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Learning and memorizing sequences of events is an important function of the human

brain and the basis for forming expectations and making predictions. Learning is

facilitated by repeating a sequence several times, causing rhythmic appearance of the

individual sequence elements. This observation invites to consider the resulting multitude

of rhythms as a spectral “fingerprint” which characterizes the respective sequence. Here

we explore the implications of this perspective by developing a neurobiologically plausible

computational model which captures this “fingerprint” by attuning an ensemble of neural

oscillators. In our model, this attuning process is based on a number of oscillatory

phenomena that have been observed in electrophysiological recordings of brain activity

like synchronization, phase locking, and reset as well as cross-frequency coupling. We

compare the learning properties of the model with behavioral results from a study in

human participants and observe good agreement of the errors for different levels of

complexity of the sequence to be memorized. Finally, we suggest an extension of the

model for processing sequences that extend over several sensory modalities.

Keywords: phase-locked loops, phase reset, frequency tuning, multisensory integration, crossmodal, prediction

1. INTRODUCTION

Oscillations are a ubiquitous phenomenon when brain activity is observed at a sufficiently
high temporal resolution, e.g., using EEG/MEG (electro-/magneto-encephalography), or invasive
methods. Great progress has been made toward understanding the functional role of oscillations in
cognitive processes (Singer, 1999; Engel et al., 2001, 2013; Canolty and Knight, 2010; Giraud and
Poeppel, 2012; Fries, 2015). Their rhythmic nature suggests that neuronal oscillations could be used
by the brain for learning, recognizing and producing rhythmic patterns in the interaction with the
environment, and corresponding mechanisms have been suggested and studied in computational
models. In particular, oscillator-based models have replicated many of the properties of human
memory for serial order (Brown et al., 2000). To this end, the two most relevant computational
mechanisms are the encoding of arbitrary time intervals by an ensemble of oscillators with different
periods and the dynamic adjustment of oscillation frequency and phase. The time representation
by a single oscillator is limited by its period length and phase resolution. In a set of oscillators with
different frequencies and phases however more rapid oscillations can provide temporal accuracy,
while slower oscillations disambiguate cycles of the faster oscillations (Church and Broadbent,
1990). Basically the phases of the oscillators in the set provide a unique temporal context which
can be associated with a sequence of events in the environment (Brown et al., 2000). This dynamic
context has a number of desirable properties for learning sequences of events: First, despite the
cyclic activity of the individual oscillators, the vector of the combined phases repeats over very

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://doi.org/10.3389/fnint.2019.00043
http://crossmark.crossref.org/dialog/?doi=10.3389/fnint.2019.00043&domain=pdf&date_stamp=2019-08-20
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.maye@uke.de
https://doi.org/10.3389/fnint.2019.00043
https://www.frontiersin.org/articles/10.3389/fnint.2019.00043/full
http://loop.frontiersin.org/people/111350/overview
http://loop.frontiersin.org/people/24316/overview
http://loop.frontiersin.org/people/788582/overview
http://loop.frontiersin.org/people/3693/overview


Maye et al. Oscillator Ensemble Model of Sequence Learning

long epochs if their frequency ratios are appropriately chosen.
By associating items in a complex sequence (e.g., ABAC)
with the dynamic learning context, repetitions of the same
item can be disambiguated. Second, the learning context for
adjacent time points, when only the phases of oscillators with
higher frequencies made substantial progress, is more similar
than between more distant points, when also the phases of
the low-frequency rhythms progressed. This property makes
the approach suitable for sequences that involve temporal
hierarchies like, for example, spoken language. And third, the
series of learning contexts can easily be replayed by resetting the
oscillators to their initial phase and restarting the clocking. By
modifying the scale of the time signal that drives the oscillators in
the set, stored sequences can be replayed at rates that are different
from the original one.

The dynamic adjustment of oscillation frequency and
phase is another mechanism which is frequently employed in
computational models. The main idea is that the phase of
the input relative to the ongoing oscillations determines how
the synchronization patterns between the neural populations
change. Sudden changes of the phase of ongoing oscillations
in response to a stimulation, so called phase resetting, can
frequently be observed in signals recorded from human and
animal brains, where this phenomenon is considered to underlie
multisensory integration functions (Lakatos et al., 2012; van
Atteveldt et al., 2014). The simultaneous tuning of phase and
frequency is aptly modeled by a phase-locked loop (PLL),
in which the phase difference between an external rhythm
and the ongoing oscillation generates a signal that adjusts the
PLL’s frequency to minimize this phase difference. In PLL-
based computational models of neuronal processing, memorized
patterns are not equilibria or attractor states, like in conventional
artificial neural networks, but synchronized oscillatory states
with a certain phase relation (Hoppensteadt and Izhikevich,
2000). The dynamically stable oscillation patterns can flexibly
bind and unbind neural populations by synchronization, which
can be used to model cognitive processes in working memory
for associating and dissociating elements, inference by binding
objects to the variables of a predicate, or algebraic operations
defined by the transition rules between oscillation patterns of the
network (Pina et al., 2018).

