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Purpose: To develop and evaluate a deep learning (DL) system for retinal hemorrhage
(RH) screening using ultra-widefield fundus (UWF) images.

Methods: A total of 16,827 UWF images from 11,339 individuals were used to develop
the DL system. Three experienced retina specialists were recruited to grade UWF images
independently. Three independent data sets from 3 different institutions were used to
validate the effectiveness of the DL system. The data set from Zhongshan Ophthalmic
Center (ZOC) was selected to compare the classification performance of the DL system
andgeneral ophthalmologists. Aheatmapwasgenerated to identify themost important
area used by the DL model to classify RH and to discern whether the RH involved the
anatomical macula.

Results: In the three independent data sets, the DL model for detecting RH achieved
areas under the curve of 0.997, 0.998, and 0.999, with sensitivities of 97.6%, 96.7%, and
98.9% and specificities of 98.0%, 98.7%, and 99.4%. In the ZOC data set, the sensitiv-
ity of the DL model was better than that of the general ophthalmologists, although the
general ophthalmologists had slightly higher specificities. TheheatmapshighlightedRH
regions in all true-positive images, and the RH within the anatomical macula was deter-
mined based on heatmaps.

Conclusions: Our DL system showed reliable performance for detecting RH and could
be used to screen for RH-related diseases.

Translational Relevance: As a screening tool, this automated system may aid early
diagnosis and management of RH-related retinal and systemic diseases by allowing
timely referral.

Introduction

Retinal hemorrhage (RH) can be a sign of many
ocular and systemic diseases. For example, diabetes

(prevalence of 11% in people over 20 years old) can
lead to damage to tiny blood vessels as a result of
chronically high blood glucose, and 34.6% of adults
with diabetes develop diabetic retinopathy (DR).1–4
DR is a leading cause of visual impairment in
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working-age adults, and the most common early clini-
cally visible manifestations of DR include microa-
neurysm formation and RH.4 Retinal vein occlusion
(RVO) is the second most common retinal disorder
following DR with a prevalence of 0.5% in the general
population, andRVOcan often result in visual loss. The
most important clinical manifestation of RVO is RH.5
Many other retinal and systemic diseases may also
be associated with RH, such as age-related macular
degeneration (AMD), hypertension, Eales disease,
ocular ischemic syndrome, and leukemia.6–10 Notably,
in clinical practice, it is not uncommon for RH to be
the first manifestation of many systemic diseases.10

Patients with RH are usually asymptomatic except
when hemorrhages involve the center of the macula.11
RH screening on a large scale can promote early
diagnosis and treatment of most retinal diseases and
some widespread systemic diseases, such as those
mentioned above, by facilitating timely referral. Image
screening with automated tools might increase access
to care in regions with few or no ophthalmologists.
Although recent deep learning (DL) systems have high
accuracy in diagnosing DR, AMD, and glaucoma
based on fundus images, these systems cannot make
further medical decisions other than recommending
patients with suspected diseases to see a doctor.12–14 In
addition, as most retinal diseases and some systemic
diseases can present with RH, a specific diagnosis
cannot be made based solely on fundus images without
considering other clinical information and examina-
tions. Therefore, in using a DL system to screen for
diseases based on fundus images with the aim to avoid
misdiagnosis due to the similar clinical signs, the detec-
tion of RH is more reliable and feasible than specifying
a diagnosis related to RH.

Traditional fundus imaging can only provide a
30- to 60-degree field of view, which is not ideal when
used in the screening program to detect RH due to its
limited visible scope. Furthermore, patients with many
diseases, such as Eales disease and hematologic disor-
ders, initially develop RH in the peripheral retina.7,15
Therefore, it is advantageous to use ultra-widefield
fundus (UWF) imaging, which can provide a 200-
degree panoramic image of the retina to reduce the rate
of missed diagnosis in RH screening.16 More impor-
tant, the peripheral retina can be observed through
UWF imaging with a single capture without requiring
a dark setting, contact lens, or pupillary dilation.16 The
utilization of the DL system developed based on UWF
images may provide accurate identification of RHwith
high efficiency, thus facilitating the implementation of
the screening program in the general population. In this
study, we aimed to develop aDL systembased onUWF
images to automatically detect RH and to evaluate its

performance in three independent data sets from differ-
ent clinical settings.

