4.2.1. Tendency to Prefer Objective Over Subjective

Attributes
By determining the frequency of assessment of the predefined
usability attributes, we found that the majority of evaluations
focused on attributes which could be evaluated objectively and
quantitatively, e.g., reliability or temporal workload. Although
specifically only including studies with human participants in
this review, subjective or qualitative aspects, often acquired
from user feedback or observation, were reported less frequently
or not in a data-driven format. Overall, attributes assigned to
the groups “effectiveness” or “efficiency” tended to be assessed
more frequently than those assigned to the group “satisfaction.”
Although this finding has to be treated with caution due to
the unbalance in the total number of attributes per group, this
might lead to the assumption that most evaluations highlighted
rather technical than strongly user-focused aspects of the IDS.
This coincides well with the initial observation of the technical
focus of many existing literature reviews and our recent survey
on wearable robotics usability evaluation (Meyer et al., 2021).
While the technical performance is unarguably an essential
prerequisite for meaningful use of an IDS, the impact of usability
attributes with a stronger focus on the user such as satisfaction or
perceived physical or mental workload should not be neglected.
As an example, a systematic review investigating user needs
for assistive technologies for the upper limbs after stroke
by Ommeren et al. (2018) listed—among other attributes—
comfort, donning/doffing, and setup (i.e., “simplicity” according
to this review’s definition) as relevant themes to achieve
higher levels of user satisfaction and device acceptance. Yet,
comfort and simplicity were only assessed in 3 and 7%,
respectively, of the studies included in this work. The lower
frequency of reporting qualitative attributes than quantitative
ones could result from a publishing bias. Quantitative outcomes
are often objectively verifiable, comparable and allow statistical
analysis, allowing “high quality” evidence. However, in subjective
user evaluations, only few attributes are per se quantitatively
measurable. Therefore, many studies quantify the qualitative
findings by assigning to them a ranked numeric value, allowing
statistical analysis and comparability to other studies. However,
the problem of subjectivity remains and thus potentially lowers
the research interest in these findings. In summary, all these
observations point to an important realization: the frequency of
reporting of a usability attribute might not necessarily correlate
with its importance for the users and the application of the IDS
in daily life.

4.2.2. Determining Appropriateness of an IDS
A recurring challenge when selecting an appropriate IDS is the
fact that most studies compare their results to other studies to
demonstrate superiority, but lack a clear benchmark to specify
whether their results are actually good (and thus the IDS
appropriate) or not. An illustrating example is the classification
accuracy in EMG. While unarguably an accuracy of e.g., 90%
is better than 86%, if achieved under comparable conditions,

it is not clear whether 90% is sufficient. Thus, to properly be
able to rate the acceptability of the reported accuracy values
and of the IDS, an appropriate benchmark for acceptance
should be defined. For brain-computer communication such
as cursor control, Kübler et al. (2006) assumed a minimally
required threshold of 70% accuracy. However, in ULO, erroneous
actions can lead to serious safety issues, assumingly increasing
the required threshold. This question was also discussed in
the “hot coffee problem” (Ajiboye and Weir, 2005), a thought
experiment describing a system with 99% accuracy. In a task-
oriented manner, this would mean that users would spill hot
coffee over themselves in 1 out of 100 trials—a safety risk that
seems unacceptably high. Following that logic, an acceptably
reliable and thus safe IDS would need to achieve performance
accuracies similar to the non-impaired limb (Ajiboye and Weir,
2005), a value that has not yet been experimentally determined.
Unfortunately, such benchmarks for usability attributes are
impossible to define in a generalized manner since they largely
depend on the context of use of the IDS. Instead, they would need
to be customized to one specific context of use, e.g., by consulting
target users. In addition to the common approach to compare the
results to other studies or IDS, such benchmarks would allow for
a standalone and objective rating of the appropriateness of an IDS
for the targeted context of use.