In this article we introduce a new perspective on sequence
learning and present a computational model which integrates
the two mechanisms of information processing by oscillatory
dynamics that were discussed above. This perspective rests on the
observation that when humans learn sequences, they frequently
do so by verbally or mentally repeating the sequence over and
over again. For example, to memorize the number code 9392,
one might repeat “9392 9392 9392...” a few times, e.g., by reading
it off again from a note or mentally rehearsing it in short-term
memory. This repetition can entrain a rhythm for each item.
In the example, appearances of the digit “9” would entrain a
high frequency rhythm, whereas the rhythms entrained by digits
“3” and “2” would have lower frequencies and distinct phases.
In addition to the periods that correspond to the temporal
distance between any two repeating items, even slower rhythms
can emerge when items in every other repetition are considered,

whereas fast rhythms could cycle several times between two
successive appearances of an item. All the different rhythms that
are entrained by this sequence together constitute a characteristic
entity that can be used to recognize correct instantiations of
the sequence and detect deviations. Any incongruent item, e.g.,
the erroneous “2” at the end of “9392 932,” would disturb
the rhythms that were entrained by digits “2” and “9” during
the learning phase and would be easily detected. From this
perspective, the rhythms of a sequence appear to be analogous
to the polyphony of an orchestra in which the tempi of the
individual instruments compose an integrated experience that
is unique for the respective piece of music and that is easily
impaired by one or several instruments getting out of tune.

In the following, we develop a model that implements this
concept by an ensemble of oscillators with a learning rule
which attunes them to a given sequence. We analyze the error
detection accuracy of the model and compare it to those from a
cohort of human participants who performed the same sequence
learning task. Finally we explore an extension of the model that
demonstrates learning of sequences that involve more than one
sensory modality.

2. METHODS

2.1. Oscillator Ensemble Model
We start by developing the model equations for input from
a single sensory modality. In each time step, the phase φ of
every oscillator in the ensemble is updated according to the
following equation:

φ(t + 1) = φ(t)+ 2π f (t)+ η (1)

The noise η models random fluctuations in the period of
neuronal oscillations and is sampled from a normal distribution.
The learning objective for the ensemble is to associate a set of
target inputs Î = {Î1, Î2, . . .} with target phases φ̂ = {φ̂1, φ̂2 . . .}.
This requires adjusting oscillation frequencies f to match the
rhythm at which target inputs are presented.

2.1.1. Learning Algorithm for Tuning Individual

Oscillators
We distinguish three states depending on the phase when an
input is presented at time t to the oscillator: If the phase φ(t) is
close to the target phase φ̂i of an input Îi, we call this oscillation
locked to the rhythm of this input. This is the dynamically stable
state for an oscillator, when no further adjustments to its phase or
frequency are made by the learning algorithm. If the phase is in a
given range around the target phase but not (yet) locked, we call
this state locking. Oscillations in this state will have their phases
set to the target phase of the respective input in the next time step,
and the frequency will be adjusted to match the rhythm of the
input. We will call any other phase in transit, which means that
this oscillator will not be tuned in the current time step. These
oscillators are either locking or locked to other target phases, or
they constitute a pool of “free” oscillators which are available for
synchronizing at a later time or when the input sequence changes.
Using two corresponding thresholds θlocked and θlocking , the three
states can be formally defined by:
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1. Locked: |φ(t)− φ̂| < θlocked
2. Locking: θlocked < |φ(t)− φ̂| < θlocking

3. In transit: θlocking < |φ(t)− φ̂|

Depending on phase state at a given time t, oscillators are updated
as follows. The phase of oscillators in locked or transit state is
changed according to Equation (1), and their frequency is not
modified, i.e., f (t + 1) = f (t). Oscillators in the locking state
however have their phases and frequencies adjusted depending
on the input I. If I = Îi, the phase is set to the target phase φ̂i and
the frequency is increased or decreased depending on whether
the current phase is lagging or leading w.r.t. the target phase:

φ(t + 1) = φ̂i (2)

f (t + 1) = f (t)−
φ(t)− φ̂i

2π1T
(3)

Delta T is the number of time steps since the last phase reset of
the respective oscillator. It is used to scale the magnitude of the
frequency change that is calculated from the phase difference to
the magnitude of the oscillator’s current frequency f (t).

