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Abstract: Protein damage by glycation, oxidation and nitration is a continuous process in the phys-
iological system caused by reactive metabolites associated with dicarbonyl stress, oxidative stress
and nitrative stress, respectively. The term AGEomics is defined as multiplexed quantitation of
spontaneous modification of proteins damage and other usually low-level modifications associated
with a change of structure and function—for example, citrullination and transglutamination. The
method of quantitation is stable isotopic dilution analysis liquid chromatography—tandem mass spec-
trometry (LC-MS/MS). This provides robust quantitation of normal and damaged or modified amino
acids concurrently. AGEomics biomarkers have been used in diagnostic algorithms using machine
learning methods. In this review, I describe the utility of AGEomics biomarkers and provide evidence
why these are close to the phenotype of a condition or disease compared to other metabolites and
metabolomic approaches and how to train and test algorithms for clinical diagnostic and screening
applications with high accuracy, sensitivity and specificity using machine learning approaches.

Keywords: glycation; machine learning; AGEomics; autism; diabetes; arthritis; Alzheimer’s disease;
Parkinson’s disease

1. Introduction

It is commonly considered that, in the application of omics technology to the study
of physiological processes, information embedded in the analytical data is increasingly
closer to the disease phenotype in progressing from analysis based on genetics to tran-
scriptomics, proteomics and metabolomics platforms [1]. For assessment of biomarkers
close to the disease phenotype, therefore, it may be advantageous to analyze metabolites.
However, a disadvantage is that metabolites are often short-lived, and estimates are made
by analysis of samples collected at a particular time point. Therefore, we gain information
on a very short time interval or snapshot of the disease. Thus, it may be beneficial to
use protein-based biomarkers where major proteins in the clinical setting such as serum
albumin, hemoglobin and skin collagen have approximate half-lives of ca. 20 days, 42 days
and 15 years, respectively [2–4]. It is particularly advantageous where variation in levels of
metabolites is captured over the lifespan of the protein by reaction of a metabolite with a
protein to form a stable adduct. The most well-known clinical example of this is glycated
hemoglobin HbA1c (A1C)—an adduct formed by the spontaneous, non-enzymatic reaction
of glucose with hemoglobin. The level of HbA1c provides a report of glycemic control
over the previous 90–120 days from sampling in patients with diabetes and is also used
in the diagnosis of diabetes and prediabetes, reviewed in [5]. In physiological systems,
proteins undergo spontaneous modifications: modification by other glycating agents to
form advanced glycation endproducts (AGEs), reaction with reactive oxygen species (ROS)
to form protein oxidation adducts and reaction with reactive nitrogen species to form
protein nitration adducts. Change in the rate of formation and/or removal of protein glyca-
tion, oxidation and nitration adducts occurs in many chronic diseases [5,6]. There are also
usually low-level enzymatic modifications of proteins such as the conversion of arginine
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residues to citrulline residues by peptidylarginine deiminases (PADs) [7], formation of
Nε(γ-glutamyl)lysine (GEEK) crosslink by transglutaminases [8] and formation of o,o′-
dityrosine crosslinks catalyzed by NADPH-dependent dual oxidase (DUOX) [9]—also
formed non-enzymatically by ROS. These modifications of proteins provide a fingerprint
of patterns of damage or structural and functional change at different tissue sites and in
body fluid compartments (Figure 1). Optimum combination and weighting of selected
glycation, oxidation and nitration adduct residues in plasma protein may provide classifier
information for some of the most challenging clinical conditions to diagnose. For example,
the recent application of specific and selective plasma protein glycation and oxidation
adducts for a blood test to diagnose autism spectrum disorder (ASD) [10].

Figure 1. Schematic multicompartment representation of the formation, physiological processing
and transit of protein glycation, oxidation, nitration and GEEK adducts in mammalian metabolism.
Abbreviations: A1C, glycated hemoglobin HbA1c; PTC, proximal tubular epithelial cell; TER, tran-
scapillary escape rate. Modified from a similar scheme for glycation adducts in [5]. Adapted with
permission from Ref. [5]. Copyright year 2021, Elsevier.

The proteolysis products of modified proteins, glycated, oxidized and nitrated amino
acids—also called protein glycation, oxidation and nitration free adducts—are released
into plasma and excreted in the urine. Unlike unmodified amino acids, they are not
reincorporated into proteins. The levels of these metabolites are therefore very sensitive to
changes in rates of protein modification and hydrolysis of modified proteins. An example
of this is the release of protein glycation, oxidation and nitration free adducts from cartilage
by increased proteolysis in early-stage arthritic disease which provided amino acid analytes
for early-stage diagnosis and classification of arthritis [11,12]. The plasma concentrations
of protein glycation, oxidation and nitration free adducts are also highly sensitive to renal
function through high renal clearance of these analytes [13,14]. Indeed, increased fractional
clearance of glycation free adducts was a powerful risk predictor of the progression of
diabetic kidney disease [15]. This may reflect a decline in reuptake of glycation free adducts
in the renal proximal tubules in the early stages of impairment of renal function.
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The urinary excretion of protein glycation, oxidation and nitration free adducts pro-
vides an estimate of the whole-body flux of formation of these analytes, with contributions
from the absorption of glycated, oxidized and nitrated amino acids from the digestion
of glycated, oxidized and nitrated proteins in food [16]. Pyrraline is an AGE originating
only in food [17]. Where this is measured, a correction may be applied to deduce the
proportion of the flux of other protein glycation free adducts, and also the flux of oxidation
and nitration free adducts produced endogenously [18].

