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We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a
complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we
find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the
‘‘tragedy of the commons’’ and ‘‘an anomalous state without any active participants’’ occurs in real-life
situations. When r is low (r=r�), the state with only loners is stable, and the state with only defectors is stable
when r is high (r?r�). We also derive the exact scaling relation for r*. All of the results are confirmed by
numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of
participants or the mean degree, Ækæ, decreases. We also investigate the scaling dependence of the emergence
of cooperation on r and Ækæ. These results show how ‘‘tragedy of the commons’’ disappears when cooperation
between egoistic individuals without any additional socioeconomic punishment increases.

T
he emergence and evolution of cooperation is central to understanding the evolution and human activity-
associated dynamics. One of the most popular theoretical frameworks that is used to shed light on such
issues is evolutionary game theory. Game theory has also been successfully applied in diverse fields such as

evolutionary biology and psychology1, computer science and operations research2,3, political science and military
strategy4,5, cultural anthropology6, ethics and moral philosophy7, economics8,9, traffic flow research10,11 and public
health12. When preferences and goals of participating agents are in conflict, game theory can explain and predict
interactive decisions13. The central aim of game theory research is to determine conditions needed for cooperation
to emerge between egoistic individuals14–16. Two of the most famous models for game theory include the prison-
er’s dilemma (PD) and public goods game (PGG)17. While the PD for a pairwise interaction attracted the attention
of biologists and social scientists, PGG for group interactions was the focus of studies in experimental economics18.
The PGG was often studied to identify effects of collective action arising from joint group decisions. Although
sometimes the group interactions can be modeled as repeated simple pair interactions as with the PD, the most
fundamental unit of the game is irreducible multi-agent nature13,19,20. The PGG offers valuable insight into pre-
vailing socioeconomic problems such as pollution, deforestation, mining, fishing, climate control and envir-
onmental protection13. In identifying potential solutions to these issues, PGGs with various strategies13,17,20–47

have been suggested and studied. Economists have mainly studied PGG with two strategies, C and D, in which
all agents participate and share a single common pool21–24.

In this report, we focus on a PGG with voluntary participation25 in which three strategic players (cooperators
(C), defectors (D) and loners (L)) are considered. Each C contributes c to the common pool, whereas D attempts to
exploit the resource at no cost. Then, each C gets the payoff PC as PC 5 rcnC/(nC 1 nD) 2 c, whereas each D
obtains PD as PD 5 rcnC/(nC 1 nD). Here, nC (nD) denotes the number of C’s (D’s) participating in the game, and
r(.1) is the multiplication factor, which describes synergistic effects of cooperation. In contrast, L refuses to
participate in the game and relies only on private payoff s. In this report the condition, 0 , s , c(r 2 1), is
imposed25.

Recently, the spatial evolutionary PGG (SEPGG) has been intensively studied to understand how steady-
state strategies emerge on various structures and to identify characteristic features of such steady-state
strategies17,25,26,28–33. In the SEPGG, each agent is assigned to a node on a lattice or network. In a unit game of
the SEPGG, only a randomly selected agent and its linked neighbors participate26. Then, in each update of the
SEPGG, a randomly selected agent i adopts the strategy of a randomly selected neighbor j of i with a transition
probability fij that depends on payoffs Pi and Pj

17. The SEPGG studies have revealed interesting results such as
cyclic dominance25,27, transition nature26, and payoff distribution28. The effects of underlying topology on the
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SEPGG properties17,28–33 have also been found, such as the spatial
reciprocity on diluted networks34 and multiplex networks35–40.

Since the SEPGG on regular lattices and sparse networks has
considered only local interactions, the number of participants in a
unit game centered at a node i cannot exceed ki 1 1, where ki is the
degree (or coordination number) of i. Thus, the SEPGG on sparse
networks is hardly a theoretical model of real-life examples with very
large participants such as taxes, provision levels, tolls, user fees, etc.48.
Such cases involving public resources which anyone can overuse can
be mapped into ‘‘tragedy of the commons’’ problem49,50. However,
SEPGG in which all agents participate in a unit game has been rarely
studied. Thus, we focus on SEPGG with very large participants.