4.3. Limitations of This Work
One limitation of this work is also one of the biggest hurdles in
the field of usability evaluation of wearable robots in general:
there’s a lack of a common understanding or standardized
definitions of usability attributes. Thus, the selection of attributes
as well as their definitions were done based on the subjective
experience and interpretations of the authors of this work.
For some cases, these definitions might not match the one
from the authors of the included studies, potentially leading
to different subjective interpretations of the collected data. It
should also be noted that studies which evaluated the IDSwithout
human participants or without the ULO being actually worn
by the participants were excluded. Although this was intended
in the review protocol to focus on a more realistic real-life
scenario, this might have excluded many potentially interesting
IDS. Specifically, many IDS currently under development might
not yet be at a sufficient level of technology maturity to be
safe and robust enough for testing with human participants,
despite having the potential to become highly usable and broadly
applicable. The technology maturity of the IDS does presumably
also have an impact on the assessed usability in the included
studies. Thus, some of these IDS might have the potential to
achieve higher usability in a future development stage. However,
since the maturity of the presented technologies was often not
reported or not reported systematically, this aspect could not
be taken into account for the synthesis. Further, many studies
assessed the overall device consisting of ULO and IDS as a
single unit instead of two interacting but separate systems.
Despite efforts to only include specific usability attributes only
concerning IDS and exclusion of findings which were clearly
influenced by the ULO, the possibility that some of the reported
findings may be biased by the usability of the ULO itself, can’t
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be ruled out. Lastly, the partially qualitative nature and the
heterogeneity of the collected data did not allow an objective and
systematic rating of the individual IDS, nor a statistical or meta-
analysis. A more quantitative comparison between IDS would be
more beneficial for an objective selection of IDS. However, the
available data did not allow such an analysis.

4.4. Implications and Recommendations
for Future Research
This review provides a comprehensive understanding of the
evaluation practices and results for IDS used in combination
with ULO. The collected data on specific usability attributes
for a wide range of IDS and their respective applications to
various contexts of use can serve as a catalog of solutions for
technology developers needing to select an appropriate IDS
for their application. Although this work’s scope is focused
on ULO, its conclusions may also apply for other devices
sharing similar challenges, such as neuroprosthetics (Taylor
et al., 2002; Ambrosini et al., 2014b; Fonseca et al., 2019),
supernumerary limbs (Hussain et al., 2017; Cunningham et al.,
2018), or prosthetics (Micera et al., 2010; Parajuli et al.,
2019). The importance of a user- and application-specific
selection of IDS for such devices is underlined by the finding
that no IDS can be rated as being generally superior to
another without specifying the detailed context of use, i.e.,
the type of device for which the IDS is intended, the target
user’s capabilities and preferences, as well as the targeted
usage environment and the tasks for which the device should
be used.

Based on the insights from this review, we propose four
recommendations to technology developers in the field, related
to the selection of IDS, as well as to the design of corresponding
evaluation protocols:

1. When designing or selecting an IDS, researchers should
carefully consider the detailed context of use in which the
ULO is intended to be used. Accordingly, these considerations
should be described in the respective publications to allow for
an informed evaluation of the IDS with respect to the intended
context of use.

2. To reach a broader target population, ULO should offer
their users a selection of different IDS to choose from or to
combine to accommodate for the user’s individual capabilities,
preferences, and usage scenarios. For example, while specific
users might prefer voice control at home they might want to
switch to a button to be able to control their ULOmore quietly
in a restaurant or at the cinema.

3. Based on the user requirements, appropriate protocols to
evaluate the usability of an IDS should be set up. These
protocols should combine different scales and methodologies
and cover not only technical aspects related to the efficiency or
effectiveness of the IDS but also critically take user satisfaction,
e.g., obtrusiveness, simplicity for donning/doffing, or comfort,
into consideration. Such a comprehensive user evaluation
protocol would allow for better interpretation of the usability

evaluation results, help to set benchmarks and set the findings
from the evaluation in relation to potential implications for
the overall device acceptance by the target users.

4. When evaluating specific usability attributes, IDS, and ULO
should, whenever possible, be assessed as two separate entities,
interacting with each other and with the user, instead of
as a single unit. Such an independent evaluation would
allow discovering the source of potentially arising design- or
usability issues related to the IDS or the ULO more easily
and earlier.

5. CONCLUSION

Choosing an optimal IDS for a given application remains
a recurring challenge since it is highly dependent on many
factors, such as the intended usage scenario and target
user’s capabilities, limitations and preferences. By providing
a comprehensive overview and recommendations for future
development, this work encourages technology developers in
the field to administer a user- and application-specific selection
of appropriate IDS for ULO. Such a selection would positively
affect the usability of the overall device and thus the device
acceptance by the target users, ultimately promoting the leap
of such technologies out of research laboratories into the
target user’s homes to positively impact the quality of life
of end-users.
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