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Abstract

Humans often make decisions based on uncertain sensory information. Signal detection

theory (SDT) describes detection and discrimination decisions as a comparison of stimulus

“strength” to a fixed decision criterion. However, recent research suggests that current

responses depend on the recent history of stimuli and previous responses, suggesting that

the decision criterion is updated trial-by-trial. The mechanisms underpinning criterion setting

remain unknown. Here, we examine how observers learn to set a decision criterion in an ori-

entation-discrimination task under both static and dynamic conditions. To investigate mech-

anisms underlying trial-by-trial criterion placement, we introduce a novel task in which

participants explicitly set the criterion, and compare it to a more traditional discrimination

task, allowing us to model this explicit indication of criterion dynamics. In each task, stimuli

were ellipses with principal orientations drawn from two categories: Gaussian distributions

with different means and equal variance. In the covert-criterion task, observers categorized

a displayed ellipse. In the overt-criterion task, observers adjusted the orientation of a line

that served as the discrimination criterion for a subsequently presented ellipse. We com-

pared performance to the ideal Bayesian learner and several suboptimal models that varied

in both computational and memory demands. Under static and dynamic conditions, we

found that, in both tasks, observers used suboptimal learning rules. In most conditions, a

model in which the recent history of past samples determines a belief about category means

fit the data best for most observers and on average. Our results reveal dynamic adjustment

of discrimination criterion, even after prolonged training, and indicate how decision criteria

are updated over time.

Author Summary

Understanding how humans make decisions based on uncertain sensory information is

crucial to understanding how humans interpret and act on the world. Signal detection

theory models discrimination and detection decisions as a comparison of “stimulus

strength” to a fixed criterion. In a world that is constantly changing a static criterion
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makes little sense. We investigate this as a problem of learning: How is the decision crite-

rion set when various aspects of the context are unknown (e.g., category means and vari-

ances)? We examine criterion learning in both static and dynamic environments. In

addition to a more traditional discrimination task in which the criterion is a theoretical

construct and unobservable, we use a novel task in which participants must explicitly set

the criterion before being shown the stimulus. We show that independent of environment

and task, observers dynamically update the decision criterion, even after prolonged train-

ing in a static environment. Our results provide evidence against an assumption of stabil-

ity and have implications for how psychophysical data are analyzed and interpreted and

how humans make discrimination decisions under uncertainty.

Introduction

Understanding how humans make decisions based on uncertain sensory information is crucial

to understanding how humans interpret and act on the world. For over 60 years, signal detec-

tion theory has been used to analyze detection and discrimination tasks [1]. Typically, sensory

data are assumed to be Gaussian with equal variances but different means for signal-absent and

signal-present trials. To decide, the observer compares the noisy sensory data to a fixed deci-

sion criterion. Performance is summarized by d0 (discriminability) and c (decision criterion)

based on measured hit and false-alarm rates. Standard analysis assumes stable performance (all

parameters fixed) and observer knowledge of the means, variance, prior probabilities and pay-

off matrix [1,2,3,4,5,6,7].

The assumption of stable performance is problematic for two reasons. (1) Observers may

learn about the environment and use that information to set the decision criterion. (2) The

environment may not be stable or the observer may not believe that the environment is stable.

To circumvent these problems, researchers include training sessions, fix the environmental

parameters (e.g., priors, payoffs) within blocks, and treat learning effects as additional noise

(i.e., its “variance” can simply be added to those of internal and/or external noise in the

experiment). However, research investigating history effects in psychophysical tasks has

shown that an observer’s current decision is affected by multiple aspects of the stimulus history

(e.g., recent decisions, stimulus intervals, trial type, etc.). These effects occur even when the

environment is stable, the stimulus presentation is random, and observers are well trained

[8,9,10,11,12,13]. Observers behave as if the environment is dynamic and, as a result, measures

of discriminability and sensitivity are biased and the confidence intervals computed for the

best fitting parameters of the psychometric function are too narrow [14]. While assuming

instability in a static world is suboptimal, in a world that is constantly changing a fixed crite-

rion makes little sense.

To optimize decisions in dynamic environments, observers must update decision criteria

in response to changes in the world by adapting to the value and uncertainty of sensory

information. Humans respond appropriately to changes in visual and motor uncertainty

[15,16,17,18,19,20]. Observers adjust the decision criterion when uncertainty is varied ran-

domly from trial to trial [18]. If the location of visual feedback for a reach is perturbed

dynamically over trials, participants track this random walk near-optimally [15]. Landy

and colleagues [17] demonstrated that participants tracked discrete changes in the variance

of a visual perturbation. Summerfield and colleagues [19] investigated a visual discrimina-

tion task in which participants categorized gratings with orientations drawn from two
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overlapping distributions. Means and variances were updated randomly with different levels

of volatility. Participants’ performance changed as a function of volatility.

While the above studies examine the dynamics of decision-making, they only provide indi-

rect evidence of criterion shifts. Many of these studies observed changes in decisions and

response time, but few studies have examined how trial history specifically affects decision cri-

teria and what is the underlying mechanism responsible for learning and updating the decision

criterion. Lages and Treisman [13] describe the dynamics of criterion setting and updates of

priors based on previous stimulus samples and responses applied to tasks with no experi-

menter feedback, so that the criterion drifts to the mean of previously experienced stimuli.