In this report, the SEPGG with three strategies on a complete
graph (CG) and dense complex networks is considered to under-
stand the SEPGG with large participants. The CG is a simple undir-
ected graph in which any node on the graph is linked to all other
nodes. Thus, the number of links on the CG is N(N 2 1)/2, where N is
the number of nodes. In the SEPGG on the CG, all agents participate
in a unit game. From analytically exact rate equations of the SEPGG
on the CG, two stationary states depending on r and N are found. The
state with only L agents (or L-state) is stable for low r =r�ð Þ. The state
with only D agents (or D-state) is stable for high r ?r�ð Þ. r* at which
the crossover from the L-state to the D-state occurs is analytically
obtained and also confirmed by numerical simulation. In the SEPGG
on the CG, a C-dominant state cannot be stable even for very high r.
These stationary states on the CG are very peculiar compared to the
C-dominant state (or C-state) on regular lattices and sparse networks
for very high r28,30–33. The L-state on the CG is also very peculiar in the
sense that the L-state occurs only for s . c(r 2 1) in the PGG game
with the well-mixed population26, whereas the L-state on the CG
occurs even when 0 , s , c(r 2 1) or r is quite high.

More specifically, the time evolution of the SEPGG on the CG for
high r is shown to have the following stages. In early time, the num-
bers of both C and L agents decrease, whereas the number of D agents
hardly varies. Eventually, the D-state becomes stable. Hence, the time
evolution of the SEPGG for high r describes key processes to the
‘‘tragedy of the commons’’ very well49,50, because the key processes
are the following processes: First, the most of agents overuse the
public resource in the commons as defector. Then, the overuse of
the public resource will ruin it.

Ref. 26 revealed that the dominant state on sparse networks for
high r is the C-state. Hence, we investigate crossover behaviors of the
L-state or the D-state on dense networks such as the CG to a C-state
on sparse networks by numerical simulation. For low r, first the
crossover from the L-state to a D-state occurs, and the D-state suc-
cessively crosses over to a C-state as mean-degree Ækæ decreases.
Furthermore, the D-state for moderate Ækæ remains even in the limit
N R ‘. We also quantitatively find that cooperation gradually
increases as the number of participants or Ækæ decreases, which is
the origin of two crossovers. Hence, the crossovers for low r describe
how the enhanced cooperation on sparse networks with low Ækæ
overcomes ‘‘tragedy of the commons’’, resulting in the C-state. For
high r the direct crossover from the D-state to the C-state occurs.
This direct crossover is nearly the same as that from the D-state to the
C-state for low r.

Results
SEPGG on the complete graph. From fij in Eq. (11) using {Pi} on the
CG, exact rate equations of densities on the CG are written as
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where _rC~drC=dt, etc.
To obtain stationary states from general initial configurations with

rI
C~rC t~0ð Þw0, rI

Dw0 and rI
Lw0, early time behaviors of rC, rD,

and rL must be considered. Early time behaviors of rC, rD, and rL are
determined based on competition between two terms of Eqs. (1)–(3),
respectively. As rCrD tanh(2bc/2) # 0 in Eq. (1) and rCrD tanh(bc/
2) $ 0 in Eq. (2) for any non-negative rC, rD, b and c, two distinctive
steady states are achievable depending on the value of rC. When
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{rL^1, rC=1, rD=1} appears. We call this state the L-state. As the
D-state or the L-state appears depending on the condition

rCvs
1{rL

cr
, we now examine the stability of the D-state based

on rate equations (1)–(3). If the D-state is unstable, the L-state should
be stable.

In the D-state with {rD^1, rC=1, rL=1}, the rate equation (1)
becomes
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As rC decreases with t, the condition rCws
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the CG with N R ‘, the L-state is the only stationary state. However,
on the CG with finite N, the nonzero-minimum of rL is 1/N and thus

rL 5 0 if rL(t) , 1/N. Therefore, if rL t�ð Þ* rc
s

� �{1=tanh bc=2ð Þ
v1=N ,

then rL(t . t*) 5 0 and the D-state is still the stationary state. These
results mean that the SEPGG on the CG with finite N has the fol-
lowing stationary state. For r?r�, the D-state becomes stable, where

