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Abstract
Background: We have previously shown that ultraviolet-A (UVA) radiation enhances metastatic
lung colonization capacity of B16-F1 melanoma cells. The aim of this study was to examine changes
in expression profile of genes in mouse melanoma B16-F1 cells exposed to UVA radiation.

Results: B16-F1 melanoma cells were exposed to a single UVA radiation dose of 8 J/cm2 and
mRNA was isolated 4 h after the end of UVA exposure. Atlas™ Mouse Cancer 1.2 cDNA
expression arrays were used for the large-scale screening to identify the genes involved in the
regulation of carcinogenesis, tumor progression and metastasis. Physiologically relevant UVA dose
induced differential expression in 9 genes in the UVA exposed melanoma cells as compared to the
unexposed control cells. The expression of seven genes out of nine was upregulated (HSC70,
HSP86, α-B-crystallin, GST mu2, Oxidative stress induced protein OSI, VEGF, cyclin G), whereas
the expression of two genes was down-regulated (G-actin, non-muscle cofilin). The gene
expression of cyclin G was mostly affected by UVA radiation, increasing by 4.85-folds 4 hour after
exposure. The analysis of cyclin G protein expression revealed 1.36-fold increase at the 6 hour time
point after UVA exposure. Cell cycle arrest in G2/M phase, which is known to be regulated by
cyclin G, occurred at 4-h hour time-point, peaking 8 hours after the end of UVA irradiation,
suggesting that cyclin G might play a role in the cell cycle arrest.

Conclusion: Our results suggest that UVA radiation-induces changes in the expression of several
genes. Some of these changes, e.g. in expression of cyclin G, possibly might affect cell physiology
(cell cycle arrest).

Background
Ultraviolet (UV) radiation is known to play a significant
role in the development of skin cancer [1]. The major part
of solar UV radiation which reaches the earth's surface
consists primarily of UVA radiation (90–99%) with the
minor component of UVB radiation (1–10%). Recently
published studies have demonstrated that UVA radiation
can modulate a variety of biochemical processes, some of

which are involved in the malignant transformation of
skin [2,3] and mutagenesis [4,5]. UVA is known to cause
severe oxidative damage via reactive oxygen species (ROS)
[6], which can damage lipids [7], DNA [8] and induce
apoptosis [9,10]. UVA may also play a significant role in
the induction and development non-melanoma and
melanoma skin cancers [3,5,11-13].
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We have previously shown in vitro that UVA increases
adhesiveness of B16-F1 melanoma cells to endothelium
and affects expression of the cell surface adhesion mole-
cules [14]. We have also demonstrated in vivo that UVA
irradiation enhanced the melanoma lung colonization
potential in C57BL/6 mice [15]. In this study we have
examined the effect of UVA radiation on the gene expres-
sion B16-F1 melanoma cells. Gene expression of 1176
tumor-related genes was analyzed using Atlas™ mouse
cancer 1.2 cDNA array (Clonetech, USA). Obtained data
shows that 9 genes were differentially expressed 4 hours
after the exposure to UVA dose of 8 J/cm2. The upregu-
lated genes are involved in the cell cycle regulation, stress
response, and angiogenesis. The down-regulated genes are
involved in building cytoskeleton and regulating cell
motility. The most affected gene out of 1176 tumor-
related genes was cyclin G. However, in spite of ~5-fold
upregulation of cyclin G gene expression after UVA expo-
sure, the protein expression levels were only moderately
affected. However, this change was apparently of suffi-
cient magnitude to induce G2/M cell cycle arrest.

Results
Gene expression screening was performed 5 times (n = 5)
using Atlas™ complementary (cDNA) mouse cancer 1.2
array that comprises of probes for 1176 most commonly
altered genes in carcinogenesis. The microarray analysis
has revealed that the physiologically relevant UVA dose
induced differential expression of nine genes in UVA
exposed melanoma cells (Table 1). Expression of seven
genes was upregulated, involving in the stress response
(HSC70, HSP86, α-B-crystallin), the oxidative stress (GST
mu2, Oxidative stress induced protein), angiogenesis
(VEGF), and the cell cycle regulation (cyclin G). Expres-
sion of two genes involved in cell motility was down-reg-
ulated (G-actin, non-muscle cofilin).