Summerfield and colleagues [19] consider a discrimination task with feedback in which the

categories and their associated uncertainty can change several times per block of trials. They

compare several suboptimal models, all of which predict the choice probability by probability

matching.

Here, we investigate how humans learn to set and update criteria for perceptual decisions

in both static and dynamic environments. To examine the underlying mechanisms of criterion

learning, we take a quantitative approach and compare models of how a decision criterion is

set as a function of recently experienced stimuli and feedback. Observers completed two differ-

ent experimental tasks. One task was the typical discrimination task, in which the observer’s

criterion is unobservable. We introduce a novel overt-criterion task, in which the decision cri-

terion is set explicitly by the observer. This allows us to measure and model the setting of the

decision criterion directly. We used the overt-criterion task, which has greater statistical power

due to the richer dataset, to develop and test models of how the criterion is updated in stan-

dard discrimination experiments under uncertainty. In contrast to the models investigated by

Summerfield and colleagues [19], we directly measure the criterion, and include parameters

for sensory noise and predict a specific response based on the noisy stimulus information and

a model of criterion update. While observers converged to the optimal criterion over many tri-

als when conditions were static and followed dynamic changes in the category means, we

found that, in both tasks, the majority of observers used suboptimal learning rules. Our results

reveal dynamic adjustment of a discrimination criterion, even after prolonged training in a

static environment.

Results

Experiment 1

All observers completed three tasks: (1) An orientation-discrimination task in which discrimi-

nation thresholds were measured and used to equate the difficulty of the covert- and overt-

criterion tasks across observers (Fig 1A), (2) A covert-criterion task in which observers catego-

rized an ellipse as belonging to category A or B (Fig 1C), and (3) An overt-criterion task in

which observers explicitly indicated their criterion on each trial prior to the presentation of a

category A or B ellipse (Fig 1D). Additionally, 8 out of 10 observers completed an orientation-

matching task in which adjustment noise was measured (Fig 1B). Categories in the covert- and

overt-criterion tasks were Gaussian distributions with different mean orientations and equal

variance (Fig 1E; see Methods).

Estimating sensory uncertainty. In the orientation-discrimination task, we quantified

sensory uncertainty (σv) for each observer by determining the just noticeable difference in ori-

entation between two sequentially presented ellipses. We calculated the probability of choosing

interval one as a function of the orientation difference between the ellipses and fit a cumulative

normal distribution to the data using a maximum-likelihood criterion with parameters μ, σ,

and λ (the mean, SD, and lapse rate). We define threshold as the underlying measurement
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Fig 1. Example trial sequences and category distributions. A) The orientation-discrimination task. The observer’s task was to

choose the interval containing the more clockwise ellipse. B) The orientation-matching task. The observer had to best match the

orientation of a line that was displayed on the screen. In the experiment, the lines were yellow on a gray background. C) The covert-

criterion task. The observers categorized ellipses as belonging to the category A or category B distribution with the 1 and 2 keys,

respectively. The subsequent fixation cross indicated the correct category (green for A, displayed here as solid; red for B, displayed as

dashed). D) The overt-criterion task. On each trial, observers adjusted the orientation of a yellow line (shown here as white) that

served as the discrimination criterion for the subsequently presented ellipse. Feedback ellipses were green and red, here displayed as

solid and dashed. In the covert- and overt-criterion tasks, stimuli were ellipses with principal orientations drawn from two categories A

and B: Gaussian distributions with different means and equal variance. E) Category distributions. The solid curve represents the

distribution underlying stimuli belonging to category A and the dashed curve represents the distribution underlying the stimuli

belonging to category B. The distance between the two distributions (Δθ) was set such that difficulty was equated across observers

(d 0 = 1). The optimal criterion (z) is represented by the solid gray line and falls directly between the two category means. The means of
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SD σv (correcting for the 2IFC task by dividing by
ffiffiffi
2
p

). A 95% confidence interval for σv was

obtained by a parametric bootstrap method in which the estimated parameters were used to

generate 10,000 experimental simulations, re-fit, and the 2.5 and 97.5 percentiles were calcu-

lated. Fig 2A shows a representative psychometric function. On average, σv = 6.0˚ with individ-

ual observer values ranging from 3.0˚ to 10.6˚.

Estimating adjustment uncertainty. In the orientation-matching task, we quantified

adjustment uncertainty (σa) for the eight observers who completed the matching task. For

each observer, we calculated the standard deviation �sa of setting errors. Raw data for a repre-

sentative observer are shown in Fig 2B. On average, �sa ¼ 7:2
�

with individual observers rang-

ing from 6.0 to 9.1˚.

Raw overt-criterion data. In the overt-criterion block, to determine whether or not

observers learned the optimal criterion we looked at trial-by-trial criterion placement and

deviation from the optimal criterion. The raw data for a sample observer are plotted in Fig 3.