If the input does not correspond to the phase to which an
oscillator is locking, i.e., I 6= Îi, then the phase is inverted and the
period length is increased or decreased depending on whether the
current phase is lagging or leading w.r.t. the target phase so that
in the next cycle, the target phase is reached one sequence item
later or earlier than it would have with the current period length:

φ(t + 1) = 2π − φ̂i (4)

f (t + 1) = f (t)+
1

1T



f (t)−
φ(t)+

(

2π − φ̂i

)

2π1T



 (5)

Note that this learning algorithm neither ensures that all rhythms
composed by a sequence are picked up by the ensemble nor that
the tuning process converges for each oscillator. It does ensure
however that the number of locked oscillators monotonically
increases over time. The number of rhythms that are picked up
from the polyphony in the sequence by the ensemble is a function
of the ensemble size, i.e., the number of oscillators.

2.1.2. Calculating the Error Signal
Initially, most oscillators will adjust their phases and frequencies
until they match the rhythm of one of the items in the sequence.
As the tuning progresses, fewer and fewer oscillators will be in
the locking state at any time point. This suggests that the total
number of locking oscillators is a measure for the attunement of
the ensemble to the sequence. Now, if an item suddenly appears
at the wrong position, the oscillators that were tuned to the
original item at this position would restart tuning, hence the
sudden increase in locking oscillators could be used to detect
incongruent items.

One approach for this detection would be the definition
of a threshold which would signal a sequence violation when
exceeded. The two problems with this approach are that it is
not obvious how such threshold could be defined in advance
and that the error signal very likely is above the threshold not

only for an incongruent item, but also during the initial learning
phase.We therefore looked for a solution that does not require an
additional parameter and that accounts for the tuning during the
learning phase. What differentiates the learning phase from the
re-tuning for an incongruent item is the time since the last phase
reset: The initially random phase and frequency of an oscillator
will be relatively far off the rhythms that are generated by the
sequence; therefore, they will be adjusted several times until they
match the rhythm of a particular item. In contrast, the oscillator
probably has been attuned for some time before an incongruent
item appears. Thus, the time since the last adjustment was made
to the oscillator by the learning algorithm is an indicator whether
or not this oscillator was in tune with any one rhythm in the
sequence. This indicator yields a much stronger signal when an
incongruent item perturbs an attuned ensemble than during the
initial tuning process. Using the function δi(t) to indicate whether
oscillator i in an ensemble of size N has a phase reset at time t
(Equations 2, 4), we define the error signal by:

e(t) =

N
∑

i

δi(t)1Ti, (6)

and the decision about the (in-)congruence of the current item is
given by:

incongruent =

{

true if e(t) > max e(1 . . . t − 1)

false otherwise
(7)

2.2. Accommodating Several Sensory
Modalities
In the brain, signals from different sensory modalities are
processed in different yet interacting cortical areas. We model
these cortical areas by modules of oscillator ensembles which
receive input from a single modality. Just tagging ensembles
as “visual” or “auditory” obviously changes nothing in the
dynamics of the corresponding oscillators; therefore, a non-
trivial extension of the model toward multimodal sensory input
requires introducing additional distinguishing features. Rather
than assuming fundamentally different processing mechanisms
in different sensory modalities, we consider it to be more
appropriate to think of similar mechanisms that operate in
different parameter regimes for each modality. For example,
auditory processing in the human brain has a higher temporal
resolution than visual processing (Fujisaki et al., 2012), but
the anatomical structure of auditory and visual cortices does
not seem to be fundamentally different (Rauschecker, 2015).
This finding inspired us to use different base frequencies in
different modules. Thus the multimodal model we investigate
here consisted of a visual module and an auditory module in
which the oscillator ensembles were initialized in a frequency
band that was five times higher than that for the ensembles
in the visual module. The admittedly arbitrary selection of
this frequency ratio was inspired by the intent to demonstrate
robustness of the model over a wide range of frequencies.
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2.3. Numerical Simulation
To model the results from the human study, we generated
the input from the pixel values of a sequence of images. Each
oscillator in an ensemble received input from the same pixel
in the images, and there was one ensemble per pixel. Stimulus
images from the human study were downsampled to a resolution
of 20 × 20 pixels. There was no topographic mapping of the
input or any other spatial layout of the ensembles. The two target
inputs (Î1 = black, Î2 = white) were associated with phases
φ̂1 = π/2 and φ̂2 = 3/2π , respectively. There was also a
background color in the images that provided no input (I = 0).
The distribution for sampling the noise term in Equation (1) had
zero mean and a standard deviation of 1× 10−10. The thresholds
for defining locked and locking oscillations were θlocked = π/60
and θlocking = π/6.