Methods

Image Collection

A total of 16,827 macula-centered UWF images
(11,339 individuals) were obtained from the Chinese
Medical Alliance for Artificial Intelligence (CMAAI).
The CMAAI is a union of medical institutions,
computer science research groups, and enterprises
in the field of artificial intelligence (AI) with the
purpose of promoting the research and translational
application of AI in medicine. The CMAAI data
sets include individuals who presented for retinopathy
examinations and needed ophthalmology consultation
because of retinopathies caused by various systemic
diseases such as hypertension, hematologic diseases,
and preeclampsia and those who were undergoing
routine ophthalmic health evaluations. The images
were captured between June 2016 and April 2019 using
an OPTOS nonmydriatic camera (OPTOS Daytona,
Dunefermline, UK) and 200-degree fields of view.
All participants were examined without mydriasis. All
images were deidentified prior to transfer to research
investigators. This study was approved by the Institu-
tional ReviewBoard of ZhongshanOphthalmic Center
(ZOC) and adhered to the tenets of the Declaration of
Helsinki.

Image Labeling, Quality Control, and
Reference Standard

First, all images were assigned to two categories,
RH and non-RH. The RH category included images
of various types of hemorrhages, such as prereti-
nal, retinal, intraretinal, subretinal, and disc hemor-
rhages. Microaneurysms were also included in the
RH category, as they were difficult to distinguish
from dot hemorrhages in the UWF images. The
non-RH category included images of normal retinas
and various retinopathies such as retinal detachment,
central serous chorioretinopathy, and retinitis pigmen-
tosa. Image quality was included in the classification as
follows:

1. Excellent quality referred to images without any
problems.

2. Adequate quality referred to images in which RH
could still be identified despite deficiencies in focus,
illumination, or other artifacts.
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3. Poor quality referred to images thatwere insufficient
for any interpretation (an obscured area covering
greater than or equal to one-third of the image).

Poor-quality images were excluded from the study.
Training a DL system requires a robust reference

standard.17,18 To ensure accuracy of the image classi-
fication, all anonymous images were labeled separately
by three board-certified retina specialists with at least
five years of experience. The reference standard was
determined based on the agreement achieved by all
three retina specialists. Any level of disagreement was
adjudicated by another senior retina specialist with
over 20 years of experience. The performance of the
DL system in detecting the RHwas compared with this
reference standard.

Image Preprocessing and Augmentation

We performed image standardization before deep
feature learning. The images were downsized to 512
by 512, and the pixel values were normalized within
the range of 0 to 1. Data augmentation was used to
increase the diversity of the data set and thus reduce
the chance of overfitting in the deep learning process.
Horizontal and vertical flipping, rotation up to 90
degrees, and brightness shift within the range of 0.8 to
1.6 were randomly applied to the images in the training
data set to increase its size to five times the original size
(from 11,291 to 56,455).

Deep Learning Model Development

In the current study, theDLmodel was trained using
a state-of-the-art convolutional neural network (CNN)
architecture, InceptionResNetV2. InceptionResNetV2
mimics the architectural characteristics of two previous
state-of-the-art CNNs, the Residual Network and the
Inception Network. Weights pretrained for ImageNet
classification were used to initialize the CNN architec-
tures.19

Each DL model was trained up to 180 epochs.
During the training process, the validation loss was
evaluated using the validation set after each epoch and
used as a reference for model selection. Early stopping
was applied, and if the validation loss did not improve
over 60 consecutive epochs, the training process was
stopped. The model state where the validation loss was
the lowest was saved as the final state of the model.

The entire data set from CMAAI was randomly
divided into three independent sets: 70% in a training
set, 15% in a validation set, and the remaining 15% in
a test set, with no individuals overlapping among these
sets. The training and validation sets were used to train

and validate the DL model, respectively. The test set
was used to evaluate the performance of the selected
model. Two other data sets were applied to further
verify the performance of theDLmodel. One was from
the outpatient clinic at ZOC in Guangzhou (southeast
China), and the other was from the outpatient clinic
and health examination center at Xudong Ophthalmic
Hospital (XOH) in InnerMongolia (northwest China).
The reference standard of the images used in these two
data sets is same as that of the CMAAI data set.