In this article, I review how metabolomics and proteomics focused on the study of pro-
tein glycation, oxidation, nitration and other low-level functionally-impairing modifications
of proteins, “AGEomics technology”, has an important role in the development of clinical
screening diagnostics and therapeutic monitoring—particularly with the application of
machine learning for the development of diagnostic algorithms.

2. Focused Proteomics and Metabolomics of Protein Damage—“AGEomics” and
Its Utility

Biomarker selection is likely to be most beneficial when focused on mechanisms of
health decline or early-stage disease process—where loss or change of protein function
may be involved. Measurement of protein glycation, oxidation and nitration markers, and
protein citrullination and transglutamination adduct GEEK, is applicable to early-stage dis-
ease diagnosis, progression and therapeutic monitoring. Modified amino acids are robustly
quantified in a multiplexed assay using stable isotopic dilution analysis tandem mass
spectrometry (LC-MS/MS), initially described in [19], and with later refinements [20,21].
Analysis of samples by stable isotopic dilution analysis LC MS/MS has the advantage
that absolute quantitation of analytes is made, facilitating robust comparison between
laboratories. LC-MS/MS is a widely applicable, high dynamic range multiplexed tech-
nique without carry-over between analytes. Glycation, oxidation, nitration, citrulline and
GEEK adducts in proteins are assayed with prior automated enzymatic hydrolysis. An-
alyte content is normalized to the unmodified amino acid precursor. This provides for
robust quantitation of normal and modified amino acids concurrently [19,20]. It is also
applicable to the measurement of nucleotide glycation and oxidation adducts, such as
8-hydroxydeoxyguanosine [22]. Modified amino acid adduct residues may be analyzed
in plasma protein and related free adducts analyzed in plasma ultrafiltrate, reported as
the plasma concentration, and in urine normalized to creatinine and reported as a flux of
urinary excretion. The content of adducts in plasma protein is the steady-state level influ-
enced by the rate of protein modification and rate of protein turnover. For serum albumin,
most of the protein modification occurs in the vascular compartment. It is influenced by
albumin turnover–particularly in cirrhosis, transcapillary escape rate and albumin glomeru-
lar leakage and retrieval–as recently reviewed [5]. Different analytes report on different
metabolic and pathogenic processes, as shown in Table 1. Note that each adduct may
feature in diagnostic algorithms for multiple health conditions and diseases indicating that
the related protein modification process and related metabolic status reported contributes
to multiple different health conditions and diseases. The combination and weighting of the
adducts together with other features provide sensitivity and specificity for the particular
health status under investigation.
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Table 1. Protein glycation, oxidation, nitration and other modification adducts assayed in AGEomics.

Modification
Process Modified Amino Acid Reporting Characteristic Example of Analysis and Levels 1

Early-stage
glycation (formation of
fructosamine adducts) 2

Nε-Fructosyl-lysine (FL)

Early-stage glycation adduct
formed from glucose, reporting

on exposure to increased glucose
concentration [23]. Repaired

intracellularly by fructosamine
3-phosphokinase [24]. FL free

adduct is absorbed after digestion
of food proteins [25].

Hb, 0.84 ± 0.30 mmol/mol lys; and
Plasma protein, 1.35 ± 0.16

nmol/mol lys [26]. Used as markers
of glycemic control in Hb (with
N-terminal valine adducts) and

albumin (with N-terminal aspartate
adducts [5]. Urinary excretion: 26.5
(17.3–39.4) nmol/mg creatinine [16]

Advanced-stage glycation
(formation of AGEs)

Methylglyoxal-derived
hydroimidazolone (MG-H1)

A major quantitative
arginine-derived AGE formed
from methylglyoxal. Linked to

increased fasting and
postprandial glucose exposure,

insulin resistance and
cardiovascular disease [18,26–28].
MG-H1 free adduct is absorbed

after digestion of food
proteins [18].

Hb, 2.62 ± 0.60 mmol/mol arg; and
Plasma protein, 0.31 ± 0.20
nmol/mol arg [26]. Urinary

excretion: 20.1 (16.3–30.6) nmol/mg
creatinine; endogenous formation

13.4 ± 2.1 nmol/mg creatinine [18]

Nε-Carboxymethyl-lysine (CML)

Major lysine-derived AGE.
Formed by the oxidative

degradation of FL and other
sources. CML/FL ratio is an

indicator of oxidative stress [29].
CML free adduct is absorbed after

digestion of food proteins [30].

Hb, 0.075 ± 0.023 mmol/mol lys;
and Plasma protein, 0.038 ± 0.010

mmol/mol lys [26].