The properties of both models were determined by running
repeatedly numerical simulations with randomized initial
conditions. All the results we present below show the average of
100 runs. Initial frequencies for ensembles in the visual module
were drawn from a uniform random distribution in the interval
[0.01 1], whereas the interval for ensembles in the auditory
module was [5 6]. Initial phases in both modules had a uniformly
random distribution in the interval [0 2π].

2.4. Human Study
We performed a magnetoencephalography study in human
participants to investigate the neural mechanisms of sequence
learning. Results of analyzing the neurophysiological data will be
published elsewhere. Here we use only the behavioral results to
compare them to the model output.

Subjects observed different sequences of visual and auditory
stimuli. Sequence repetition stopped after a random interval
at which subjects were asked whether the last item they had
seen or heard was a valid element of the sequence (congruent
item) or whether it violated the sequence they had perceived so
far (incongruent item). Two stimulation conditions were used:
In one condition, visual and auditory stimuli were presented
simultaneously, but subjects were asked to attend to the sequence
only in one sensory modality and neglect the other. Therefore,
we call this condition the unimodal condition. In the other
condition, the items of the sequence were presented either as a
visual or auditory stimulus, and subjects were requested to attend
to an abstract, modality-independent feature of the stimulus and
neglect themodality in which the stimulus was presented.We call
this condition the crossmodal condition.

The sequences in the unimodal condition were composed of 5
items showing either a horizontally (H) or vertically (V) oriented
Gabor patch (10◦ visual angle, 0.5 cycles per degree), resulting in
a total of 32 different sequences. Each stimulus was displayed for
150 ms and followed by 550 ms of a uniform gray background
(–). A sine wave tone was presented simultaneously with the
image to both ears of the subject. The frequency was either high
(2,000 Hz) or low (1,800 Hz). Its volume was adjusted to 30
dB above the hearing threshold of the subject. The association
between pitch of the tone and orientation of the Gabor patch
was fixed in all but the last item of the sequence for each subject

and randomized across subjects. Figure 1A shows the sequence
-V-H-V-V-V as an example.

For the crossmodal condition, each item in the sequence
was a combination of 2 feature dimensions (height, intensity), 2
feature levels (high/low, strong/weak), and 2 modalities (visual,
auditory). Visual “high” and “low” stimuli were gray discs (6◦

visual angle) above or below the horizontal midline, respectively.
Auditory stimuli were the same like in the unimodal condition.
Intensity was varied between two contrast levels of the disc in
the visual stimuli and two volume levels of the beeps. Subjects
were tested on random subsets from the space of sequences. The
trivial sequences in which all items have the same feature level
were excluded. In each block of the crossmodal condition, they
were requested to attend to only one feature dimension (height
or intensity) and neglect the other.

A green fixation cross (0.25◦ visual angle) was shown at
the center of the screen, and subjects were asked to maintain
fixation during the stimulation. Sequences were repeated until
at least 8 and at most 20 items were presented in the unimodal
condition. Within this range, a hazard rate of 0.377 was used to
randomize the actual sequence length. Since learning crossmodal
sequences was more difficult, at least 10 and at most 20 items
were presented in this condition. Here, a hazard rate of 0.448
was used to randomize the actual sequence length. The fixation
cross turned red 1,200 ms after the offset of the last image,
indicating that the subjects should decide whether or not the last
item seen was congruent with the sequence. Using the index or
middle finger of the right hand, they hit one of two buttons on
a response pad that had the responses “yes” (congruent) or “no”
(incongruent) assigned. The ratio of congruent/incongruent test
items was 0.5. The fixation cross turned green again after the
subjects pressed a button, and after another 1,500 ms delay, the
next trial began.

Sequences were presented in blocks of 32, followed by a
short break. Blocks with the congruent/incongruent task were
alternated with blocks in which subjects solved an n-back
memory task. In this task, subjects had to decide whether the
last item matched the nth previous one. In order to adjust the
average performance across participants in the n-back memory
task to that in the sequence prediction task, 20 of them
performed a 1-back task and 9 a 2-back task. In contrast to the
congruent/incongruent task, the memory task did not require
subjects to learn the whole sequence, but only to remember the
last two stimuli seen. In the crossmodal condition, a different
control task was employed. Here subjects decided whether or not
the last stimulus had appeared anywhere in the sequence before.
Deviants were generated by jittering the vertical position of the
disc or the pitch of the tone in the terminal stimulus. Each subject
completed two sessions of 16 blocks each on separate days.