Features of Misclassification by the Deep
Learning Model

UWF images misclassified by the DL model (false
positive and false negative) were reviewed and analyzed
by a senior retina specialist in terms of their most
commonly observed features.

Visualization Heatmap

In the ZOC data set, heatmaps highlighting the
regions in which RH was detected using the DL model
were generated using the Saliency Map visualization
technique for all true-positive images. The Saliency
Map technique calculates the gradient of the output
of the CNN with respect to each pixel in the image,
to identify the pixels with the greatest impact on the
final prediction. The intensity value of the heatmap is a
direct indication of the pixels’ influence on the model’s
prediction. The effectiveness of the heatmaps was
determined based on whether the highlighted regions
were colocalized with the RH, which was confirmed by
the senior retina specialist.

As the mean optic disc-fovea distance (DFD) is
4.74 to 4.90 mm and the diameter of macula is
5.5 mm,20,21 the area of the anatomical macula in the
macula-centeredUWF image is approximately equal to
the region within three-fifths of theDFD semidiameter
of the image center, which is marked with a white circle
of corresponding size (Fig. 1). Based on the heatmap,
RH images that included highlighted regions (heatmap
intensity over a threshold of 36) in this central region
were considered to have macular hemorrhage, causing
the white circle to change to a red circle. The thresh-
old of heatmap intensity representing the highlighted
region in the circle corresponded to a sensitivity of 97%
for detecting macular hemorrhage in the ZOC data
set because a high sensitivity is a precondition for a
potential screening approach 12. The XOH data set was
used to verify the effectiveness of this heatmap inten-
sity threshold. Figure 2 shows the workflow of this DL
system.
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Figure 1. The area of the macula in the macula-centered ultra-
widefield fundus image. Disc-fovea distance is the length between
the optic disc center and the fovea.

General Ophthalmologist Comparisons

To evaluate our DL system in the context of RH
screening, we recruited two general ophthalmologists
who had three and five years of experience, respec-
tively, in UWF image analysis at a physical examina-

tion center and then compared the performance of the
DL system and the general ophthalmologists with the
reference standard using the ZOC data set.

Statistical Analyses

A receiver operating characteristic (ROC) curve
and an area under the curve (AUC) with 95% confi-
dence intervals (CIs) were used to evaluate the perfor-
mance of the DL system. The sensitivity, specificity,
and accuracy of the system and general ophthalmol-
ogists for detecting RH were computed according to
the reference standard. Unweighted Cohen’s κ coeffi-
cients were employed to compare the results of the
systemwith the reference standard as established by the
aforementioned retina specialists. All statistical analy-
ses were performed using Python 3.7.3 (Wilmington,
Delaware, USA).

Results

Demographics and image characteristics of the
three independent data sets are summarized in Table 1,
and detailed diagnostic information from the patients
is shown in Table 2. In total, 689 poor-quality images

Figure 2. Workflow of the deep learning system and its corresponding clinical application. The red circle indicates the RH involving the
macula, and the white circle indicates the RH outside the macula.
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Table 1. Demographics and Image Characteristics of the Data Sets

Characteristic CMAAI Data set

Zhongshan
Ophthalmic

Center Data Set

Xudong
Ophthalmic

Hospital Data Set

Total No. of images 16,827 905 1236
Total No. of gradable
images

16,138 872 1220

No. of individuals 11,339 339 445
Age, mean (range), y 48.7 (5–86) 46.3 (3–75) 50.8 (3–89)
No. (%) of women 5273 (46.5) 150 (44.8) 242 (54.4)
Location of
institution

South of China Southeast of
China

Northwest of
China

Camera model OPTOS
Daytona

OPTOS 200TX OPTOS Daytona

Training set Validation set Test set
Retinal hemorrhagea 2398/11,291

(21.2)
512/2424 (21.1) 523/2423

(21.6)
121/872 (13.9) 210/1220 (17.2)

Nonretinal
hemorrhagea

8893/11291
(78.8)

1912/2424
(78.9)

1900/2423
(78.4)

751/872 (86.1) 1010/1220 (82.8)

aData are presented as number of images/total number (%) unless otherwise indicated.

from CMAAI were excluded due to the opacity of the
refractive media or artifacts (e.g., arc defects, eyelid,
eyelash, and defocused images) (Fig. 3). The training,
validation, and test sets included 11,291, 2424 and 2423
images, respectively. After removing the poor-quality
images, the ZOC and XOH data sets consisted of 872
and 1220 images, respectively.