Cyclin G was examined further, since it was the most
UVA-affected gene (Figure 1), being upregulated by 4.85-
fold 4 h after UVA-exposure (Table 1). The protein expres-
sion of cyclin G in B16-F1 melanoma cells was examined
immediately after the end of exposure and at different
time-points thereafter (Figure 2). In spite of the statisti-
cally significant 4.85-fold upregulation in the gene expres-
sion, the cyclin G protein expression was only moderately
affected by UVA. There was a 1.36-fold increase in the cyc-
lin G protein expression at 6-h time point, being however
statistically non-significant (Figure 2).

Since the cyclin G functions in the nucleus as the cell cycle
regulator [16,17], the effect of UVA on the cell cycle was
examined at the same time-points, where the protein
analysis was performed. The UVA exposure induced time-
dependent cell cycle arrest in G2/M phase of the cell cycle,

beginning at the 4-h time-point, peaking at 8-h time-point
(p < 0.05), and declining thereafter (Figure 2).

Discussion
The aim of this study was to examine the UVA radiation
induced changes in the gene expression in B16-F1 mouse
melanoma cell line. B16-F1 melanoma cells were exposed
to a single UVA radiation dose of 8 J/cm2, which roughly
corresponds to the UVA dose received approximately
within 1 hour on a sunny summer day in Finland.

Gene expression experiments showed that UVA affected
expression of nine genes. In four of them (cyclin G, VEGF,
α-crystallin and non-muscle cofilin) the change was statis-
tically significant (p ≤ 0.05). The four hour time-point was
selected in order to give melanoma cells time to respond
to UVA radiation in transcriptional level. Furthermore, 4-
h time-point was also used in our preliminary in vitro set-
up, where we have observed alterations in the adhesive
properties of the melanoma cells 4 hours after the end of
irradiation [14].

The upregulation of heat-shock proteins observed in this
study agrees with the previously shown induction of the
overexpression of stress response proteins (Hsp70, Hsp86
and Hsp40) in human melanocytes in response to UVA
[18]. The expression of vascular endothelial growth factor
(VEGF) gene was upregulated in a statistically significant
manner in this study, what is consistent with previously
published observations, where UVA was shown to induce
VEGF in dermal fibroblasts [19] and keratinocyte-derived
cell lines [20]. This result suggests that UVA might affect
melanoma tumor angiogenesis, via enhanced VEGF
expression, and this hypothesis will be studied further in
a separate project. Finally, UVA radiation exposure has
caused decrease the G-actin and cofilin gene expression
levels agreeing with earlier studies that have shown that
UVA radiation decreases actin expression in human
fibroblasts and keratinocytes [21], and in mouse and
hamster fibroblasts [22].

The novel observation of this study was the UVA-induced
4.85-fold upregulation of the expression cyclin G gene.
Cyclins are the regulatory subunits that control the pro-
gression and the check-points of the cell cycle. Cyclin G is
a transcriptional target of the p53 tumor suppressor pro-
tein [23] and its growth inhibitory activity is linked to the
ARF-mdm2-p53 and the retinoblastoma pathways
[24,25]. Cyclin G is known to regulate the G2/M arrest, in
response to DNA damage [16,17], for example after the
UVC exposure [26]. In this study we have shown that cyc-
lin G gene expression is regulated also by UVA radiation.

We have further examined, whether the upregulation of
mRNA for cyclin G will lead to the increase in protein level
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in the UVA-exposed cells. Western blot analysis showed
that the expression of cyclin G was affected by UVA radia-
tion only moderately. The 1.36-fold increase in the cyclin G
expression was seen at 6-h time point. We have also exam-
ined, whether UVA-induced changes in cyclin G expression
(gene and protein) had functional effect on cell cycle
[16,17]. Cell cycle analysis showed that UVA-exposure
caused cell cycle arrest in G2/M phase beginning at the 4-h
time-point and peaking 8 hours after the end of irradiation.