The average root-mean-square error from the optimal criteria across observers was 6.9˚ with

individual observers’ error ranging from 4.1 to 11.3˚.

Response to recently experienced stimuli. A regression analysis was performed to exam-

ine the dependence of binary decisions in the covert-criterion task and criterion placement in

the overt-criterion task on an observer’s recent experience. This allowed us to determine how

observers combined information from multiple trials into an estimate of the category means

without assuming an underlying parametric model. We conducted “lagged regressions” on

data from each task in which we included the orientations of the nine most recently experi-

enced ellipses from each category as regressors.

The overall trend is noisy but appears to weight recent ellipses more heavily than those fur-

ther in the past (Fig 4). Specifically, for the covert-criterion task (Fig 4A) we find a positive

weight for the current stimulus and a negative weight for the previous trial but at a fraction of

the value (
bA; n� 1

bA; n
¼ � :16 and

bB; n� 1

bB; n
¼ � :14). The weights for the remaining seven trials converge

to zero (i.e., a shape that does not rule out an exponential form from lag one to lag nine). This

pattern of results is consistent with the idea that the decision on the current trial is simply the

difference between the current stimulus and the criterion, which is determined by taking a

weighted average of the previous stimuli from both categories (i.e., the criterion is the average

of the two category means, Eq 4). For the overt-criterion task (Fig 4B), the shape for both cate-

gories also does not rule out an exponential form, again suggesting that the current criterion

setting is a weighted average of the previous stimuli from the two categories. However, few of

the beta values were significantly nonzero. In the analysis of the covert-criterion data, the aver-

age influence of category A ellipses differed significantly from zero for one of the nine lags and

the category B ellipses differed significantly from zero for two of the nine lags (p< 0.05). In

the overt-criterion block, the average influence of category A and B ellipses each differed sig-

nificantly from zero for one of the nine lags (p< 0.05).

Model comparison. We compared five models of criterion learning that varied in both

computational and memory demands (see Methods). (1) The ideal Bayesian observer com-

putes the posterior probabilities of an ellipse belonging to both categories and integrates across

the unknown category parameters. (2) The Bayesian model-selection observer estimates the

means of each category by averaging all previously experienced stimuli. (3) The exponentially

weighted moving-average observer estimates the means of each category using a weighted

the distributions were chosen randomly at the beginning of each block, remained constant throughout the block in Expt. 1, and were

updated on every trial via a random walk in Expt. 2.

doi:10.1371/journal.pcbi.1005304.g001
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average where more weight is given to recently experienced stimuli. (4) The reinforcement-

learning observer only updates the criterion when receiving negative feedback. The criterion is

then moved by a fixed fraction of the difference between its current value and the value of the

stimulus. (5) The limited-memory observer approximates the mean for each category by using

the most recently experienced stimulus from that category.

To obtain a quantitative measure of model fit, we computed DIC scores for each combina-

tion of task, observer and model. Tables 1 and 2 contain the median DIC scores for each

Fig 2. Discrimination and matching data. A) A psychometric function for a representative observer in the

orientation-discrimination task. Data points: raw data. Circle area is proportional to the number of trials

completed at the corresponding orientation difference (Δθ). A cumulative normal distribution was fit to the data

(solid black line). The gray curves represent a 95% confidence interval on the slope parameter. B) One

observer’s raw data from the orientation-matching task. The orientation of the matched line is shown as a

function of the orientation of the displayed line. The identity line indicates a perfect match.

doi:10.1371/journal.pcbi.1005304.g002
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observer and model in the covert-criterion task and the overt-criterion task, respectively. The

best fitting model(s) for each observer is indicated. We allowed for ties, so occasionally multi-

ple models were the best fitting and are indicated as such. Models tied if their DIC scores were

within seven of the lowest-scoring model. Fig 5A shows the average DIC scores ±SE across all

observers in each task relative to the ideal Bayesian model. A score above zero indicates a better

fit. For additional analysis at the group level, we obtained the exceedance probability (φk) in

favor of each model k in the covert- (Table 1) and overt-criterion (Table 2) tasks. The exceed-

ance probability for each model is shown in Fig 5B.

For 5 out of 10 observers in the covert-criterion task, the exponentially weighted moving-

average model fit the best. Of the remaining five observers, one was fit equally well by the expo-

nentially weighted moving-average and the limited-memory models, one was fit best by the

Bayesian selection, exponentially weighted moving-average, and the reinforcement learning

models, one was fit best by the Bayesian selection and the reinforcement learning models, one

was fit best by the exponentially weighted moving-average and reinforcement learning models,

and one was best fit by the reinforcement learning model. At the group level, the exceedance

probability for the exponentially weighted moving-average is very high (φExponential = .95) sug-

gesting that given the group data, it is a more likely model than the alternatives (Table 1).

In the overt-criterion task, the exponentially weighted moving-average model fit best for 5

out of 10 observers. Of the remaining five observers, one was fit equally well by the exponen-

tially weighted moving-average and the reinforcement learning models, two were fit best by

the reinforcement-learning model, and two were fit best by the limited-memory model. At the

group level, the exceedance probability for the exponentially weighted moving-average model

(φExponential = .78) is higher than the alternatives suggesting that it is more likely given the

group data (Table 2).