The performance of the DL model for identifica-
tion of RH in the CMAAI, ZOC, and XOH data sets
is shown in Table 3. In the ZOC data set, the general
ophthalmologist with five years of experience had a
95.9% sensitivity and a 99.5% specificity, the general
ophthalmologist with three years of experience had a
92.6% sensitivity and a 98.9% specificity, and the DL
model had a 96.7% sensitivity and a 98.7% specificity
with an AUC of 0.998 (95% CI, 0.995–0.999) (Fig. 4).
Compared with the reference standard of the CMAAI,
ZOC, and XOH data sets, the unweighted Cohen’s
κ coefficients of the DL model were 0.979 (95% CI,
0.970–0.989), 0.934 (95% CI, 0.900–0.968), and 0.930
(95% CI, 0.903–0.957), respectively. ROC curves of the
DL model derived from the CMAAI test set and the
XOH data set are shown in Figure 5.

In the CMAAI test set and the ZOC and XOH data
sets, a total of 15RH imageswere classified erroneously
into the non-RH category by the DL model, 13 of
which showed the RH under the obscured optical
media and 2 of which showed the RHpartly covered by
eyelashes (Fig. 6A). In contrast, a total of 41 non-RH
images were mistakenly assigned to the RH category,

including 31 images of retinal pigmentation of varying
degrees, 7 images of retinal pigmentosa, and 3 images
of round retinal holes (Fig. 6B).

To visualize how the DL system makes RH predic-
tions, heatmaps were generated to indicate the regions
of RH. Figure 7 presents typical examples of activation
maps forRH, accompanied by the corresponding origi-
nal image. Heatmaps effectively highlighted regions
of RH regardless of the size, location, and shape of
RH, even for a single-dot hemorrhage/microaneurysm
(Fig. 7A). To determine whether hemorrhages involved
the area of the macula based on the heatmaps of the
RH images, the DL system identified 96.3% (158/164)
of the images of macular hemorrhage compared
with the reference standard of the XOH data set.
Figure 7B shows RH outside the region of the macula,
and Figure 7C displays RH involving the region of the
macula.

Discussion

In this study, we developed a DL system using
16,827 UWF images for automated identification of
RH, and we evaluated its performance using data sets
from three different institutions. The results showed
that our DL system performed very well in RH
detection (Table 3). In addition, the system exhibited
wide applicability, as the AUCs were ideal for all the
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Table 2. Diagnostic Information of the Data Sets

Diagnosis
CMAAI Data

Set

Zhongshan
Ophthalmic

Center Data Set

Xudong
Ophthalmic

Hospital Data Set

RH group
Diabetic retinopathy 855 (35.4) 34 (36.6) 48 (41.3)
Retinal vein occlusion 220 (9.1) 7 (7.5) 6 (5.2)
Wet age-related macular degeneration 423 (17.5) 11 (11.8) 8 (6.9)
Eales disease 62 (2.6) 5 (5.4) 3 (2.6)
Retinitis with RH 57 (2.4) 4 (4.3) 3 (2.6)
Retinal breaks with RH 21 (0.9) 2 (2.2) –
Optic neuritis 46 (1.9) 2 (2.2) 3 (2.6)
Leukemia 12 (0.5) 1 (1.1) –
Hypertension 55 (2.3) 3 (3.2) 4 (3.4)
Heart failure 5 (0.2) – –
Tuberculosis 20 (0.9) 3 (3.2) –
Preeclampsia 23 (1.0) 1 (1.1) –
Unknown cause 257 (10.6) 4 (4.3) 19 (16.4)
Information missing 362 (15.0) 16 (17.2) 22 (20.0)
Total patients in RH group 2418 (100.0) 93 (100.0) 116 (100.0)