Glucosepane

Major quantitative crosslink
formed in protein glycation by the
degradation of FL residues [31].

Urinary excretion: 2.84 (2.41–3.36)
nmol/mg creatinine [16]. Plasma

free adduct increased in early-stage
osteoarthritis [32].

Low-level pentose sugar-derived
glycation crosslink and intense

fluorophore. Considered to reflect
pentosephosphate pathway

activity [33].

Urinary excretion: 0.258
(0.207–0.287) nmol/mg creatinine

[16]. Urinary excretion is risk
predictor of diabetic kidney

disease [15].

Pyrraline

Glucose-derived AGE formed at
high temperatures of culinary

processing; originating only from
food [17,34].

Urinary excretion: 9.11 (5.69–13.67)
nmol/mg creatinine in second void

urine after overnight fasting [16].

Oxidation
Methionine sulfoxide (MetSO;
methionine-S-sulfoxide and

methionine-R-sulfoxide)

Formed by the oxidation of Met
and Met residues of proteins by
ROS and RNS as a mixture of S-

and R- diastereomers. Protein and
free adduct forms are reduced to

Met by methionine sulfoxide
reductases, with the exception of

the R-MetSO free adduct [35].

Hb, 2.97 ± 0.55 mmol/mol met; and
Plasma protein, 0.98 ± 0.13

nmol/mol met [26].



Int. J. Mol. Sci. 2022, 23, 4584 5 of 16

Table 1. Cont.

Modification
Process Modified Amino Acid Reporting Characteristic Example of Analysis and Levels 1

α-Aminoadipic semialdehyde (AASA)

“Protein carbonyl” formed by the
oxidative deamination of

lysine [36]

Plasma protein:
0.15 ± 0.05 mmol/mol lys [10]

Glutamic semialdehyde (GSA)

Major “protein carbonyl” formed
by the oxidative deguanidylation

of arginine and oxidative
ring-opening of proline [36]

Plasma protein:
0.64 ± 0.33 mmol/mol arg [10]

Dityrosine (DT)

Oxidative crosslink formed
spontaneously in oxidative stress

and enzymatically by
DUOX [9,23].

Plasma protein:
0.025 (0.019–0.031) mmol/mol tyr

[10]. Increased in autism

N-Formylkynurenine (NFK)

Formed by the oxidation of
tryptophan by hydrogen peroxide,

peroxynitrite and hypochlorite
[37]. Formed enzymatically by

IDO involved in
immunoregulation, inflammation

and host defense against
infectious disease [38].

Plasma protein: 15.6 ± 1.7
mmol/mol trp [10].

Nitration

3-Nitrotyrosine (3-NT)

Protein nitration marker. Major
proteolysis product of proteins

endogenously nitrated by
peroxynitrite and nitryl chloride

[23,39]. May reflect oxidative
stress and/or nitric oxide

availability

Plasma protein: 0.0006 ± 0.0004
mmol/mol tyr; increased in

diabetes [40].

Citrullination

Citrulline residue

Citrullinated protein (CP).
Formed enzymatically from

arginine residues by PADs [41]

Plasma CP: 0.053 (0.043–0.091)
mmol/mol arg;

increased in early-stage arthritis [11]

Transglutamination

Nε(γ-Glutamyl)lysine (GEEK)

Major protein crosslink formed
enzymatically by

transglutaminases from
glutamine and lysine residues [42]

Urinary excretion: 0.42 (0.20–0.93)
nmol/mg creatinine [16]

1 Data are mean ± standard deviation or median (lower–upper quartile). 2 Abbreviated coverage of glyca-
tion adducts has been presented previously in [5]. Adapted with permission from Ref. [5]. Copyright year
2021, Elsevier.

2.1. Protein Glycation

Protein glycation is the non-enzymatic modification of proteins by reaction with
simple reducing sugars and related compounds. It involves early-stage glycation by
glucose reacting with N-terminal and lysyl side chain amino groups to form fructosamine
adducts. For lysine residues, this forms Nε(1-deoxyfructosyl)lysine (FL). Other common
fructosamines are formed on the N-terminal valine residue of the ß-chain of hemoglobin in
A1C and on the N-terminal aspartate residue of albumin in glycated albumin [5]. Early-
stage glycation by glucose of endogenous proteins often reflects glycemic control. For FL
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free adducts in plasma and urine, there may be a large and varying contribution from the
absorbance of FL free adducts from digested glycated proteins in food.