Twenty nine healthy volunteers (26.3± 4.2 years, 17 females)
participated in the unimodal human study. Another 25 healthy
volunteers (25.1 ± 3.5 years, 14 females) participated in the
crossmodal human study. They gave written informed consent
and received financial compensation. The study was approved
by the ethics committee of the medical association of the city of
Hamburg. The experiments were performed in accordance with
the Declaration of Helsinki.
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FIGURE 1 | (A) Example of an audiovisual sequence for the unimodal task. Sequences were composed of 5 items that were either horizontally (H) or vertically (V)

oriented Gabor patches and simultaneously played high- and low-pitch beeps. The sequence -V-H-V-V-V is repeated from item 6 on. (B) Example of the sequences

that were used in the crossmodal condition. Here, 4 items that were either a visual stimulus (V) or a beep (A) were presented, each representing a “high” (H) or “low” (L)

stimulus. The example shows the sequence -VL-VH-AL-VL.The sequence is repeated from item 5 on.

The computational models were studied with the same
stimulus material, but the following simplifications were made:
The unimodal model was stimulated with the sequence of images
only, corresponding to the blocks in which the participants
were requested to attend to the visual modality and neglect the
auditory. For testing the multimodal model, we used the subset
of stimuli that varied only in one feature dimension and that
were constant in the other. The model works on a single feature
dimension which may be height as well as intensity. Without loss
of generality we selected height for the distinguishing feature.
From the 256 possible sequences (2 feature levels, 2 modalities,
4 items), we excluded the 32 strictly unimodal ones and tested
the model on all remaining 224 truly crossmodal sequences.
Figure 1B shows an example sequence.

3. RESULTS

3.1. Unimodal Model
First we demonstrate the properties of the model for two
oscillator ensembles which receive input from two representative
locations in the images. At location 1 the gray level is different
for the horizontal and vertical Gabor patches; at location 2 it is
the same (see Figure 2). Hence the sequence -H-V-V-V-V, for
example, drives the input of the ensemble at location 1 with
0B0W0W0W0W, whereas the input sequence at location 2 reads
0W0W0W0W0W (B-black, W-white, 0-no input).

The learning rule adjusts the phases and frequencies to the
polyphony that is afforded by the sequence. This attunement
process is slower for the more complex input pattern at
location 1 than for the regular pattern at location 2, where
the frequencies and phases basically converged after about 10
repetitions (Figure 3A vs. Figure 3B). This is also evident from
the phase dynamics which shows frequent phase resets only in
the beginning for the stable input (Figure 3D) but up to about
100 item repetitions for the alternating input (Figure 3C). The
slow attunement in the case of alternating input results from the
fact that in the example sequence -H-V-V-V-V, the H stimulus is

FIGURE 2 | Examples for image locations (marked by “+”) where the input to

the oscillator ensembles is different for horizontal and vertical Gabor patches

(1) and where it is the same (2).

seen only once per repetition of the sequence (relative frequency
of 0.1), and hence more repetitions are needed to synchronize
with this input rhythm than to the rhythm of a more frequently
presented input. In the ensemble with the stable input, most
oscillators tune to a frequency of 0.5 and the target phase for
white pixels (Figure 3H). For the alternating input, however, the
dominant frequency is 0.1, corresponding to the periodicity of
the input at the full length of the sequence, and there are two
phase clusters of oscillators which synchronize to the H and V
items (black and white input), respectively (Figure 3G).

If the model is tested with a conflicting item after the
sequence was learned, many oscillators in the ensemble undergo
a phase reset, which causes a sharp increase of the error signal
(Figures 3E,F). By detecting whether or not the last item caused
a significant increase of the error signal, the model can classify
the tested item as incongruent or congruent, respectively.

We analyzed the response accuracy of the model depending
on how many times the sequence was repeated before testing an
item (Figure 4A, black curve). After the initial presentation of the
sequence, the model’s response accuracy is at chance level (0.5). It
starts to increase after the second repetition of the sequence (test
item 16) and approaches 1 after about 30 repetitions (item 60).
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FIGURE 3 | Temporal evolution of frequencies (A,B), phases (C,D), error signals (E,F), and phase-frequency distribution (G,H) of two ensembles, each consisting of

100 oscillators, with input that differs between items in the sequence (location 1–A,C,E,G) or is the same in all items (location 2–B,D,F,H). The sequence was

composed of 20 repetitions of -H-V-V-V-V and an incongruent V test stimulus at the end. The phase-frequency distributions in panels g and h show a snapshot before

the test stimulus was presented.