r�c
s

� �{1=tanh bc
2ð Þ
*

1
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, ð8Þ

or

r�*
s

c
N tanh bc

2ð Þ: ð9Þ

More specifically, this D-state for high r or r?r� has never been
found on regular lattices and sparse networks. As emphasized in
our introductory remarks, this state also describes ‘‘tragedy of the
commons’’ very well. In contrast, for r=r�, the L-state becomes
stable. This L-state for r=r� has never been found on regular lattices
and sparse networks either. The L-state is also anomalous and sur-
prising, because no body remains as an active participant in the PGG
for r=r�. No C-dominant stationary state is found on the CG even
for high r. Compared to the C-dominant stationary states on a square
lattice17,26 and on sparse networks28,30–33 for high r, the stationary
states on the CG are unique and anomalous.

In Fig. 1, rC(t), rD(t), and rL(t) from a single run of simulation on
the CG with N 5 105 are plotted. rC(t) and rL(t) decay exponentially

in the early time regardless of the r value. For r?
c
s

N tanh bc
2ð Þ, the time

dependences of rC(t) and rL(t) are sustained throughout, and the
stationary D-state eventually appears as shown in Fig. 1(a) (r 5

2000). In contrast, when r=
c
s

N tanh bc
2ð Þ, rL(t) increases after some

time or for t . t* and the L-state eventually appears as shown
in Fig. 1(b) (r 5 60). Hence, simulation data presented in Fig. 1
exactly reproduce the analytical results of rate equations (1)–(3).
More specifically, early time behaviors of rL , exp(2t) and

rC*exp {tanh
bc
2

� �
t

� �
are confirmed by fittings to simulation

data as shown in Figs. 1(a) and 1(b). Furthermore, the crossover time
t* for r 5 60 is t* 5 8.86 in Fig. 1(b), which is nearly identical to t*

obtained from t�* ln
rc
s

� ��
tanh

bc
2

� �
.

When r=
c
s

N tanh bc
2ð Þ and in the limit of N R ‘, the time depen-

dences of rC, rD and rL on the CG shown in Fig. 1(b) effectively
present the process to the anomalous L-state with no active partici-
pants. The process means the following three steps. First, most agents
defect one another. C then changes his strategy to D, and rC(t)
decreases. Thus, D cannot receive enough payoff50, causing rD(t)
to decrease and rL(t) to increase. Finally, most agents become L, as
no one remains in the commons. Consequently, the stationary L-

state eventually appears for r=
c
s

N tanh bc
2ð Þ.

To analyze the dependence of stationary states on the multiplica-
tion factor r, rS

C~rC t??ð Þ, rS
D~rD t??ð Þ, and rS

L~rL t??ð Þ
are obtained from simulations for various N and r by averaging over
1,000 realizations. Simulation results of rS

D and rS
L for various N and r

are shown in the insets of Fig. 2. As shown in insets of Fig. 2, the
crossover value of r, i.e., r*, from the stationary L-state to the sta-
tionary D-state increases with N as expected from Eq. (9). More
specifically, rS

D N,rð Þ and rS
L N,rð Þ in Fig. 2 exactly depend on the

single scaling parameter r0 defined as r0:rc
.

s N tanh bc
2ð Þ

h i
. The scal-

ing behaviors confirm that the L-state crosses over to the D-state at

r~r�*
s

c
N tanh bc

2ð Þ as Eq. (9).

Crossover from the behavior on dense networks to that on sparse
networks. A dense network is a network in which the mean-degree
Ækæ satisfies Ækæ / N51. For example, the CG is a typical dense
network, as Ækæ 5 N 2 1 in the CG. In a sparse network, Ækæ 5

finite51. In the SEPGG on the CG, either the L-state or the D-state
is stable depending on r and N and the C-dominant state cannot be
stable. In contrast, the C-dominant state is stable for relatively high r
in the SEPGG on sparse networks such as random networks30,33 and
two dimensional square lattices17,26. Therefore, it is interesting to
study how crossover from the L-state and the D-state on dense
networks to the C-dominant state on sparse networks occurs for
given values of r and N.