Other and later stages of glycation form a diverse range of adducts on N-terminal
amino groups, lysine and arginine residue side chains called advanced glycation endprod-
ucts (AGEs) [43]. Nε-Carboxymethyl lysine (CML) was one of the first discovered AGEs [44]
and is a major lysine-derived AGE with often high content in processed foods [45]. It is
formed from the oxidative degradation of FL and other sources. The ratio of CML to
FL residue content has been suggested as a marker of oxidative damage [29]. Hydroim-
idazolone (MG-H1) is a major arginine-derived AGE formed from methylglyoxal (MG).
MG-H1 is linked to increased glycolysis, decreased activity of glyoxalase 1 (Glo1)—the
major enzyme metabolizing MG [46]—and fasting and postprandial glucose exposure
through MG being a by-product of glycolysis. MG-H1 free adduct is also absorbed after
digestion of food proteins. The formation of MG-H1 is associated with a high risk of
functional impairment of proteins and protein unfolding [18,19,47]. Glucosepane (GSP) is a
major quantitative crosslink formed in protein glycation. GSP is formed from FL precursor
and hence provides a stable, cumulative marker of glucose exposure [31,48,49]. GSP was
increased in early stages and progressively increased further in development towards
advanced stages of osteoarthritis (OA), suggesting a good biomarker for early diagnosis
of OA [50]. GSP is likely not absorbed from food; that is, the urinary flux of GSP did not
correlate with pyrraline [16]—see below. Pentosidine is a minor protein crosslink with
intense fluorescence [51]. This is formed from pentose precursors and reflects pentosephos-
phate pathway metabolic activity [33]. Pyrraline is a glucose-derived AGE formed at high
temperatures of culinary processing, originating only from food [17]. Free adduct is an
indicator of food consumption and/or intestinal permeability [17,18]. For protein glycation,
oxidation and nitration free adducts with a major contribution from food, the urinary flux
of the free adduct correlates positively with urinary pyrraline. The non-zero intercept
in linear regression of urinary free adduct on pyrraline gives an estimate of endogenous
protein glycation, oxidation or nitration adduct formation. For example, the mean endoge-
nous formation of MG-H1 was 13.3 nmol/mg creatinine in overweight and obese subjects.
Endogenous MG-H1 formation accounted for 68% of total MG-H1 exposure, and food
accounted for 32% MG-H1 exposure. However, the contribution of MG-H1 from food was
highly variable [18].

2.2. Protein Oxidation

Methionine sulfoxide (MetSO) is an oxidative modification found widespread in phys-
iological systems. It is formed by the oxidation of Met and Met residues of proteins by ROS,
RNS and hypochlorite as a mixture of S- and R-diastereomers. MetSO Protein residue and
free adduct forms are reduced to Met by methionine sulfoxide reductases with the exception
of the R-diastereomer of MetSO free adduct [35]. α-Aminoadipic semialdehyde (AASA) is
a “protein carbonyl” formed by the oxidative deamination of lysine [36,52]. The related
protein carbonyl, glutamic semialdehyde (GSA), is formed by the oxidative deguanidyla-
tion of arginine and oxidative ring-opening of proline [36,52]. Dityrosine is an oxidative
crosslink formed spontaneously in oxidative stress and enzymatically by DUOX [9,23].
N-Formylkynurenine (NFK) is formed non-enzymatically by the oxidation of tryptophan by
hydrogen peroxide, peroxynitrite and hypochlorite [37] and enzymatically by indoleamine
2,3-dioxygenase (IDO). Increased IDO activity is involved in immunoregulation, inflamma-
tion and host defense against infectious disease [38]. These, mostly, irreversible adducts
of protein oxidation are assayed in AGEomics and provide a multi-faceted fingerprint of
protein oxidative damage.

2.3. Protein Nitration

3-Nitrotyrosine (3-NT) is the major product of protein nitration by peroxynitrite and
nitryl chloride. It may report on both oxidative damage and nitric oxide availability [27,53].
Free 3-NT is metabolized in rats and human subjects, leading to the formation of the major
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urinary metabolite 3-nitro-4-hydroxyphenylacetic acid (3-HNA)—with the minor formation
of 3-nitro-4-hydroxyphenyllactic acid and 3-nitro-4-hydroxyphenyllactic acid [54,55]. 3-
NHA is not a good marker of the flux of formation of 3-NT; however, it may be formed
by 3-NT independent pathways [56]. 3-NT is present in proteins of tissues, extracellular
matrix, plasma and other body fluids. 3-NT residues are also present in proteins of ingested
food and are absorbed as 3-NT free adducts [40].

2.4. Other Common Modifications

Citrulline residues are formed from selected arginine residues in proteins by peptidy-
larginine deiminases (PADs) [41]. Protein citrullination is linked to protein misfolding [57]
and related auto-immunity, likely producing anti-cyclic citrullinated peptide (CCP) anti-
body positivity in early-stage rheumatoid arthritis (RA) [58]. Citrullinated protein (CP)
was also increased in early-stage osteoarthritis (OA) but without anti-CCP antibody posi-
tivity [11].

Nε(γ-Glutamyl)lysine (GEEK) residues are formed from glutamine and lysine residues
by transglutaminases (TGs). The formation of GEEK generates crosslinked supramolecular
protein assemblies, particularly in the extracellular matrix. GEEK formation is involved
in blood clotting, age-related impairment of elastic properties in human skin and bone
formation [42]. The formation of GEEK was increased in fibroblast senescence [59].