Parameter estimates for each model and task are shown in Tables 3 and 4. Additionally, Fig

6 compares the noise-parameter estimates (σv or σa) for the exponentially weighted moving-

average model to the sensory and adjustment noise that were measured in the orientation-dis-

crimination and orientation-matching tasks, respectively. Generally, fit parameters were larger

Fig 3. Overt-criterion data for a representative observer in Expt. 1. Data points: Criterion placement on

each trial. Lines, The mean orientation of the category A and B distributions (solid and dashed, respectively)

and the optimal observer’s criterion (solid gray).

doi:10.1371/journal.pcbi.1005304.g003
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than the corresponding estimates from the discrimination experiment and smaller than the

corresponding estimates from the matching experiment. We computed correlations between

the measured sensory noise estimates and each model’s estimates in the covert-criterion task

and found no significant correlation between them for any of the models (all p> .05). No sig-

nificant correlation was found when comparing measured adjustment noise and model esti-

mates either (all p> .05). This suggests that the fitted noise parameters reflected an additional

noise source in the covert-criterion task that dominated the sensory variability (e.g., uncer-

tainty about the distribution noise). In the overt-criterion task, the fitted noise may have been

smaller because the current criterion setting was highly correlated with previous settings,

which was not true in the matching task.

Fig 4. Lagged regression for the static condition (Expt. 1). A) Covert-criterion task: Results of a logistic

regression predicting the binary decision of each trial as a combination of the orientations of the current ellipse

and the previous nine ellipses in each category. The solid and dashed lines represent the group average beta

weights ±SE for the ellipses belonging to category A and category B, respectively. B) Overt-criterion task:

Results of a linear regression predicting the criterion placement on each trial as a combination of the

orientations of the previous nine ellipses in each category. Again, the solid and dashed lines represent the

group average beta weights ±SE for the ellipses belonging to category A and category B, respectively.

doi:10.1371/journal.pcbi.1005304.g004
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Experiment 2

In Expt. 2, observers completed the same tasks in Expt. 1. However, the environment was

dynamic and only 3 out of 10 observers completed the orientation-matching task. Category

distributions were Gaussian distributions with different mean orientations and equal variance,

but means of the category distributions changed gradually over time via a random walk (see

Methods).

Estimating sensory uncertainty. The same orientation-discrimination task that was used

to estimate sensory uncertainty in Expt. 1 was also used in Expt. 2. On average, σv = 9.2˚ with

individual observer thresholds ranging from 5.0 to 14.2˚.

Table 1. Individual DIC scores for the covert-criterion task under static conditions (Expt. 1).

Observer Ideal

Bayesian

Bayesian model

selection

Exponentially weighted moving-

average

Reinforcement-

learning

Limited

memory

ADB 4,940 458 415* 423 471

DJA 5,020 580 551* 569 573

DMG 5,080 564 557* 559* 666

EHN 4,809 328 288* 331 436

EKC 4,964 492* 495* 496* 601

ID 5,043 630 594* 632 613

JYZ 4,930 403* 413 405* 496

LD 4,973 479 490 464* 581

MR 5,179 745 722* 744 723*

SJ 5,008 572 560* 574 593

Mean 4,995 525 509* 520 575

Exceedance probability

(φ)

.003 .02 .95 .02 .003

Note: The * indicates the best fitting model (i.e., the model with the lowest DIC score) for each observer and the average across all observers. We allow for

ties.

doi:10.1371/journal.pcbi.1005304.t001

Table 2. Individual DIC scores for the overt-criterion task under static conditions (Expt. 1).

Observer Ideal

Bayesian

Bayesian model

selection

Exponentially weighted moving-

average

Reinforcement-

learning

Limited

memory

ADB 7,966 3,516 3,130 3,380 2,936*

DJA 8,237 3,778 3,326 3,299* 3,446

DMG 9,019 4,485 4,436* 4,454 4,601

EHN 7,942 3,418 3,167* 3,226 3,690

EKC 8,543 4,073 3,920* 3,923* 4,135

ID 7,935 3,451 3,240* 3,379 4,669

JYZ 9,083 4,610 4,576 4,551 3,356*

LD 8,403 3,988 3,404* 3,425 3,501

MR 8,533 4,174 3,951* 4,072 4,071

SJ 8,416 3,912 3,887 3,598* 4,153

Mean 8,408 3,941 3,704* 3,731 3,856

Exceedance probability

(φ)

.004 .004 .78 .19 .02

Note: The * indicates the best fitting model (i.e., the model with the lowest DIC score) for each observer and the average across all observers. We allow for

ties.

doi:10.1371/journal.pcbi.1005304.t002
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Raw overt-criterion data. Results for a sample observer in Expt. 2 are shown in Fig 7. Fig

7A shows the random walk that the means of category A (solid black line) and category B
(dashed black line) followed across the block. We estimated how well each observer tracked

the changes in the mean by cross-correlating the observer’s criterion settings (data points in

Fig 7B) with the omniscient criterion (gray line in Fig 7B, the average of the two actual cate-

gory means). The peak of the correlation function (Fig 7C) provides an estimate of the lag in

response to the changing category means. Peak lags ranged from 1 to 4 across observers, indi-

cating that they were able to closely follow the changes in the mean.