Comparison of the timing of the cyclin G expression and
cell cycle arrest in G2/M phase (Figure 3) shows that the
moderate increase in the protein expression of cyclin G at
2-h and 3-h time-points preceded the cell cycle arrest
observed starting at 4 h after the end of the UVA irradia-
tion. Also the second increase in the cyclin G protein
expression observed at 6-h time-point was followed by
further increase in G2/M phase arrest. This suggests that
UVA-induced changes in cyclin G expression might play
some role, among other factors, in induction of cell cycle
arrest. It is possible to hypothesize that cell cycle arrest
might allow cells to repair UVA-induced DNA damage.
This hypothesis, however, requires further study.

Conclusion
In conclusion, our data suggest that UVA is capable to
alter the expression of several genes in B16-F1 mouse
melanoma cell line. Some of these changes, e.g. expres-
sion of cyclin G, might affect cell physiology (cell cycle).
The biological and physiological significance of these in
vitro observed changes needs to be corroborated by the in
vivo study in human volunteers before any health-related
conclusions and hypotheses can be drawn.

Methods
Cell culture
Mouse melanoma B16-F1 cell line [27] was obtained from
National Cancer Institute, Frederick Cancer Research and
Development Center (Frederick, MD). B16-F1 melanoma
cell line was cultured in RPMI 1640 and was supple-
mented with 10% heat-inactivated FBS, penicillin-strepto-
mycin (100 IU/ml-100 μg/ml), and L-glutamine (4 mM).
All cell culture supplies were purchased from Gibco BRL,
Paisley, UK. Cell lines were maintained at 37°C in a
humidified, 5% CO2 environment. For UVA exposure, fol-
lowed by RNA isolation and cDNA hybridization, 850000
B16-F1 melanoma cells were plated on the cell culture

Table 1: Differentially expressed genes after UVA dose of 8 J/cm2

Gene family [Swiss prot Accession #] No. of arraysa Controlb ± SD UVA exposedc ± SD t-test Ratiod Function

Stress induced
Heat shock 86-kDa protein (HSP86) 
[P07901]

3 ↑ 0,32 ± 0,23 1,04 ± 0,44 0,43 3,23 Belongs to HSP90 family; cytoplasmic molecular 
chaperone regulating the correct folding in the 
heat induced conformational changes.

Heat shock cognate 71-kDa (HSC70; 
HSP73), mouse homolog of human 
[P11142]

2 ↑
1 ↓

0,15 ± 0,12 0,27 ± 0,18 0,39 1,81 Belongs to HSP70 family; molecular chaperone 
regulating the correct folding; found in 
melanoma cell lines [33].

Alpha crystallin B-subunit, mouse 
homolog of human [P02511]

3 ↑ 0,07 ± 0,03 0,21± 0,07 0,05 3,26 Belongs to HSP20 family; found in mammalian 
transparent lens in eye induced by stress 
[34,35].

Oxidative Stress
Oxidative stress-induced protein (OSI) 
[Q64337]

2 ↑
1 ↓

0,16 ± 0,14 0,31± 0,15 0,27 1,92 Regulates metabolic responses to oxidative 
stress, were also induced [36]

glutathione S-transferase mu2 
(GSTM2); [P15626]

3 ↑
1 ↓

0,07 ± 0,04 0,14 ± 0,09 0,23 2,09 Belongs to the GST superfamily; prevents the 
toxic injuries; expressed in human melanoma 
cells [37] and in keratinocytes from human 
squamous cell carcinoma [38].

Cell cycle control
cyclin G [O54779; P51945] 5 ↑ 0,13 ± 0,04 0,65 ± 0,36 0,03 4,85 Contributes to G2/M arrest in response to 

DNA damage; a transcriptional target of the 
p53.