3. Machine Learning in Protein Damage Biomarker Related Diagnostic Applications

Machine learning (ML) is a rapidly developing field where computer scientists are
continually innovating and refining methods to develop algorithms. ML is intensively
used in every walk of life from image analysis, voice recognition, economics, security to
social media to provide customized feed and advertisements based on personal preferences.
This became possible because of access to good quality data. There are also applications of
ML in health care. For example, using electronic health records to generate health scores,
predicting onset of disease and hospitalization for precision medicine and diagnostic
algorithms [60]. In AGEomics, algorithms are developed to classify subjects–such as
employed in clinical diagnostic applications for classifying case and control subjects.

In clinical diagnostics, often a single biomarker—such as A1C—does not provide
conclusive classification between cases and controls. We rather need an optimum combi-
nation of biomarkers, including protein glycation, oxidation and other biomarkers, in a
classifier algorithm to achieve this [10–12,16]. Algorithms are trained on “test set” data
obtained from the initial study cohort and then the outcome is tested with data from the
analysis of samples from an independent “test set” cohort. For algorithm training and
testing, there are also internal validation methods that are typically used, such as five-fold
cross-validation and leave-one-out analysis. Training set and test set cohort size need to be
designed for adequate statistical power. A guide on power analysis in diagnostic algorithm
development was published by Xia et al. [61]. The performance of the classification by the
algorithm can be assessed by accuracy—ability to correctly classify cases and controls, and
other conventional indicators of classification performance: sensitivity, specificity, positive
likelihood ratio LR+, negative likelihood ratio LR- and others. By convention, the inter-
pretation of LRs in terms of the level of evidence is as follows: LR+ (presence of a disease
or condition): 1–2, minimal; 2–5, small; 5–10, moderate; >10, large and conclusive. LR−
(absence of a disease or condition): 0.5–1.0, minimal; 0.2–0.5, small; 0.1–0.2, moderate; <0.1,
large and conclusive [62]. We therefore aim for LR+ >10 and LR− <0.1 in the development
of classifier algorithms. In Table 2, I give examples of where we have applied machine learn-
ing algorithm development in AGEomics: diagnosis of autism, early-stage osteoarthritis
(including identification of clinical type of arthritis), a health screen for early-stage decline
in metabolic, vascular and renal health, as reviewed recently [21], and a recent development
for risk prediction of diabetic kidney disease [63], as shown in Table 2. Further applications
are in progress. We have used different methods of algorithm development and, in general,
a good approach is to try multiple algorithm development methods to identify which is
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best performing for the particular data set. Some algorithm development methods have
optimum feature selection embedded in the training; for other algorithm development
methods, filters and other assessments of the contribution of individual features to the
classification performance have to be computed [64]. A method we have used, for example,
is omitting features from algorithms training one-by-one and retaining features when
they improve accuracy. This can also indicate the relative contribution of each feature to
the overall classification accuracy [11,12]. It is best to try multiple different methods of
algorithm development to identify the method most suited for the data set classification
at hand.

Table 2. Diagnostic algorithms developed with the AGEomics technique.

Disorder or Disease (Algorithm
Development Method) Analytes (Adduct) Diagnostic Indication 1 Reference

Early-stage arthritis
(GLMNET)

Plasma CP, hyp and anti-CCP
anti-body status

Diagnostic algorithm for classification of
good skeletal health or early-stage arthritis

type (OA, RA or non-RA): for Good
skeletal health, OA, RA and non-RA,

LR+ = 1.6, 5.6, 6.3 and 1.0 and LR− = 0.79,
0.31, 0.47 and 0.99, respectively.

[11]

Early-stage arthritis
(Random forests)

Plasma free adducts (FL, CML,
CEL, G-H1, MG-H1, 3DG-H,
CEL, CMA, GSP, pentosidine;
and MetSO, DT, NFK, 3-NT;

and hyp and anti-CCP
antibody status

Diagnostic algorithm for early-stage
arthritis (any type) vs. good skeletal health:

LR+ = 8.3 and LR− = 0.11. Diagnostic
algorithm for classification of early-stage

arthritis type (OA, RA or non-RA): for OA,
RA and non-RA, LR+ = 16.1, 7.7 and 5.0

and LR− = 0.06, 0.34 and 0.36, respectively.

[50]

Autism spectrum disorder
(Support vector machines)

Glycated plasma protein
(CML, CMA, 3DG-H and DT)

Combined in a diagnostic algorithm, gave
moderate evidence for presence and

borderline moderate/conclusive evidence
for absence of ASD; LR+ = 5.7,

LR− = 0.095.

[10]

Early-stage decline in metabolic,
vascular and renal health

(Support vector machines)

Urinary free adduct (FL; and
val, age and BMI)

Diagnostic algorithm classifying good
health vs. early-stage health decline. LR+,
8.0. 2.8 and 13.2, and LR− 0.24, 0.43 and

0.13 for metabolic, vascular and renal
health respectively.