Response to recently experienced stimuli. As in Expt. 1, we conducted “lagged regres-

sions” on the data from each task. We included the orientations of the nine most recently expe-

rienced ellipses from each category as regressors. As in the lagged regression results for Expt.

1, the overall trend appears to weight recent ellipses more heavily than those further in the past

(Fig 8). We observed a sign change for the covert-criterion task (Fig 8A), where the weight on

lag one was a fraction of the weight on lag zero (
bA; n� 1

bA;n
¼ � :41 and

bB; n� 1

bB; n
¼ � :37). This suggests

that the current decision was determined by taking the difference between the current stimulus

and a weighted average of the previous stimuli (i.e., the criterion). Regression weights for the

overt-criterion task (Fig 8B) are exponential in shape, suggesting again that the current crite-

rion setting is a weighted average of the previous stimuli. The higher value of the beta weights

Fig 5. Model comparison results for the covert- (dark gray) and overt-criterion (light gray) tasks in Expt. 1. A) The bar graph depicts

the relative DIC scores (i.e., DIC difference between the ideal Bayesian model and the suboptimal models) averaged across observers

±SE. Larger values indicate a better fit. B) To summarize the results from the group level analysis we computed exceedance probabilities

for each model in each task. A model’s exceedance probability tells us how much more likely that model is compared to the alternatives,

given the group data.

doi:10.1371/journal.pcbi.1005304.g005

Table 3. Mean maximum a posteriori parameter estimates ±SE for each covert-criterion model in Expt. 1.

Model σv σ τ β
Ideal Bayesian 10.5 ± 1.4 10.0 ± .09 — —

Bayesian model selection 10.5 ± 1.5 — — —

Exponentially weighted moving-average 10.1 ± 1.4 — [2.2, 4.2] —

Reinforcement learning 10.5 ± 1.5 — — .11 ± .04

Limited memory 13.6 ± 1.3 — — —

doi:10.1371/journal.pcbi.1005304.t003
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Table 4. Mean maximum a posteriori parameter estimates ±SE for each overt-criterion model in Expt.

1.

Model σa σ τ β
Ideal Bayesian 6.9 ± .77 9.9 ± .14 — —

Bayesian model selection 6.8 ± .76 — — —

Exponentially weighted moving-average 5.8 ± .86 — [3.2, 4.5] —

Reinforcement learning 5.3 ± .85 — — .41 ± .04

Limited memory 6.6 ± .97 — — —

doi:10.1371/journal.pcbi.1005304.t004

Fig 6. A comparison of the measured noise parameters and model fit parameters in Expt. 1 for the

exponentially weighted moving-average model. A) Each model was fit to the covert-criterion data for each

individual and the maximum a posteriori parameter estimate for sensory noise (σv) was determined. Each

point represents the sensory noise estimated by the exponentially weighted moving-average model for each

individual compared to the individual’s measured sensory noise. Black dashed line: the identity line. B)

Adjustment noise (σa) was estimated in the overt-criterion task and compared to the measured adjustment

noise. Note: adjustment noise was only measured for 8 out of the 10 observers. Error bars represent a

95% C.I.

doi:10.1371/journal.pcbi.1005304.g006
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Fig 7. Overt-criterion data for two observers in Expt. 2. A) The mean positions of the category A (solid

line) and B (dashed line) across the overt-criterion block. B) Criterion placement data across the block (data

points) compared to the omniscient criterion placement (solid gray line). C) Cross-correlation between the

omniscient criterion and the observer’s criterion placement. The lag estimate is indicated by the arrow.

Estimated lags for all observers ranged from 1 to 4.

doi:10.1371/journal.pcbi.1005304.g007

Suboptimal Criterion Learning
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for the most recent stimuli in Expt. 2 compared to Expt. 1 suggests that the exponential weights

have a shorter time constant, as would be predicted for, e.g., a Kalman filter given the more

volatile time series for the category means (a random walk vs. a constant).

In the analysis of the covert-criterion data, the average influence of category A ellipses dif-

fered significantly from zero for two of the nine lags (p< 0.05) and the average influence of

category B ellipses differed significantly from zero for four of the nine lags (p< 0.05). In the

overt-criterion block, the average influence of category A ellipses differed significantly from

zero for six of the nine lags (p< 0.05) and the average influence of category B ellipses differed

significantly from zero for two of the nine lags (p< 0.05).