Angiogenesis
Vascular endothelial growth factor 
(VEGF) [Q00731]

4 ↑ 0,07 ± 0,03 0,22 ± 0,08 0,03 2,94 Promotes endothelial cell proliferation and 
migration in angiogenesis; permeabilizes the 
blood vessels; expression regulated by UVB in 
keratinocytes and fibroblasts [39,40].

Skeleton & Motility protein
G-actin cytoplasmic [P02571; P14104] 3 ↓ 1,02 ± 0,37 0,47 ± 0,18 0,10 0,47 Exists in all eukaryotic cells as a component of 

the cytoskeleton mediating cell motility. 
Polymerization leads to formation of 
filamentous F-actin.

non-muscle cofilin 1 (CFL1) [P18760] 3 ↓ 0,40 ± 0,10 0,17 ± 0,01 0,05 0,41 Controls reversibly actin depolymerization 
from F-actin to G-actin causing an increase in 
the G-actin pool.

a The number of arrays (out of five), in which differences in the gene expression were observed.; The arrows indicate the upregulation or 
downregulation of the gene. In the remaining arrays no difference was observed.
b The average of the normalized gene intensity in control cells ± standard deviation;
c The average of the normalized gene intensity in UVA exposed cells ± standard deviation.
d Ratio of UVA exposed genes versus control genes.
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dish (area 55 cm2). Cells were grown for 48 hours, after
which semi-confluent B16-F1 monolayers were formed
and the melanoma cells were exposed to UVA dose of 8 J/
cm2.

Radiation source and irradiation procedure of B16-F1 
melanoma cell
An "Original Philips UVA" facial tanner model HB 171/A
(Philips, Germany) was used as a radiation source. The

irradiances of the UVA source were measured as described
previously [14,28]. Briefly, the irradiances were deter-
mined with a temperature- and wavelength-controlled
Optronic 742 double-holographic grating spectroradiom-
eter having a Teflon diffuser as input optics at 1 nm inter-
vals from 250 to 400 nm. The spectroradiometer was
calibrated against a 1000 W halogen standard lamp trace-
able to the National Standards and Technology (USA) and
the overall spectroradiometric uncertainty is estimated to

cDNA array results of cyclin GFigure 1
cDNA array results of cyclin G. A. The Representative image of Atlas™ Mouse Cancer 1.2 cDNA expression array hybrid-
ization film. Gene coding cyclin G, which was most prominently affected by UVA radiation, is indicated with an arrow at the 
corresponding position of two membranes. B. The upregulated cyclin G spots from cDNA arrays of five experiments at 4-hour 
time-point after the dose of 8 J/cm2 of UVA. C. The optical densities of the cyclin G spots of five experiments.
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be ± 8 %. The cells were irradiated in the plastic Petri
dishes through a 5-mm thick glass filter to cut off residual
UVB radiation, dish cover and culture medium and the
UVA spectrum used was 310–400 nm, from which the
UVA portion was 99.99% and UVB 0.01% (Figure 4). The
UV irradiance that reached the melanoma cells was 3.7
mW/cm2. The culture medium was changed to room tem-
perature medium prior to irradiation so that it does not
exceed 37°C. The B16-F1 melanoma cells were exposed to
single UVA dose of 8 J/cm2, which roughly corresponds to
the UVA dose received approximately within 1 hour on a
sunny summer day in Finland. All irradiations were per-
formed at room temperature in a dark room on a black
support to avoid effects of reflected radiation. The control
cells were kept at room temperature in a dark room.

RNA extraction
Cells were collected 4 hours after the end of UVA irradia-
tion by brief trypsinization and washed twice with ice cold
PBS. The total RNA was isolated from melanoma cells
using Nucleospin®RNA II kits (Clontech Laboratories,
Palo Alto, CA) and RNA concentrations were determined
spectrophotometrically measuring the optical densities.
The possible genomic DNA contamination was moni-
tored using total RNA as template in a PCR reaction with
primers for genomic β-actin [29]. The PCR products were
run by agarose gel electrophoresis and only DNA free sam-
ples were used in Atlas™ Microarray procedure.