[16]

Diabetic kidney disease risk
prediction

(X-Gradient boost)

A1C, logACR, FECMA, FEG-H1
and [CML]plasma

Accuracy 87 ± 4%, sensitivity 74 ± 9%,
specificity 91 ± 4%, AUROC 0.90, LR+ 11.0, [63]

1 Interpretation of level of evidence from likelihood ratios: LR+: 1–2, minimal; 2–5, small; 5–10, moderate; >10,
large and conclusive. LR−: 0.5–1.0, minimal; 0.2–0.5, small; 0.1–0.2, moderate; <0.1, large and conclusive [62].
Abbreviations: ACR, urinary albumin to creatinine ratio; AUROC, area-under-the-curve of receiver operating
characteristic curve; BMI, body mass index; CEL, Nε(1-carboxyethyl)lysine; 3DG-H, 3-deoxyglucosone-derived
hydroimidazolone structural isomers.

4. Examples of Application of Machine Learning in Protein Damage Biomarker
Related Diagnostic Using the AGEomics Platform

The first application of machine learning in diagnostic algorithm development in-
corporating a feature of protein modification from my group was protein citrullination
in early-stage arthritis. Antibodies to CP, assessed clinically as anti-CCP antibody status
was a biomarker of early-stage rheumatoid arthritis (eRA). It was assumed that protein
citrullination occurred mainly in eRA [58]. Our investigation showed that CP was also
prevalent in early-stage osteoarthritis (eOA) and autoimmunity to CP was a characteristic
of eRA [11]. A further type of inflammatory arthritis which is normally self-resolving
within a few months was termed non-RA. Combining plasma CP, the bone resorption
biomarker, hydroxyproline (hyp) and anti-CCP antibody status in a 4-group classifier algo-
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rithm (classifying good skeletal health, eOA, eRA and non-RA) provided for diagnosis of
both presence and type of early-stage arthritis, giving moderate evidence for the presence of
eOA and eRA [11]. A better approach was to combine plasma protein glycation, oxidation
and nitration-free adducts with hyp and anti-CCP antibody status. For initial classification
of early-stage arthritis, any type, versus good skeletal health, algorithms were developed
with LR+ = 8.3 and LR− = 0.11.

This indicated there was moderate evidence of the presence and strong evidence of
the absence of impaired skeletal health. Plasma hyp was an algorithm feature for this initial
screening step. In the second step for classification of arthritis, there was strong, often
conclusive evidence for the presence or absence of eOA and moderate evidence for the
presence or absence of eRA and non-RA [12]. Later studies in a guinea pig model of OA
revealed the glycation crosslink, GSP, was an early-stage indicator of eOA progression [50].
Glycation, oxidation and nitration free adducts are likely good diagnostic markers for
early-stage arthritis as they are produced by and report on joint proteolysis [65]. They
are sensitive, mechanistic biomarkers of pathogenesis because they have accumulated
in joint proteins during the lifespan and, unlike unmodified amino acids, they are not
reincorporated into proteins after formation. The life-long risk of developing OA of the
knee is ca. 45% and the rate of progression to severe debilitating disease is ca. 4% per
year [66]. There is currently no simple clinical chemistry test for diagnosis of eOA nor
for assessing the risk of progression. The diagnostic algorithms developed in our studies
and plasma GSP free adduct may meet this unmet clinical need [12,50]. Validation of the
predictive eOA diagnostic algorithm is in progress

A further currently intractable clinical diagnostic problem and unmet need is a simple
blood test for autism spectrum disorder (ASD). Autism is a developmental disorder of
childhood thought to affect over 12 million people worldwide [67], with relatively high
prevalence in the USA (2.47%) [68] and Europe (1.15%) [69]. Assessment for diagnosis
is limited by referrals to experts in childhood development, basing diagnosis on lengthy
behavioral observations and tests. Long delays of up to four years for referral of children
with suspected autism are common. Early diagnosis of autism facilitates intervention with
counseling and cognitive restructuring which can produce remission from symptoms [70].
In a study of 69 children with and without autism, we found higher plasma protein content
of CML, CMA and DT and lower 3DG-H adduct residues in plasma protein of children
with autism, compared to children with normal development. A diagnostic algorithm
combining these analytes gave a test with an accuracy of 88%, sensitivity 0.92, specificity
0.84, LR+ 5.8 and LR− 0.095, indicating moderate evidence for the presence of ASD and
strong, often conclusive evidence for the absence of ASD. It is therefore applicable as a
screening test–particularly for subjects whose suspected ASD is false. This test is currently
undergoing validation for algorithms based on amino acids and protein glycation and
oxidation free adducts. The sample preparation, analysis and interpretation can be per-
formed within a day. A simple blood test may meet the currently unmet need for improved
availability of autism diagnosis. Universal screening for autism has been recommended by
the American Academy of Pediatrics of children between 18 and 24 months but this has
limited compliance to date. A screening test—such as the emerging blood test based on
AGEomics—to select subjects for further surveillance and expert examination would help
address the current unmet need for autism diagnosis [71].