We first investigate how the L-state on dense networks crosses
over to the C-dominant state on sparse networks. Since the L-state
is stable for low r0 on the CG as shown in Fig. 2, the crossover
behaviors for low r0 are studied by simulations on random networks
with Ækæ. For a given N and Ækæ, rS

C , rS
D, and rS

L are obtained by
averaging over 2,000 realizations. Typical crossover behaviors for

Figure 1 | Simulation results of the SEPGG on the CG. Plots of rC(t),

rD(t), and rL(t) of the SEPGG with c 5 1, s 5 1, and b 5 1 from a single

simulation run with N 5 105. The dotted horizontal line denotes the value

of 1/N. (a) When r 5 2000, the stationary D-state appears. By fitting the

data to Eqs. (5) and (7), rC , exp(,aCt) with aC~0:46 1ð Þ *tanh
bc
2

� �� �

(solid line) and rL , exp(2aLt) with aL 5 1.00(2)(,1.0) (dash-dotted

line) are obtained. (b) When r 5 60, the stationary L-state eventually

appears. The vertical dashed line denotes the value of

t� * ln
rc
s

� ��
tanh

bc
2

� �
^8:86

� �
. By the fitting, rC , exp(2aCt) with

aC~0:47 1ð Þ *tanh
bc
2

� �
^0:4621 . . .

� �
(solid line) and rL , exp(2aLt)

with aL 5 0.97(4)(,1.0) (dash-dotted line) are obtained for t , t*.

Figure 2 | Simulation results of the SEPGG on the CG for various r and N.

Plots of (a) rS
D and (b) rS

L against r0 ~rc
.

sN tanh bc
2ð Þ

h i� �
for N 5 103, 104,

105, and 106. c 5 1, s 5 1, and b 5 1 are used. Inset of (a): Plots of rS
D

against r. Inset of (b): Plots of rS
L against r.
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r0 5 0.3 are shown in Fig. 3. As shown in Fig. 3(a), two crossovers
occur successively as Ækæ decreases. The L-state is stable when Ækæ is
quite high. The C-state of {rS

C~1, rS
D~0, rS

L~0} is stable when Ækæ is
low enough. For moderate Ækæ the D-state is stable. Therefore, for low
r0, the stationary state is first changed from the L-state to a D-state
and crossover from the D-state to a C-state occurs as Ækæ decreases.

The stability of the D-state for moderate Ækæ in the limit N R ‘ is
studied using the following methods. From simulation data of
rs

C kh i,Nð Þ, rs
D kh i,Nð Þ and rs

L kh i,Nð Þ as in Figs. 3(a) and 3(b),
we first obtain Ækæ1 at which relations rS

L kh i1,N
	 


~1=2 and
rS

D kh i1,N
	 


~1=2 hold simultaneously. We also obtain Ækæ2 at which
rS

D kh i2,N
	 


~1=2 and rS
C kh i2,N
	 


~1=2 hold. For example, depen-
dences of Ækæ1 and Ækæ2 on N for r0 5 0.3 are shown in Fig. 3(c). The
dependence of D Ækæ (;Ækæ1 2 Ækæ2) is also shown in Fig. 3(d). As
shown in Fig. 3(d), D Ækæ increases monotonically with N, guarantee-
ing the stability of the D-state for moderate Ækæ in the limit N R ‘.
Furthermore, as shown in Fig. 3(c), Ækæ1 and Ækæ2 satisfy power
laws kh i1^Nn1 and kh i2^Nn2 . By fitting these power laws to data

presented in Fig. 3(c), crossover exponents are obtained as n1 5

0.898(2), n2 5 0.520(2). The result n1 . n2 also guarantees the
stability of the D-state for moderate Ækæ. The crossover property from
the L-state to the D-state presented in Fig. 3(b) is adequately
described by the single exponent n1 obtained in Fig. 3(c).
rS

D kh i,Nð Þ0s for higher Ækæ and various N are plotted against the
scaling variable kh i=Nn1 with the obtained n1 as in Fig. 3(e), which
shows that rS

D kh i,Nð Þ for higher Ækæ is a function of the single scaling
variable kh i=Nn1 . As shown in Fig. 3(f), crossover from the D-state to
the C-state also satisfies the scaling property that rS

D kh i,Nð Þ for lower
Ækæ is a function of the single scaling variable kh i=Nn2 with the
obtained exponent n2. Using the same method n1’s and n2’s for vari-
ous low r0(,1) are obtained as shown in Fig. 4. Because n1 . n2 in
Fig. 4, the D-state for moderate Ækæ and low r0(,1) is stable in the
limit N R ‘.