Non-RH group
Normal 2787 (31.2) 88 (35.8) 112 (34.0)
Retinal detachment 773 (8.7) 16 (6.5) 8 (2.4)
Lattice degeneration 352 (3.9) 8 (3.3) 14 (4.3)
Glaucoma 560 (6.3) 16 (6.5) 15 (4.6)
Retinitis pigmentosa 49 (0.5) 3 (1.2) 5 (1.5)
Dry age-related macular degeneration 323 (3.6) 8 (3.3) 16 (4.9)
Retinitis without RH 39 (0.4) 2 (0.8) 6 (1.8)
Macular hole 40 (0.4) 3 (1.2) 3 (0.9)
Macular epiretinal membrane 33 (0.4) 5 (2.0) 2 (0.6)
Central serous chorioretinopathy 29 (0.3) 3 (1.2) 5 (1.5)
Retinal breaks without RH 211 (2.4) 3 (1.2) 3 (0.9)
Othersa 1327 (14.9) 38 (15.4) 51 (15.5)
Information missing 2398 (26.9) 53 (21.5) 89 (27.1)
Total patients in non-RH group 8921 (100.0) 246 (100.0) 329 (100.0)

Data are presented as no. of patients (%) unless otherwise indicated.
a“Others” indicates other fundus conditions of non-RH group, such as retinal pigmentation, optic atrophy, and congenital

myelinated nerve fibers.

tested data sets. Moreover, the unweighted Cohen’s κ

coefficients illustrate that the agreement between the
DL model and the reference standard was almost
perfect, which further substantiated the effectiveness of
our DL system.When compared with the performance
of general ophthalmologists in identifying RH, the DL
model had higher sensitivity, although the specificity
was slightly lower. Because high sensitivity is a prereq-
uisite for a potential screening tool and can reduce the
workload and medical costs by avoiding the need for
further examination of normal eyes,12,22,23 this system

qualifies for application in health examination centers
or primary eye care settings to screen for individu-
als with RH. Before the era of deep learning, several
reports of automated methods for RH detection had
been published. Tang et al.11 developed a technique
using a splat feature classification method based on
300 fundus images to detect RH and validated it in
900 images achieving an AUC of 87% at the image
level. Niemeijer et al.24 used 40 fundus images to train a
RH detection method based on pixel classification and
tested it in 100 images, obtaining a sensitivity of 100%
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Figure 3. Typical examples of poor-quality images. A, Image with opacity of the refractive media. B, Image with arc defects. C, Image with
eyelid and eyelashes. D, Defocused image.

Table 3. Performance of the Deep Learning Model in Detecting Retinal Hemorrhage

Characteristic CMAAI Data Set
Zhongshan Ophthalmic

Center Data Set
Xudong Ophthalmic
Hospital Data Set

AUC (95% CI) 0.999 (0.999–1.000) 0.998 (0.995–0.999) 0.997 (0.994–0.999)
Sensitivity (95% CI), % 98.9 (98.0–99.8) 96.7 (93.5–99.9) 97.6 (95.5–99.7)
Specificity (95% CI), % 99.4 (99.1–99.7) 98.7 (97.9–99.5) 98.0 (97.1–98.9)
Accuracy (95% CI), % 99.3 (99.0–99.6) 98.4 (97.6–99.2) 98.0 (97.2–98.8)

and a specificity of 87%. Based on feature extraction,
the above studies would inevitably introduce errors
in the localization and segmentation that would lead
to misalignment and misclassification.25 In addition,
the pixel-based technique needs experienced ophthal-
mologists to carefully annotate all RH in the images
to provide a reference standard, which is not feasible
for applying to a large data set as this process would
be extremely labor-intensive and time-consuming. In
contrast, the deep learning algorithm used in this study
avoids such problems by learning predictive features
directly from the global labeled images.