In a recent application, we have shown how renal handling of glycated amino acids
may produce valuable risk prediction of diabetic kidney disease. Patients with diabetes,
type 1 diabetes (T1D) and type 2 diabetes (T2D), are at risk of developing diabetic kidney
disease. Typically, after 10 years or less of diabetes, the initial stages of diabetic kidney
disease develop—often indicated by a low-level increase in urinary albumin or microal-
buminuria [72]. At this stage, treatment is initiated of all patients with diabetes with
angiotensin II receptor inhibitors or blockers (ARBs) or angiotensin-converting enzyme
(ACE) inhibitors to slow the rate of decline in renal function. In patients who go on to
develop rapid loss of renal function–also called “early decline in renal function,” renal
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function declines in the range of 3–20 mL/min/year such that after 5–20 years, patients
require expensive renal dialysis and have a median survival thereafter of only three years.
During the decline of renal function, there is also a progressive increase in the risk of fatal
cardiovascular disease, 3 to 20-fold higher than the healthy population.

Renal function is assessed by the measurement of glomerular filtrate rate (GFR).
This is the gold standard method of assessing current renal function at one or more time
points during the course of diabetic kidney disease. GFR does not predict a future decline
in renal function. By the time decrease in renal function is detected by GFR, diabetic
kidney disease is already well-advanced. Treatment of diabetic kidney disease would
be most effective if it could be given to patients when they have normal GFR, such as
when microalbuminuria initially develops, and to those patients who are predicted to
go on to develop an early decline in renal function. It is estimated that 19% of patients
with T1D and 28% of patients with T2D develop an early decline in renal function, and
this is the primary cause of progression to renal failure and the requirement for dialysis
in patients with diabetes [73]. Currently, patients at risk of future renal function decline
cannot be identified. Thus, in well-found healthcare systems, all patients with T1D or
T2D are treated with ARBs and ACE inhibitors when they develop microalbuminuria. If
patients at risk of future diabetic kidney disease could be identified, treatment could be
intensified for those patients that need it to optimize slowing the rate of decline in kidney
function and thereby likely avoid the need for renal dialysis and also decrease mortality
from associated cardiovascular disease. Savings and avoidance of adverse effects of drug
treatment could be made patients not at risk of future early decline in renal function. We
measured protein glycation, oxidation and nitration free adducts in plasma and urine of
75 patients with diabetes at the point of development of microalbuminuria in the First Joslin
Kidney Study [74]. These patients had 12–15 years of follow-up to assess whether they
had a subsequent stable or declining renal function. We deduced the fractional excretion
(FE) of damaged amino acids. FE is the rate of clearance of damaged amino acids from the
blood into urine for excretion, relative to that of creatinine. We found six damaged amino
acids had increased FE in patients with subsequent early decline in renal function. This
reflects early-stage impairment of renal tubular re-uptake of damaged amino acids when
GFR is normal. These processes later increase and contribute to future early decline in renal
function. None of the plasma, urine or deduced FE values for damaged amino acids were
able to discriminate conclusively between patients with future stable renal function (non-
decliners) and patients with future early decline in renal function (decliners) [15]. Using
machine learning to deduce algorithms with the optimum combination of damaged amino
acid analytes and conventional clinical measurements, we could classify non-decliners
and decliners with LR+ = 11.0 with features: A1C, log(urinary albumin-creatinine ratio),
FENω-carboxymethylarginine and FEGlyoxal-derived hydroimidazolone and the plasma concentration
of CML–Table 2. With the measurement of three glycated amino acids in plasma and urine,
therefore, we were able to classify patients who later developed diabetic kidney disease [63].
The diagnostic power is likely based on reporting of early decline in the functional activity
of amino acid cation transporters in the renal proximal tubules, with some linked to the
rapid decline of GFR in genome-wide association studies [75,76]. This requires further
validation and application to patients with T2D and non-diabetic kidney disease. It may
offer a relatively simple test for risk prediction of diabetic kidney disease.

Alternative approaches in assessing links of protein damage markers to health con-
ditions or disease have been to compute single or composite z-scores of glycation adduct
residues in plasma protein or free adducts in serum or plasma. AGE content data is often
log-transformed and, particularly in studies of diabetes and vascular complications of
diabetes, adjusted for level of A1C at baseline and follow-up sample collection. In prospec-
tive studies, a related hazard ratio-an estimate of the occurrence of health conditions in
the cases versus control study groups may then be deduced. This approach was used
to study the association of plasma protein AGEs, CML, CEL and pentosidine residues,
with cardiovascular disease in patients with T2D [77] A higher AGE score was associated
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with low renal function (estimated glomerular filtration rate), low BMI and low risk of
peripheral artery disease. In a further study, Genuth et al. measured furosine—a surrogate
analyte of FL—and six AGE residues, fluorescence, acid solubility and pepsin digestibility
of skin collagen. Sample collection was made at the closeout of the Diabetes Control and
Complications Trial (DCCT) study. This ten-marker panel was explored in producing
an improved statistical model for risk prediction of progression microvascular compli-
cations of diabetes—diabetic nephropathy, diabetic retinopathy and diabetic neuropathy.
This improved risk prediction of progression risk of retinopathy and neuropathy but not
nephropathy; GSP and MG-H1 were major risk predictors. Increased furosine was linked
to the worsening of all microvascular complications. Possible mechanisms underlying
these associations were discussed previously [78]. Recently, CML, CEL, G-H1, MG-H1
and 3DG-H free adducts were measured in plasma and serum from the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) (n = 1,150) and Veterans Affairs Diabetes Trial
(VADT) (n = 447). A composite AGE z score was computed and related to risk prediction of
a decline in renal function [79]. A previous study on Native Americans with T2D found an
association of decline in renal function with MG-H1 and CEL free adducts [80]. The advan-
tage of the machine learning approach to classifying cases and controls is the simplicity of
data inputs and ease of interpretation of diagnostic outputs.