Furthermore, the dependences of rS
C , rS

D, and rS
L on Ækæ for low r0

in Fig. 3(a) are quite similar to the time dependences of rC(t), rD(t),
and rL(t) on the CG for low r0 shown in Fig. 1(b). In Fig. 1(b), initially
there are enough Cs. As t increases, D governs the system. Finally L
dominates, because D cannot receive enough payoff. Likewise, in
Fig. 3(a), for low Ækæ there are also enough Cs. For moderate Ækæ D
governs the system. When Ækæ becomes high enough, L dominates.
Hence, it is very interesting to compare dynamical behaviors on the
CG to static crossover behaviors depending on Ækæ.

We thus now focus on the time dependence of rC(t), rD(t), and
rL(t) for various Ækæ to understand crossover behaviors for low r0 in
Fig. 3(a). The time dependences of rC, rD, and rL for moderate Ækæ are
shown in Fig. 5(a), and those for low Ækæ are shown in Fig. 5(b). For
high Ækæ, the time dependence is nearly identical to that on the CG
shown in Fig. 1(b). For moderate Ækæ and high Ækæ, rC and rL decrease,
but rD increases in early time. However, the stationary state is
strongly affected by the subsequent time dependence of rC. If Ækæ is
quite high or if kh i? kh i1, rC decays quickly and rD cannot receive
enough payoff. As a result, rL increases for t . t* and the stationary
L-state appears as explained in Fig. 1(b). In contrast, for moderate Ækæ
or kh i2= kh i= kh i1, rC(t) decreases relatively slowly, and rL(t) never
have a chance to increase reversely before the time at which rL(t) #

1/N [see Fig. 5(a)]. This means that the cooperation is effectively
enhanced for moderate Ækæ and D receives enough payoff until L
disappears due to the enhanced cooperation. This first crossover is
quite similar to the crossover from the L-state in Fig. 1(b) to D-state
in Fig. 1(a) on the CG. For low Ækæ or kh i= kh i2, rC(t) never decreases
as on sparse networks28,30–33 [see Figs. 5(b)], and rS

CwrS
D. Hence, the

crossover from the D-state to the C-state (or C-dominant state)
occurs for Ækæ , Ækæ2 as Ækæ decreases.

The two crossovers for low r0 thus derive from a gradual increase
of cooperation as the number of participants (or Ækæ) decreases.
Therefore, the crossovers that describe the disappearance of both
the anomalous state with no active participants and ‘‘tragedy of the

Figure 3 | Simulation results of the SEPGG on random networks for
r0~0:3 =1ð Þ. (a) Plots of rS

C , rS
D, and rS

L against Ækæ for N 5 16000. c 5 1, s

5 1, and b 5 1 are used. (b) Plots of rS
D against Ækæ for N 5 4000, 8000,

16000, and 32000. Here, rS
C and rS

L are not shown, because rS
L~1{rS

D for

high Ækæ and rS
C~1{rS

D for low Ækæ. (c) Plots of Ækæ1 and Ækæ2 against N. The

straight lines denotes fittings of kh i1~a1Nn1 with n1^0:898 2ð Þ and

kh i2~a2Nn1 with n2^0:520 2ð Þ to corresponding data. (d) Plot of D Ækæ
(;Ækæ1 2 Ækæ2) against N. (e) Plot of rS

D against kh i=Nn1 with n1 in (c). (f)

Plot of rS
D against kh i=Nn2 with n2 in (c).

Figure 4 | Plots of exponents n1 and n2 against r0. c 5 1, s 5 1, and b 5 1

are used. In the limit N R ‘, the D-state for moderate Ækæ is stable, because

n1 . n2.
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commons’’ quantitatively show that agents in the larger group hardly
cooperate relative to those in the smaller group45,46. However, this
dependence on the group size is not necessarily accurate, because a
recent study on PGG44 reported that increasing the group size does
not necessarily lead to mean-field behaviors.