The current study has four unique differences
compared with previous studies. First, most previ-
ous studies used DL to screen for specific retinal

diseases, such as DR, AMD, and glaucoma, based on
fundus images.12–14 However, there are some overlaps
in lesion characteristics of fundus images among many
retinopathies. For example, RH may appear in DR,
AMD, retinal vein occlusions, and retinal vasculitis.
Normally, neither retina specialists using only a fundus
image without other clinical information and exami-
nations nor the DL system developed based on the
reference standard established by the retina special-
ists can make an accurate diagnosis. Detailed inquiry
and careful comprehensive examinations by the retina
specialist are crucial for making a medical decision.
As a screening tool, our system only includes one
DL model and is mainly used to detect multiple RH-
related diseases, which is more practical and economi-



Screening Retinal Hemorrhage Using Deep Learning TVST | Special Issue | Vol. 9 | No. 2 | Article 3 | 8

Figure4. Comparisonof thedeep learningmodel andgeneral ophthalmologistswith the reference standard fordetectionof retinal hemor-
rhage in the data set of the Zhongshan Ophthalmic Center. General ophthalmologist A, 5 years of working experience at a physical exami-
nation center; general ophthalmologist B, 3 years of working experience at a physical examination center. The figure on the right side is the
enlarged portion of the yellow shadow of the figure on the left side.

Figure 5. ROC curves of the deep learning model for detection of retinal hemorrhage in the test set from Chinese Medical Alliance for
Artificial Intelligence and the data set from Xudong Ophthalmic Hospital.

cal in real-world settings. Second, althoughDL systems
developed based on traditional fundus images showed
reliable performance for the detection of retinopathies,
missed diagnoses were inevitable due to the limited
visible scope of these fundus images.16,26 Our study
developed a robust DL model for detecting RH based
on UWF images, the visible scope of which was five
times larger than that of traditional fundus images.
Thus, our system minimizes missed diagnoses of RH.
Third, most previous studies have built DL systems
based on fundus images to predict retinal diseases.12–14
However, our DL system could help to detect not only
retinal disease but also systemic diseases, as RH can
also be an initial sign of systemic diseases such as

congestive heart failure, hypertension, diabetes, and
leukemia.1,9,10,27 Fourth, to the best of our knowledge,
this study was the first to use DL to detect RH based
on a large number of UWF images and validated its
performance with three independent data sets.

Although various DL systems have reliable perfor-
mance in automated prediction of diseases, the inter-
pretation of the output generated by these systems is
unclear.12,14 In this study, the salient regions that the
DL model used to detect RH were located through
heatmaps to illuminate the rationale of this screening
method. Encouragingly, based on the DL algorithm,
the heatmaps highlighted the region of RH in all true-
positive images, which could help clinicians under-
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Figure 6. Ultra-widefield fundus images showing typical false-negative and false-positive cases in RH detection. A, False-negative images:
A1, scattered RH under the obscured optical media; A2, RH in the center, partly covered by the opaque vitreous body; A3, RH at the bottom,
partly covered by eyelashes. B, False-positive images: B1, retinal pigmentation on the left side; B2, retinal pigmentosa; B3, round retinal holes
on the left side.

stand how the final RH prediction was made. This
interpretability may increase the public’s understand-
ing and acceptance of the proposed DL system and
promote its application in real-world settings.

In this study, the circle indicating themacular region
was automatically generated in the UWF image, and
our DL model successfully identified the RH within
the macula area based on the heatmap. Notably, deteri-
oration of visual acuity often occurs in a short time
when RH is located near the center of the macula.11,28
Our DL model is able to advise patients regarding how
urgent their disease state is and encourage patients with
macular hemorrhage to visit a retina specialist immedi-
ately. These features will increase the probability of
an improved visual prognosis, as early treatment of
hemorrhage at the macula can reduce damage to the
macula.28,29

The DL model misclassified a few images when
compared with the reference standard. When inves-
tigating the reasons for false-negative cases, all false-
negative images were a result of unclear RH features
caused by the obscured optical media or eyelashes.
When assessing the reasons for false-positive classi-
fications, approximately nine-tenths of false-positive
cases were due to the presence of retinal pigmented
spots with a color similar to that of old RH. The

remaining false-positive cases were round retinal holes,
the color of which resembled that of fresh RH. An
ideal screening tool should minimize the number of
false-negative results, and more studies are needed to
explore strategies to reduce this kind of error. For false-
positive cases, a quarter of the results showed round
retinal holes and retinal pigmentosa that also required
further investigation by ophthalmologists. Therefore,
the increased workload caused by false-positive results
seems to be reasonable given that such cases would
benefit from further clinical examination.