The cDNA probe preparation and array hybridization
The poly A+ RNA enrichment of 50 μg total RNA and 32P-
labelled cDNA probe synthesis made by reverse transcrip-

The UVA effect on the protein expression of cyclin G and on the cell cycle arrest in B16-F1 cellsFigure 2
The UVA effect on the protein expression of cyclin G and on the cell cycle arrest in B16-F1 cells. The UVA effect 
on the protein expression of cyclin G in B16-F1 cell line is indicated by purple bars. The results are shown as the ratios, where 
the UVA treated value is divided by the control value. The cyclin G protein expression is moderately affected by UVA and 
there is a 1.36-fold increase in the cyclin G expression at 6-h time point. The UVA effect on the cell cycle arrest at the G2/M 
check point is indicated by black circles; non-exposed control cells are indicated by black triangles. The UVA exposure induces 
a significant cell cycle arrest, beginning at the 4-h time-point, peaking at the 8-h time-point in a statistically significant-manner (p 
< 0.05), and declining thereafter.
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tion were performed according to Atlas™ Pure Total RNA
Labelling System (Clontech Laboratories, Palo Alto, CA).
Precisely the same amounts of 32P-labelled cDNA from
control and UVA exposed melanoma cells were used as a
probe in Atlas™ Mouse Cancer 1.2 cDNA expression arrays
(Clontech Laboratories, Palo Alto, CA), containing 1176
tumor related genes immobilized on a nylon membrane.
The whole list of the studied genes is found at the manu-
facturer's home page [30]. Hybridization and washing
procedures were performed according to recommenda-
tions of the manufacturer (Clontech Laboratories, Palo
Alto, CA). Briefly, the array membranes were pre-hybrid-
ized for 30 minutes at 68°C in ExpressHyb hybridization
solution containing 0.1 mg/ml salmon testis DNA. The
32P-labelled cDNA was added to the hybridization solu-
tion and the array membrane was hybridized overnight at
68°C. On the next day array membranes were washed
three times with 2 × SSC solution (NaCl 0.29 M, tri-

sodium-citrate 0.029 M) supplemented with 1% SDS, and
two times with 0.1 × SSC solution (NaCl 0.015 M, tri-
sodium-citrate 1.5 × 10-3M) supplemented with 0.5%
SDS. The x-ray film was exposed at -70°C simultaneously
to the membrane hybridized with control probe and to
the membrane hybridized with UVA exposed probe. The
exposure time was exactly same with control and UVA
exposed membrane within one experiment, but exposure
times varied from 7 to 21 days between 5 experiments.

cDNA array imaging and quantitation
Hybridization signals on the autoradiograms were
scanned using GS-710 Calibrating Imaging Densitometer
(Bio-Rad Laboratories, Hercules, CA) and the intensity of
gene spots was analyzed by AtlasImage 2.0 Software
(Clontech Laboratories, Palo Alto, CA). Analysis of the
membranes was performed according to the manufac-
turer's instructions. The cut-off value to the reliable gene

Comparison of the timing of the cyclin G expression and cell cycle arrest in G2/M phaseFigure 3
Comparison of the timing of the cyclin G expression and cell cycle arrest in G2/M phase. The results are 
expressed as the ratios. The moderate increase in the protein expression of cyclin G (pink line) at the 2-h and 3-h time-points 
precedes the G2/M cell cycle arrest (blue line), which starts 4 h after the end of the UVA irradiation. The second increase in 
the cyclin G protein expression observed at the 6-h time-point is followed by further increase in G2/M phase arrest.
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hybridization signal was set to 3000 OD and only those
genes whose intensity was bigger than 3000 in either con-
trol or UVA exposed spot were included in the further
examination. Thereafter, the intensity of gene was nor-
malized against the average OD of nine housekeeping
genes in the membrane. Ratio of two corresponding nor-
malized gene spots between control and UVA exposed
spots was calculated by dividing the intensity of normal-
ized UVA exposed gene by the normalized intensity of
control gene. To select the genes with altered expression
level, the significance of up-regulation was set at ratio ≥
1.7 and down-regulation at ratio ≤ 0.6. Subsequently, the
existence of the spots on the film was verified by visual
examination. The gene expression level was considered to
be changed if the alteration was observed in three or more
experiments out of five experiments. The student t-test
was performed to calculate the statistical significance of
the change.