Finally, we study the crossover from the D-state to a C-state for
high r0(.1). Typical crossover behaviors for high r0 are shown in
Fig. 6(a). As shown in Fig. 6(a), for high r0(510), the D-state is stable
when Ækæ is quite high. The C-state is stable when Ækæ is low enough.
Therefore, for high r0, the direct crossover from the D-state to the C-
state occurs as Ækæ decreases. To analyze the dependence of this direct
crossover on N, rS

D kh i,Nð Þ0s for various N are obtained by simulation
as shown in Fig. 6(b). The dependence of the direct crossover on N
can be obtained by the ansatz kh i3*Nn3 , where at Ækæ3 both
rS

D kh i3,N
	 


~1=2 and rS
C kh i3,N
	 


~1=2 hold. From the dependence
of Ækæ3 on N, n3^0:51 1ð Þ is obtained for r0 5 10. This direct cross-
over satisfies the scaling property that rS

D kh ið Þ is a function of the
single scaling variable kh i=Nn3 with n3 5 0.51. As shown in Fig. 6(d),
n3’s for various high r0(.1) are obtained using the same method. The
data in Fig. 6(d) show that the value of n3 increases as r0 increases. As
the D-state is always stable on the CG or dense networks with Ækæ /
N, the upper bound of n3 should be equal to 1. We also confirm that
the time dependences of rC(t), rD(t), and rL(t) for high r0 are nearly
the same as those in Fig. 1(a) for high Ækæ and as those in Fig. 5(b) for
low Ækæ, respectively. Hence, this direct crossover is nearly identical to
the second crossover from the D-state to the C-state for low r0.

Discussion
In summary, we have studied the SEPGG on the CG and complex
dense networks to understand behaviors of the SEPGG with very
large participants. By analyses of the rate equations, we have shown
that the L-state of {rC=1, rD=1, rL^1} is stable on the CG for r ,

r* with r�*
s

c
N tanh bc

2ð Þ. In contrast, the D-state of {rC=1, rD^1,

rL=1}, representing ‘‘tragedy of the commons’’, is stable for r . r*.
These analytic results on the CG have been confirmed by simulation.

We have also studied crossover behaviors from the L-state or the
D-state on dense networks to the C-dominate state on sparse net-
works by numerical simulation on random networks with a mean
degree Ækæ. For r , r*, the L-state first crosses over to a D-state, and
successively this D-state crosses over to a C-state as Ækæ decreases. We
have investigated the dependence of the crossovers on N for low r0

using the ansatz kh i1*Nn1 and kh i2*Nn2 , where the L-state is stable
for kh i? kh i1, the D-state is stable for kh i2= kh i= kh i1, and the

C-state is stable for kh i? kh i2. From the numerical simulations, n1

and n2 have been obtained. Since n1 . n2 for r , r*, we have found
that the D-state for moderate Ækæ is stable even in the limit N R ‘. We
have also studied the time dependences of rC, rD, and rL on random
networks with Ækæ to understand the crossover behaviors for r , r*.
For moderate Ækæ, the D-state is stable, because rC decreases relatively
slowly. For low Ækæ, cooperation is enhanced and the C-state is stable.
The two crossovers for r , r* derive from a gradual increase of
cooperation as the number of participants (or Ækæ) decreases. The
crossovers thus show how the enhanced cooperation on sparse net-
works with low Ækæ produces the C-state, overcoming both the anom-
alous state with no active participants and ‘‘tragedy of the commons’’
for low r0.

For high r0, the D-state is stable when Ækæ is high. The C-state is
stable when Ækæ is low. Therefore, for high r0, the direct crossover
from the D-state to the C-state occurs as Ækæ decreases. The depend-
ence of the direct crossover on N has been also analyzed by the ansatz
kh i3*Nn3 , where the D-state appears for kh i? kh i3 and the C-state

appears for kh i= kh i3. From the numerical simulations, n3 has been
obtained. The value of n3 increases to 1 as r0 increases, because the D-
state always appears on the CG or dense networks with Ækæ / N. The
crossovers thus describe how the enhanced cooperation on sparse
networks with low Ækæ overcomes ‘‘tragedy of the commons’’ and
makes the C-state for high r0.