There are several limitations of this study. First,
poor-quality images were removed from the study
because it was unclear whether the defects were caused
by human or camera factors or by the opacity of
the refractive media. Referring people whose images
are ungradable merely due to artifacts or bad illumi-
nation (underexposure or overexposure) will bring
unnecessary burden to both individuals and health
care systems. Consequently, further study is needed to
develop approaches that can decrease the number of
deficient images attributed to human or camera factors
or that can distinguish poor-quality images resulting
from optical media. Second, although UWF imaging
can capture the largest retinal view among existing
technologies, the entire retina still cannot be observed
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Figure 7. Ultra-widefield fundus images and corresponding heatmaps showing typical true-positive cases. A, RH shown in A1 corresponds
to the highlighted regions displayed in heatmap A2. B, RH without involving the macula manifested in B1 is present in the highlighted
regions outside the white circle visualized in heatmap B2. C, RH within the area of the macula presented in C1 is present in the highlighted
regions in the red circle shown in heatmap C2.

with this method. Thus, our DL system may miss a
few RH diagnoses that are not captured by the UWF
imaging. A missed diagnosis would also occur if RH
appears in an obscured area of the image. Third, the
circle that represents the macular region is determined
based on the macula-centered UWF images, which is
not available for images in which the macula is not at
the image center.

Overall, based on the UWF images, our high-
accuracy DL system not only detects the RH but also
discerns whether the RH involves the macula. As a
screening tool, the DL system may help identify RH-
related retinal and systemic diseases. Prospective clini-
cal studies to evaluate the cost-effectiveness and the
performance of our DL system in real-world settings
are ongoing.

Acknowledgments

Supported by the National Key R&D Program
of China (grant no. 2018YFC0116500), the National
Natural Science Foundation of China (grant no.
81770967), the National Natural Science Fund for
Distinguished Young Scholars (grant no. 81822010),

the Science and Technology Planning Projects of
Guangdong Province (grant no. 2018B010109008), and
theKeyResearch Plan for theNationalNatural Science
Foundation of China in Cultivation Project (grant no.
91846109). The sponsor or funding organization had
no role in the design or conduct of this research.

The code used in this study can be accessed at
GitHub (https://github.com/gocai/uwf_hemorrhage).

ZL, CG, and DN contributed equally as first
authors.

Disclosure: Zhongwen Li, None; Chong Guo, None;
Danyao Nie, None; Duoru Lin, None; Yi Zhu, None;
Chuan Chen, None; Yifan Xiang, None; Fabao Xu,
None; Chenjin Jin, None; Xiayin Zhang, None;
Yahan Yang, None; Kai Zhang, None; Lanqin Zhao,
None; Ping Zhang, None; Yu Han, None; Dongyuan
Yun, None; Xiaohang Wu, None; Pisong Yan, None;
Haotian Lin, None

References

1. Frank RN. Diabetic retinopathy. N Engl J Med.
2004;350:48–58.

https://github.com/gocai/uwfhemorrhage


Screening Retinal Hemorrhage Using Deep Learning TVST | Special Issue | Vol. 9 | No. 2 | Article 3 | 11

2. Cheung N, Mitchell P, Wong TY. Diabetic
retinopathy. Lancet. 2010;376:124–136.

3. Lamoureux EL, Taylor H, Wong TY. Frequency
of evidence-based screening for diabetic retinopa-
thy. N Engl J Med. 2017;377:194–195.

4. American Academy of Ophthalmology Retina/
Vitreous Panel. Diabetic retinopathy. 2017. Avail-
able at: www.aao.org/ppp. Accessed May 14, 2019.

5. American Academy of Ophthalmology Retina/
Vitreous Panel. Retinal vein occlusions. 2015.
Available at: www.aao.org/ppp. Accessed May 14,
2019.

6. Mizener JB, Podhajsky P, Hayreh SS. Ocu-
lar ischemic syndrome. Ophthalmology. 1997;104:
859–864.

7. Das T, Pathengay A, Hussain N, Biswas J. Eales’
disease: diagnosis and management. Eye (Lond).
2010;24:472–482.

8. Mitchell P, Liew G, Gopinath B, Wong TY.
Age-related macular degeneration. Lancet. 2018;
392:1147–1159.

9. WongTY,Mitchell P.Hypertensive retinopathy.N
Engl J Med. 2004;351:2310–2317.

10. RehakM, Feltgen N,Meier P,Wiedemann P. [reti-
nal manifestation in hematological diseases]. Oph-
thalmologe. 2018;115:799–812.