Fig 8. Lagged regression for the dynamic condition (Expt. 2). A) Covert-criterion task: Results of a

logistic regression predicting the binary decision of each trial as a combination of the orientations of the

current ellipse and the previous nine ellipses in each category. The solid and dashed lines represent the group

average beta weights ±SE for the ellipses belonging to category A and category B, respectively. B) Overt-

criterion task: Results of a linear regression predicting the criterion placement on each trial as a combination

of the orientation of the previous nine ellipses in each category. Again, the solid and dashed lines represent

the group average beta weights ±SE for the ellipses belonging to category A and category B, respectively.

doi:10.1371/journal.pcbi.1005304.g008
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Model comparison. Due to the complexity of the ideal-observer model in a dynamic envi-

ronment, the ideal-observer model was excluded from the model comparison. Additionally

under dynamic conditions, the Bayesian selection model is indistinguishable from the expo-

nentially weighted moving-average model (see Methods). Thus, the model comparison for

Expt. 2 begins with the exponentially weighted-moving average model.

To obtain a quantitative measure of model fit, we computed DIC scores for each combina-

tion of task, observer and model. The median DIC scores for each observer and model in the

covert- and the overt-criterion task are displayed in Tables 5 and 6, respectively. The best fit-

ting model for each observer is indicated. We allowed for ties, so occasionally multiple models

were the best fitting and are indicated as such. Fig 9A shows the average DIC scores across all

observers in each task relative to the DIC scores for the exponentially weighted average model.

A score above zero indicates a better fit. For additional analysis at the group level, we obtained

Table 5. Individual DIC scores for the covert-criterion task under dynamic conditions (Expt. 2).

Observer Exponentially weighted moving-average Reinforcement learning Limited memory

ADB 602* 660 622

ASD 747* 792 746*

BAC 629* 639 632*

DJA 789* 840 791*

DMG 702* 724 714

EHN 486* 545 487*

ERK 713* 719* 725

JMP 701* 707* 723

JYZ 643* 688 657

MLN 565* 600 581

Mean 658* 691 668

Exceedance probability (φ) .9985 .0006 .001

Note: The * indicates the best fitting model (i.e., the model with the lowest DIC score) for each observer and the average across all observers. We allow for

ties.

doi:10.1371/journal.pcbi.1005304.t005

Table 6. Individual DIC scores for the overt-criterion task under dynamic conditions (Expt. 2).

Observer Exponentially weighted moving-average Reinforcement learning Limited memory

ADB 3,975* 4,014 3,973*

ASD 4,935 4,725* 4,898

BAC 4,590 4,462* 4,645

DJA 4,558 4,284* 4,550

DMG 4,517 4,263* 4,620

EHN 4,206 3,907* 4,217

ERK 4,033 3,959* 4,081

JMP 3,877* 4,229 3,906

JYZ 3,911* 3,905* 4,035

MLN 4,397 4,278* 4,368

Mean 4,300 4,203* 4,329

Exceedance probability (φ) .015 .978 .007

Note: The * indicates the best fitting model (i.e., the model with the lowest DIC score) for each observer and the average across all observers. We allow for

ties.

doi:10.1371/journal.pcbi.1005304.t006
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the exceedance probability (φk) in favor of each model k in the covert- (Table 5) and overt-cri-

terion (Table 6) tasks. The exceedance probability for each model is shown in Fig 9B.

The covert-criterion data for 4 out of 10 observers were best fit by the exponentially

weighted moving-average model. Four observers were best fit by the exponentially weighted

moving-average and the limited-memory models and two were best fit by the exponentially

weighted moving-average and reinforcement learning models. At the group level, the exceed-

ance probability for the exponentially weighted moving-average model was much higher

(φExponential = .9985) than either alternative model suggesting it is a more likely model given

the group data (Table 5).

In the overt-criterion task, 7 out of 10 observers were best fit by the reinforcement learning

model. Of the remaining three, one was best fit by the exponentially weighted moving-average

model, one was fit equally well by the exponentially weighted moving-average and reinforce-

ment learning models, and one was fit equally well by the exponentially weighted moving aver-

age and the limited-memory models. At the group level, the exceedance probability in favor of

the reinforcement learning model is very high (φRL = .978) suggesting that given the group

data, the reinforcement learning model is more likely compared to either alternative (Table 6).

Parameter estimates for each model and task are shown in Tables 7 and 8. Additionally, Fig

10 compares the noise-parameter estimates for the exponentially weighted moving-average

Fig 9. Model comparison results for the covert- (dark gray) and overt-criterion (light gray) tasks in Expt. 2. A)

The bar graph depicts the relative DIC scores (i.e., DIC difference between the exponentially weight moving-average

model and the alternatives) averaged across observers ±SE. Larger values indicate a better fit. B) To summarize the

results from the group level analysis we computed exceedance probabilities for each model in each task. A model’s

exceedance probability tells us how much more likely that model is compared to the alternatives, given the group

data.

doi:10.1371/journal.pcbi.1005304.g009

Table 7. Mean maximum a posteriori parameter estimates ±SE for each covert-criterion model in

Expt. 2.

Model σv τ β
Exponentially weighted moving-average 20.0 ± 2.1 [.81, 1.06] —

Reinforcement learning 23.2 ± 1.8 — .56 ± .07

Limited memory 21.3 ± 2.0 — —

doi:10.1371/journal.pcbi.1005304.t007
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model to the sensory and adjustment noise that were measured in the orientation-discrimina-

tion and orientation-matching tasks, respectively. Adjustment noise was only measured for 3

of the 5 observers who completed both experiments. For the covert-criterion task, fit parame-

ters are larger than the corresponding noise estimates from the discrimination experiment. For

Table 8. Mean maximum a posteriori parameter estimates ±SE for each overt-criterion model in Expt.