We also analyzed the response accuracy for congruent and
incongruent test items separately. Congruence of the tested item
is correctly recognized after a few repetitions (Figure 4A, green
curve). Incongruent items, however, seem to require much longer
learning time (Figure 4A, red curve). An interesting observation

is that response accuracy for incongruent test items does not
increase monotonically with more repetitions, but that it clearly
depends on the position of the item in the sequence: It is high
when the item at the first position is tested and decreases for
the following positions before this pattern is repeated at a higher
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FIGURE 4 | (A) Probability of correct model output when the item given on the x-axis is tested in the unimodal model. Green/red curves show the accuracy when the

tested item is congruent/incongruent, respectively, black curve is the combined accuracy. All accuracies are averages across all 32 sequences generated from 5

items. (B) Average response accuracy of human participants in the unimodal condition. Errorbars show standard error.

FIGURE 5 | Gray-level-coded map of clusters of oscillators that attune to

similar combinations of phase and frequency and hence exhibit a

functional coupling.

accuracy level for the next repetition of the sequence. This
property is reflected in the periodic modulation of the response
accuracy for incongruent items, where the period length is given
by the number of items in the sequence.

After demonstrating the properties of two individual oscillator
ensembles, we investigated the dynamic relation between several
ensembles. To this end we mapped low-resolution versions of the
Gabor stimuli to a corresponding number of oscillator ensembles
and analyzed the distribution of the phases and frequencies
that developed in the ensembles. Ensembles which received
the same input developed similar combinations of phases and
frequencies. In Figure 5 we show the map of phase-frequency
clusters that results from the sequence -H-V-V-V-V, for example.
After attuning to this sequence, the ensembles developed five
clusters with distinct phase-frequency combinations. Clusters of
oscillators with the same phase-frequency combination reflect a
spatial segmentation of the stimuli in the input sequence.

The distribution of phases and frequencies in each of the
five clusters is shown in Figure 6. Since the image background
did not yield any input, the corresponding oscillators retain the
initial random distribution of phases and frequencies (cluster
1). Regions with white/black pixels in both stimuli drive the
corresponding oscillators to the respective target phases of 3/2π
or π/2, respectively (clusters 5 and 4). Most oscillators in these
clusters tune to a frequency of 0.5, which reflects the interleaving
presentation of an empty stimulus in the sequence. Nevertheless
there are oscillators tuning to other frequencies which are
compatible with this input rhythm, e.g., 1, 0.3 etc. For image
regions where the input alternates between black and white along
the sequence, the resulting phase-frequency landscape is more
complex. Here the dominant frequency is 0.1, corresponding to
the repetition of an item after all other items in the sequence
were shown. The phases converged to the target phase of the
respective gray level in the stimulus (cluster 3 - black, cluster
2- white). Whereas there is only one phase compatible with the
occurrence of the rare stimulus (H in the example here), the
frequent stimulus can entrain oscillations with different phases
(corresponding to the repetition of the first, second etc. V in
the sequence), which is expressed in the phase bins immediately
above and below 3/2π and π/2 in clusters 3 and 2, respectively.

3.2. Multimodal Model
In a similar manner like for the unimodal model, we investigated
the relation between the response accuracy of the multimodal
and the number of repetitions of the input sequence. With
an increasing number of repetitions, the response accuracy
improves (Figure 7A, black curve), and it is generally higher
when congruent items are tested than for incongruent items
(green and red curves, respectively). A comparison of the
accuracies with the unimodal model (cf. Figure 4A) shows that
the dependence on the sequence repetitions is very similar despite
the fact that themultimodal model was tested with a larger variety
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FIGURE 6 | Relative phase-frequency distribution for each of the five clusters shown in Figure 5. Color represents the number of oscillators with the indicated

combination of phase and frequency relative to the bin with the maximum number.

FIGURE 7 | (A) Probability of correct model output when the item given on the x-axis is tested in the multimodal model. Green/red curves show the accuracy when

the tested item is congruent/incongruent, respectively, black curve is the combined accuracy. All accuracies are averages across all 224 sequences generated from

four items. (B) Average response accuracy of human participants in the crossmodal condition. Errorbars show standard error.

of sequences (224 vs. 32) which were composed of only four
rather than the five elements for the unimodal model.

Finally we considered the distribution of phases and
frequencies after a multimodal sequence had been learned
(Figure 9). As expected, the majority of oscillators in the
ensemble that was stimulated by the auditory signal tuned to
the base frequency of the auditory modality (5) and adjusted
their phase to the presentation of the auditory stimulus (3/2π).
An interesting finding is that a sizable population of oscillators
tuned to the neighboring frequency bins centered around 4.9
and 5.1 and phases of 0 and π , respectively. Closer inspection of
these phase-frequency combinations revealed that these rhythms
never hit the target phase of the auditory stimulus, i.e., they
were always in transit when the auditory stimulus appeared,
but that their phase nonetheless was compatible with the silent
episodes during presentation of the visual stimuli. This pattern of
phase-frequency distributions is repeated at the frequencies 4.5
and 5.5.