11. Tang L, Niemeijer M, Reinhardt JM, Garvin
MK, Abramoff MD. Splat feature classification
with application to retinal hemorrhage detection
in fundus images. IEEE Trans Med Imaging.
2013;32:364–375.

12. Gulshan V, Peng L, CoramM, et al. Development
and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus
photographs. JAMA. 2016;316:2402–2410.

13. Ting D, Cheung CY, Lim G, et al. Development
and validation of a deep learning system for dia-
betic retinopathy and related eye diseases using
retinal images from multiethnic populations with
diabetes. JAMA. 2017;318:2211–2223.

14. Li Z,HeY,Keel S, et al. Efficacy of a deep learning
system for detecting glaucomatous optic neuropa-
thy based on color fundus photographs. Ophthal-
mology. 2018;125:1199–1206.

15. Tolls DB. Peripheral retinal hemorrhages: a liter-
ature review and report on thirty-three patients.
J Am Optom Assoc. 1998;69:563–574.

16. Nagiel A, Lalane RA, Sadda SR, Schwartz
SD. Ultra-widefield fundus imaging: a review of
clinical applications and future trends. Retina.
2016;36:660–678.

17. LeCun Y, Bengio Y, Hinton G. Deep learning.
Nature. 2015;521:436–444.

18. Krause J, Gulshan V, Rahimy E, et al. Grader vari-
ability and the importance of reference standards
for evaluatingmachine learningmodels for diabetic
retinopathy. Ophthalmology. 2018;125:1264–1272.

19. Russakovsky O, Deng J, SuH, et al. Imagenet large
scale visual recognition challenge. Int J Comput
Vision. 2015;115:211–252.

20. Jonas RA, Wang YX, Yang H, et al. Optic
disc-fovea distance, axial length and parapapillary
zones: The Beijing Eye Study 2011. PLoS One.
2015;10:e138701.

21. Qiu K, Chen B, Yang J, et al. Effect of optic disc-
fovea distance on the normative classifications of
macular inner retinal layers as assessed with oct in
healthy subjects. Br J Ophthalmol. 2019;103:821–
825.

22. MarmorMF, Kellner U, Lai TY, Lyons JS,Mieler
WF. Revised recommendations on screening for
chloroquine and hydroxychloroquine retinopathy.
Ophthalmology. 2011;118:415–422.

23. Tufail A, Rudisill C, Egan C, et al. Auto-
mated diabetic retinopathy image assessment soft-
ware: diagnostic accuracy and cost-effectiveness
compared with human graders. Ophthalmology.
2017;124:343–351.

24. Niemeijer M, van Ginneken B, Staal J, Suttorp-
SchultenMS, Abramoff MD.Automatic detection
of red lesions in digital color fundus photographs.
IEEE Trans Med Imaging. 2005;24:584–592.

25. YangM, Zhang L, Shiu SC, Zhang D. Robust ker-
nel representation with statistical local features for
face recognition. IEEE Trans Neural Netw Learn
Syst. 2013;24:900–912.

26. Son J, Shin JY, Kim HD, et al. Development
and validation of deep learning models for screen-
ing multiple abnormal findings in retinal fundus
images [published online May 31, 2019]. Ophthal-
mology.

27. Wong TY, Rosamond W, Chang PP, et al.
Retinopathy and risk of congestive heart failure.
JAMA. 2005;293:63–69.

28. Mennel S. Subhyaloidal and macular haemor-
rhage: localisation and treatment strategies. Br J
Ophthalmol. 2007;91:850–852.

29. de Silva SR, Bindra MS. Early treatment of
acute submacular haemorrhage secondary to wet
AMD using intravitreal tissue plasminogen activa-
tor, c3f8, and an anti-VEGF agent. Eye (Lond).
2016;30:952–957.

http://www.aao.org/ppp
http://www.aao.org/ppp