5. Future Perspectives

The application of machine learning in AGEomics is providing classifier algorithms
with high confidence outcomes for screening, diagnosis and risk prediction of disease or
conditions. Establishing the LC-MS/MS platform for quantitation of damaging modifica-
tions is now showing potential utility in addressing some challenging problems in clinical
diagnostics. There remain, however, barriers to widespread use in the clinical setting.

LC-MS/MS is a common analytical platform in the research laboratory but is yet to
become routinely used in clinical chemistry laboratories. The barrier to this is limited
automation, limited commercial availability of analytical standards and limited regula-
tory approval of LC-MS/MS-based clinical diagnostics methods. With LC-MS/MS based
AGEomics now providing solutions to some intractable and high clinical diagnostics
problems, such as a blood test for autism and early-stage detection osteoarthritis and
classification of arthritis. There are now requirements and advantages to broadening access
and use of LC-MS/MS by improving automation of instrumentation and availability of
analytical standards. With interest and investments from the biotechnology and commer-
cial sectors, increasing regulatory approval of LC-MS/MS-based clinical diagnostics will
likely follow.

For clinical take-up of diagnostic methods, it is important that diagnostic algorithms
are validated in both research and clinical settings. For example, assessment of the accuracy
of diagnostic algorithms with clinical samples of blinded class and at the case-to-control ra-
tio found in clinical practice. There needs to be full disclosure of the data used in algorithm
training and testing and flexibility for further algorithm refinement through experience
with new clinical data–which may be specific for the population studied. Currently, there
is little refinement of algorithms used in clinical diagnostics after regulatory approval [81].
We are currently in a period of rapidly expanding application of machine learning in clinical
diagnostics and AGEomics has a unique and important contribution to make.

For disease applications, coronary heart disease (CHD), linked to increased risk of
atherosclerosis may be amenable to an AGEomics approach. The risk of CHD is linked to in-
creased small dense LDL [82] and decreased HDL [83]. MG modification of apolipoprotein
in LDL led to the formation of small dense LDL [84] and MG modification of apolipoprotein-
A1 of HDL destabilized the HDL particle leading to a decreased half-life of HDL [85]. If
LC-MS/MS detection of tryptic peptides or immunoassays of functionally important MG-
modification sites may be developed for MG-modified LDL and HDL, these may be risk
predictors of CHD.
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A further application of AGEomics is neurological disorders, such as Alzheimer’s
disease (AD) and Parkinson’s disease. These are neurological disorders of major social
impact. AD is the most common neurodegenerative disease and most common form of
dementia worldwide [86]. Parkinson’s disease (PD) is the second most common neurolog-
ical disorder after AD and is growing faster than AD. It is characterized by α-synuclein
aggregation and the loss of dopaminergic neurons, resulting in a combination of motor
and non-motor symptoms [87,88]. We studied protein glycation, oxidation and nitration
markers of in-life cerebrospinal fluid samples and found increased MG-H1 and 3-NT free
adducts in subjects with AD [89]. Increased AGEs in AD were proposed to be causative for
ß-amyloid formation and cytotoxicity. For example, MG-modified ß-amyloid had enhanced
neuronal toxicity [90]. Deposition of ß-amyloid correlates with increased glycolysis [91].
This might be reflected in increased formation of MG, MG-modified protein and, after
proteolysis, MG-H1 free adduct in cerebrospinal fluid and release into plasma and excretion
in urine. In the resting state, glucose metabolism by the brain is a major component of
whole-body glucose metabolism [92]. Therefore, urinary MG-H1 collected in the morning
after voiding before overnight sleeping, and corrected for the contribution of MG-H1 from
food [18], may be an indicator of increased CNS glycolysis. This could be explored as
a urinary screen for the detection of early-stage AD. In contrast, early-stage Parkinson’s
disease is considered to be associated with decreased glucose metabolism [93,94] and may,
under similar sample collection conditions, give decreased endogenous MG-H1 free adduct
formation. This could be explored as a urinary screen for the detection of early-stage
Parkinson’s disease.

AGEomics offers a deeper insight into dysfunctional metabolism and proteostasis
than conventional omics technologies in that it reflects a covalent interaction between
metabolomics and proteomics. Through this, it is able to provide a report on metabolic
dysfunction over time, rather than a snapshot with conventional ‘omics technologies. This
is widely exploited currently with the use of A1C for diagnosis of prediabetes and diabetes
and glycemic control in diabetes. As indicated above, going beyond A1C, much wider and
also clinically valuable diagnostic contributions are available.
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