The ensembles that receive visual input (Figure 8) mostly tune
to the target phase for bright input (3/2π) and a frequency of
one half the base frequency of the visual modality, i.e., 0.5. In the
ensemble that receives input from location 2, several oscillators
also tune to the frequencies 0.4 and 0.6 and a phase of π/2.

FIGURE 8 | Examples for image locations (marked by “+”) in the visual part of

the multimodal sequence which provide input only in VH (1), only in VL (2), or

both (3) stimuli.

This activation of neighboring frequencies at a different phase
resembles the observation we made for the auditory ensemble,
which likely is a consequence of the fact that the VL stimulus
appears at the same frequency in the example sequence as
the AH stimulus.

Taken together, the phase-frequency analyses demonstrate
that the learning rule tunes the oscillator ensembles to the various
rhythms that are generated by repeating the sequence, and that
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FIGURE 9 | Relative phase-frequency distribution after learning the multimodal sequence AH-VL-VH-VH in an ensemble which received auditory input and three

ensembles which received visual input from the representative locations shown in Figure 8. Color represents the number of oscillators in the cluster that have the

indicated combination of phase and frequency. Note the different frequency axes for auditory and visual ensembles.

the higher base frequency of the auditory ensemble affords amore
complex polyphony to emerge.

3.3. Comparison With Behavioral Results
From the Human Study
Response accuracy of the human participants seemed to
increase with more repetitions of the sequence. This trend was
more obvious in the unimodal study (Figure 4B) than in the
crossmodal study (Figure 7B). In both studies, congruent items
were more frequently identified correctly than when the tested
item was incongruent with the sequence. In comparison with
the response accuracies of the models, human performance was
always better for a given sequence length and more similar
for congruent and incongruent test items. With more sequence
repetitions however, the response accuracies of the models
increased to the level of the human participants and beyond,
indicating that learning is slower in the models.

From the unimodal study, we also analyzed the response
accuracies for each of the 32 sequences that the subjects were
requested to learn. As expected, the two trivial sequences with
only one pattern (always H or V, corresponding to a binary
code of 0 and 31, respectively) were the easiest to learn, thus
yielding the highest response accuracies (Figure 10). Next are
the sequences in which one element differs from the other four
(binary codes 1, 2, 4, 8, 15, 16, 23, 27, 29, 30). The remaining
sequences were the most difficult to learn. It is interesting
to observe that the response accuracies of the unimodal
model largely follow this distribution (Pearson correlation
r=0.81,p=2.2× 10−8). The model also reproduces the response
accuracies of the human participants when sequences are
grouped by complexity quantified by their entropy (Figure 10,
right panel).

4. DISCUSSION

The oscillator ensemble model is a new approach to sequence
learning which exploits the rhythmic, “polyphonic” stimulation
that results from repeating a sequence. The basic functional
units in this model are oscillators which lock to a rhythm

by resetting their phase and adapting their frequency. The
results from the unimodal model show that the oscillator
ensembles attune to the various rhythms that are generated
by a sequence of images. Clusters of distinct combinations
of phases and frequencies link image regions that correspond
to a meaningful segmentation of the input. Hence clusters
of similar phase-frequency distributions can be considered as
functional units which link oscillator ensembles that receive
input from corresponding regions in visual space. This is an
interesting feature, because the segmentation is derived solely
from the temporal coherence of image patterns and not from a
topographical map of the input. Whereas the functional coupling
between ensembles within a cluster is given by their tuning to
the same frequency but different phases, such coupling between
clusters can be established by oscillators sharing the same phase
but having different harmonic frequencies. It has been suggested
that such cross-frequency coupling is relevant for integrating
functional systems across multiple spatiotemporal scales in the
human brain, and it has developed to a well-established concept
for understanding brain activity (Engel et al., 2013). In our
model, cross-frequency coupling is not achieved by fitting the
ensemble with a set of fixed frequencies; instead, it results
from tuning frequencies and phases to the rhythms in the
sequence. The multimodal version of the model demonstrates
that the functional coupling also links neuronal populations
which operate in different parameter ranges for processing
sensory information from different modalities.