2.

Model σa τ β
Exponentially weighted moving-average 9.1 ± .93 [1.1, 1.6] —

Reinforcement learning 8.3 ± .65 — .79 ± .06

Limited memory 9.3 ± .89 — —

doi:10.1371/journal.pcbi.1005304.t008

Fig 10. A comparison of the measured noise parameters and model fit parameters in Expt. 2 for the

exponentially weighted moving-average model. A) Each model was fit to the covert-criterion data for each

individual and the maximum a posteriori parameter estimate for sensory noise (σv) was determined. Each

point represents the sensory noise estimated by the exponentially weighted moving-average model for each

individual compared to the individual’s measured sensory noise. Black dashed line: the identity line. B)

Adjustment noise (σa) was estimated in the overt-criterion task and compared to the measured adjustment

noise. Error bars represent a 95% C.I. Note: adjustment noise was only measured for 3 out of the 10

observers, who completed both Expt. 1 and Expt. 2.

doi:10.1371/journal.pcbi.1005304.g010
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the overt-criterion task, the fit parameters are larger than the corresponding noise estimates

from the matching experiment for 2 out of 3 observers and smaller for one. Larger parameter

estimates might indicate additional uncertainty in the task (e.g., uncertainty about the distribu-

tion noise and/or uncertainty about the dynamics of the task). Correlations between the mea-

sured sensory noise estimates and the estimates from each model fit revealed no significant

correlation between the two (all p> .05). No significant correlation was found when compar-

ing measured adjustment noise and model estimates either (all p> .05).

Discussion

The present study examined the strategies observers used to learn and update their decision

criterion in an orientation-discrimination task under both static and dynamic uncertainty.

Under static conditions in which category means were constant, we showed that while observ-

ers converged to the optimal criterion over many trials, their trial-by-trial behavior was better

described by suboptimal learning rules than by the optimal rule. Thus, even though conditions

were static, the criterion continued to systematically drift with changes in stimulus statistics

throughout the experiment. Under dynamic conditions in which category means changed

slowly over time, observers followed changes in the means of the category distributions closely

with a 1–4 trial lag. Specifically, we found that at the group level a model in which the recent

history of past samples determines a belief about category means, the exponentially weighted

moving-average rule, was more likely than the alternative models across most tasks and condi-

tions with the exception of the overt-criterion task under dynamic conditions in which the

reinforcement learning model was more likely. Our results suggest that the decision criterion

is not fixed, but is dynamic, even after prolonged training. Finally, we provided a novel tech-

nique, the overt-criterion task, which can be used to explicitly measure criterion placement

and a computational framework for decision-making under uncertainty in both static and

dynamic environments.

Based on findings in the visuo-motor and reinforcement-learning literature, in which feed-

back is gradually or discretely updated [15,16,17,20,21], we would expect a model in which

recent samples are given more weight to better explain performance under dynamic condi-

tions. However, this is a suboptimal strategy under static conditions. Nevertheless, research on

history effects in psychophysical tasks suggests that observers behave as if the environment is

dynamic, which is consistent with our results [8,9,10,11,12,13,14]. Furthermore, the regression

analysis we performed in Expt. 1 revealed beta weights for the covert- and overt-criterion tasks

that suggest an exponentially weighted average of the previous stimuli. Overall, our analysis

provides additional evidence against the ideal-observer model and the assumption of a stable

criterion, even in static environments. Intuitively, in a world that is constantly changing, it

makes sense to continually update your decision criterion, weighting your most recent experi-

ences more heavily.

The previous study that is closest in spirit to the current work is that of Summerfield and

colleagues [19]. Their experiment was similar to ours; in their case category means changed

suddenly at every 10 or 20 trials, and category variances could also change. However, they

used a traditional discrimination task without explicit measurement of the criterion, and their

primary analysis used the predictions of each of three models in a decidedly suboptimal man-

ner: probability matching. They found two extremely different models, a limited-memory

model and a Bayesian model (that uses probability matching rather than the optimal decision)

both accounted for significant amounts of variance in their data. In our analysis, we are inter-

ested in the entire sequence of computations from estimating the stimulus parameter of inter-

est (orientation, perturbed by sensory noise) through the binary category decision, and
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compare a wider array of models that include the ideal observer. We found that suboptimal

models that use the recent history of past samples best accounted for both covert and explicit

criterion setting [19].

While a dynamic decision criterion might be useful in the real-world, by using such a cri-

terion (especially in Expt. 1) in our experiments, observers are making suboptimal inferences

about the category membership of an ellipse. These results are consistent with the idea that

suboptimal inference is more than just internal noise [22]. This is also consistent with the

overestimates of the noise parameters that we find in our model fits, which suggests that

there is additional noise beyond sensory and adjustment. Acuña and Schrater [23] suggest

that seemingly suboptimal decisions in sequential decision-making tasks can be accounted

for by uncertainty in learning the structure of the task. Uncertainty about the structure of the

environment could affect observers’ criterion placement (i.e., observers might be uncertain

as to whether the category parameters are changing and/or the rate of change). In novel situ-

ations, one must learn the task structure and the parameters of the environment to perform

optimally.