Finally, the cyclic dominance in Ref. 25 can also be found for very
low r and Ækæ. For example, for r0 5 0.1, the crossover from the C-
state to the cyclic dominance occurs at kh i^10 on the network with
the size N 5 104. This crossover behavior is not explained quantita-
tively here, because the crossover occurs only on sparse networks.

Methods
Let us define the SEPGG model on a given graph or network in detail. Each agent is
assigned to a node on the network. Variable si of the agent on node i represents the

Figure 5 | Time dependence of rC(t), rD(t), and rL(t) on random
networks with N 5 16000 for r0 5 0.3. Plots of rC(t), rD(t), and rL(t) (a)

for moderate Ækæ (530) and (b) for low Ækæ (510). (a) For moderate Ækæ
(530), rD increases with t, whereas rC and rL decreases. Finally, the

stationary D-state emerges. (b) For low Ækæ (510), rC increases with t,

whereas rD and rL decreases. Finally, the stationary C-state appears. The

time dependences for high Ækæ are not shown, because they are nearly the

same as those shown in Fig. 1(b).

Figure 6 | Simulation results of the SEPGG on random networks for
r0~10 ?1ð Þ. (a) Plots of rS

C , rS
D, and rS

L against Ækæ for N 5 16000. c 5 1, s

5 1, and b 5 1 are used. The stationary state is changed from the D-state to

a C-state as Ækæ decreases. rS
L~0 for any Ækæ. (b) Plots of rS

D against Ækæ for N

5 4000, 8000, 16000, and 32000. (c) Plot of rS
D against kh i=Nn3 with

n3^0:51. (d) Plot of n3 against 1/r0.
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strategy of i. The si is a cooperator (C), defector (D) or loner (L). The number of agents

with a given strategy is denoted as NC ~
XN

i~1
dsi ,C

� �
, ND ~

XN

i~1
dsi ,D

� �
, and

NL ~
XN

i~1
dsi ,L

� �
, where N is the size of the network.

In each update of SEPGG on the network, an agent i is randomly selected. Then, the
payoff Pi of i depends on the strategies of ki 1 1 participants, where ki is the degree of i.
If ni,C is the number of agents with C, ni,D is the number of agents with D, and ni,L is the
number of agents with L among the ki 1 1 participants, ni,C 1 ni,D 1 ni,L 5 ki 1 1. Pi is
thus given by

Pi~

rcni,C

ni,Czni,D
{c if si~C

rcni,C

ni,Czni,D
if si~D

s if si~L

:

8><
>: ð10Þ

Here, c is the cost contributed by a C to the common pool, r(.1) is the multiplication
factor and s is the fixed payoff of a L26. We impose the condition 0 , s , c(r 2 1) as in
Ref. 25. Even if only one active participant remains, the payoff of the agent still follows
Eq. (10). Then, the strategy of i is updated through the comparison of Pi with Pj of a
randomly selected neighbor j among ki neighbors in order to select a better strategy. If
si ? sj, the agent i stochastically adopts the strategy sj of the neighbor j with transition
probability fij. We use

fij~
exp bPj
	 


exp bPj
	 


zexp bPið Þ
, ð11Þ

as in Ref. 17. Here b($0) controls the amount of noise. In each update of SEPGG, the
payoffs in fij of Eq. (11) on regular lattices and sparse networks depend on the
configuration of all the agents at the time of the update. In contrast, Pi in fij on the CG
depends only on si and NC, ND, and NL, of the strategies on the entire graph, because
all agents participate in each unit game. The payoff {Pi} on the CG is thus written as

Pi si~Cð Þ~PC~
rcrC

rCzrD
{c

Pi si~Dð Þ~PD~
rcrC

rCzrD

Pi si~Lð Þ~PL~s

, ð12Þ

where the densities rC(;NC/N), rD(;ND/N), and rL(;NL/N) are used. To confirm
the analytic results, simulations are performed for various N and r. Here, we mainly
report the results of simulations with rI

C~rI
D~rI

L~1=3, c 5 1, s 5 1 and b 5 1.
Simulations with various combinations of rI

C , rI
D , rI

L , c, s and b are tested and nearly
identical results are obtained.
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