Western blot analysis of Cyclin G
B16-F1 melanoma cells were harvested, either immedi-
ately after the end of UVA exposure or at different time
points, with versene (140 mM NaCl, 2.7 mM KCl, 8 mM
Na2HPO4, 0.5 mM EDTA). Melanoma cells were washed
twice with cold PBS and lysed with 2.5% sodium dodecyl-

sulfate with 1% proteinase inhibitors (cat# P-8340,
Sigma-Aldrich, St. Louis, MO, USA). The protein concen-
tration was measured according to Lowry [31] using the
Bio-Rad DC Protein Assay (Bio-Rad, Hercules, CA, USA).
Samples containing 20 μg protein per lane were resolved
using 7.5 % SDS-PAGE gel and blotted on PVDF mem-
branes (Bio-Rad Mini-Protean® 3 cell apparatus, Hercules,
CA, USA). Immunoblots were developed according to
ECL Advanced kit (Amersham Biosciences, UK). Briefly,
membranes were incubated at room temperature for one
hour in a 2% blocking agent diluted in PBS with 0.5 %
Tween and followed by incubation in the 1st anti-cyclin G
antibody (Neomarkers, Fremont, CA; diluted 1: 2000 in
the blocking solution) overnight on a rotary shaker at
+4°C. Membranes were washed with PBS supplemented
with 0.5% Tween for 3 × 10 minutes and incubated in a
secondary antibody solution of horseradishperoxidase-
conjucated mouse anti-mouse immunoglobulin G
(DAKO, Denmark; diluted 1:35000 in blocking solution)
for 1 h at room temperature on a rotary shaker. Thereafter,
immunoblots were washed for 3 × 10 minutes with PBS
with 0.5% Tween and the signal was detected using
chemiluminiscence (Amersham Biosciences, UK). Autora-
diograms were scanned by GS-710 Calibrating Imaging
Densitometer (Bio-Rad Laboratories, Hercules, CA) and

UV spectrum irradiating B16-F1 mouse melanoma cellsFigure 4
UV spectrum irradiating B16-F1 mouse melanoma cells. Spectral irradiance of a Philips HB 171/A face tanner filtered 
through a 5 mm glass plate (thin line) and filtered through a 5 mm glass plate and a culture dish cover (thick line).
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the intensity of protein bands was analyzed by Phoretix
1D v2003.01 from three different set of experiments. The
student t-test was performed to calculate the statistical sig-
nificance of the change.

Cell cycle analysis
The cell cycle was studied by flow cytometry examining
the DNA content of B16-F1 cell by propidium iodide
staining as described previously [32]. B16-F1 melanoma
cells were collected with versene, either immediately after
the end of UVA exposure or at different time-points there-
after, cells were washed twice with cold PBS, and fixed in
methanol. After fixation, melanoma cells were washed
twice with cold PBS followed by incubation in an RNase
solution in PBS (100 units/ml) for 30 minutes at 37°C.
Melanoma cells were incubated in propidium iodide solu-
tion in PBS (10 μg/ml) overnight at +4°C. Fluorescence
was measured using FACScan flow cytometry (Becton
Dickinson, USA) and analyzed with ModFitLT
V3.1(PMac) cell cycle analysis program (Becton Dickin-
son, USA). The student t-test was performed to calculate
the statistical significance of the change.
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