It seems also noteworthy that the model does not build or
maintain an iconic internal representation of the stimuli. Yet
it is capable of predicting whether or not an input is a valid
continuation of a sequence. Any incongruent input perturbs
the phases of those oscillators that hitherto were attuned to the
rhythm of the item at the respective position in the sequence.
In the model, this perturbation generates an error signal. The
magnitude of this signal is much larger for perturbations of
attuned oscillators than for the phase and frequency adjustments
made during the initial phase of the learning process. The ability
to correctly predict whether or not a given input is a valid
continuation of the sequence improves with the number of its
repetitions. Our analyses show that the model can correctly
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FIGURE 10 | Probabilities of correct response (hit rate) for each of the 32 unimodal sequences that the participants in the study learned (in blue) and response

accuracies of the model (in red). Errorbars show the standard error. The sequence number is given by the binary representation of the sequence with the H stimulus

corresponding to a 0 bit and V to 1. The right panel shows the average hit rate when sequences are grouped by their entropy.

identify valid inputs after only a few repetitions, but that the
recognition of incongruent inputs requires to repeat the sequence
more often. This matches well with the observations from human
sequence learning, albeit the models need a longer learning
phase to reach the response accuracy of the human participants.
Investigating the effect of the model parameters on the learning
rate is beyond the scope of the current study. Another aspect that
we did not investigate here is that the model could also be used to
detect inaccuracies in the timing of the stimulus presentation. It
is therefore general enough to cover aspects of predicting “what”
and “when” at the same time. Considering also the timing of the
error signal would allow us to compare the model dynamics with
the reaction times of the human participants, which will be an
interesting objective for the further development of the model.

In our model, item position is encoded in the phase relation
of a multitude of rhythms which are entrained by the sequence.
This corresponds well with concepts for sequence encoding in
the hippocampus, derived from animal studies, in which the
timing of spikes relative to the phase of ongoing extracellular
theta oscillations is considered to encode position in a behavioral
sequence. Even if the stimuli are separated by several seconds,
their order information is compressed into a single theta cycle,
providing a mechanism for short-term buffering and working
memory (Jensen and Lisman, 2005). When the animal traverses
a sequence of places, sequence items subsequently move toward
the beginning of the theta cycle. This phase precession has been
suggested to be the underlying mechanism for episodic memory
(Jaramillo and Kempter, 2017). In the human brain, the phase
relation between gamma and theta oscillations may constitute a
similar mechanism (Heusser et al., 2016). Our model also relates
to the multi-timescale, quasi-rhythmic properties of speech,

where coordinated delta, theta and gamma oscillations have
been suggested to hierarchically structure incoming information
(Giraud and Poeppel, 2012). Further support for the relevance
of frequency and phase adaptation comes from earlier studies
which found single-cell oscillators in somatosensory cortex
of awake monkeys that seemed to operate as a phase-locked
loop (PLL) for processing of tactile information during texture
discrimination (Ahissar and Vaadia, 1990). Phase and frequency
adaptation has also been observed in thalamo-cortical loops
in the brain of rats and guinea pigs, where the frequency
of spontaneous oscillations shifted under rhythmic stimulation
of a whisker to the stimulation frequency. This may be
an essential function for actively decoding information from
vibrissal touch (Ahissar et al., 1997).

The joint phase space of the oscillators in an ensemble
constitutes a pacemaker system that could be used for
the discrimination between intervals in the range of
seconds, minutes and for circadian rhythm (Church and
Broadbent, 1990). Even when the oscillation frequencies
in the set are in the same range but have slightly
different periods, the characteristic “beating,” i.e., the
time after which the phases of several of these oscillators
match, can be exploited to learn sequences of time
intervals (Miall, 1992).

By comparing the properties of the model with results of
humans in a sequence learning task, we contribute to a long
line of approaches to understanding the properties of human
sequence learning through the development of oscillator models
that reproduce the structure of errors that humans make in
sequence learning (see overview in Church and Broadbent,
1990; Brown et al., 2000). The main difference between these
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models and ours is how they explain what drives the oscillator
ensemble. Whereas in our model the oscillator rhythms adjust
to the sequence, those models work with sets of intrinsically
driven, fixed-frequency oscillations. This internal pacemaker
provides a dynamic learning context that can be associated
with the occurrence of an event by Hebbian learning (for
example Brown et al., 2000). It has been argued that models of
association with intrinsic oscillation are more compatible with
findings from experimental studies on the sequence and timing
of events (Gallistel, 1990). However, the striking similarity in the
structure of errors for congruent and incongruent test items as
well as for varying levels of complexity of sequences between
the oscillator ensemble model and the human participants
in our study suggests that, at least in this dataset, entrained
oscillations captured the relevant processes for solving the
task. It seems worth therefore to explore the implications of a
concept in which externally entrainable and intrinsically driven
oscillations interact.
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