For the purpose of increasing statistical power for our model comparison, we introduced a

novel task, in which we made the decision criterion explicit. Previous research suggests that

participants change strategies when implicit tasks are made explicit [24,25,26]. Specifically,

participants who perform optimally during an implicit task are not optimal when the task is

made explicit. This is thought to be a result of higher-level strategic adjustments interfering

with lower-level processing. While strategies were fairly consistent under static conditions, we

found a clear difference in preferred strategy under dynamic conditions. Specifically, we found

the exponentially weighted moving-average model fit best in the covert-criterion task and the

reinforcement learning model fit best in the overt-criterion task. Additionally, we observed a

difference in the exponentially weighted moving-average model’s decay rate and the reinforce-

ment learning model’s learning rate. Across experiments, the decay and learning rates under

static conditions were slower than decay and learning rates under dynamic conditions. How-

ever, there was also a difference across tasks. In both experiments, the decay rate was slower in

the overt- than the covert-criterion task and the learning rate was faster in the overt- than

covert-criterion task. Since a slower decay rate is beneficial under static conditions but disad-

vantageous under dynamic conditions and a faster learning rate is beneficial under dynamic

conditions but disadvantageous under static conditions, the parameter differences we observed

might explain the differences we see in the preferred strategies used across tasks. In particular,

this may explain why the reinforcement learning model performed better than the exponen-

tially weight moving-average model in the overt-criterion task under dynamic conditions. The

differences in decay and learning rate between the covert- and overt-criterion tasks might be

due to a difference in time-scale that results from the temporal dynamics of the two tasks (the

overt-criterion task took twice as long to complete the same number of trials) or due to the dif-

ferent levels of processing (e.g., sensory vs. motor) required for each task. In the future, it

might be interesting to see how the decay and learning rates trade off as a function of the rate

of change (i.e., the random-walk variance) in the experiment.

Previous research shows that participants update the decision criterion when changes to the

prior probabilities and payoff matrix occur [1,2,3,4,5]. There is a systematic bias in these shifts:

Humans exhibit conservatism, that is, a bias towards the neutral criterion when the optimal

criterion is shifted away from neutral. While several hypotheses have been proposed as to why

conservatism occurs, most recently Ackermann and Landy [2] have suggested that conserva-

tism can be explained by distorted probability and utility functions. Our results do not explain

this bias, but it is likely that conservatism is present and contributes to the dynamics of trial-

by-trial criterion shifts under the conditions of Expt. 2. To provide a better understanding of
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this bias, further research should aim to examine criterion learning in situations in which con-

servatism is known to exist.

Finally, psychophysical studies rely heavily on accurate estimates of d0. By calculating d0

from hit rates and false alarms in the usual way, a fixed criterion is assumed. However, if the

observer’s criterion varies over trials, performance will be a mixture of multiple points on the

ROC curve, resulting in a biased (too-low) estimate of d0. We have shown here that decision

criteria are adjusted dynamically. Examining the dynamics of trial-by-trial criterion placement

provides us with a richer understanding of participants’ behavior when making decisions in

the presence of uncertainty. Our results suggest that typical estimates of d0 are biased, and that

by using a model that accounts for a dynamic criterion we can compute a more accurate mea-

sure of discriminability and in turn, obtain a more comprehensive understanding of discrimi-

nation under uncertainty.

Methods

Ethics statement

This research involved the participation of human subjects. The Institutional Review Board at

New York University approved the experimental procedure and observers gave informed con-

sent prior to participation.

Participants

Ten observers participated in Expt. 1 (mean age 25.4, range 20–33, 5 females) and Expt. 2

(mean age 23.4, range 20–28, 4 females). Five observers provided data for both experiments,

three of whom completed Expt. 1 prior to completing Expt. 2. All observers had normal or cor-

rected-to-normal vision. One of the observers (EHN) was also an author.

Apparatus

Stimuli were presented on a gamma-corrected Dell Trinitron P780 CRT monitor with a 31.3 x

23.8 deg display, a resolution of 1024 x 768 pixels, a refresh rate of 85 Hz, and a mean lumi-

nance of 40 cd/m2. Observers viewed the display from a distance of 54.6 cm. The experiment

was programmed in MATLAB (MathWorks) using Psychophysics Toolbox [27,28].

Stimuli

Stimuli were 10 x 2˚ ellipses presented at the center of the display on a mid-gray background

(Fig 1). In the orientation-matching and overt-criterion tasks, a yellow line was presented at

the center of the display (10 x .35˚). In all tasks except the overt-criterion task, trials began

with a central yellow fixation cross (1.2˚).

Experiment 1

Ten observers participated in one, 1.5-hour session consisting of an orientation-discrimina-

tion task (~10 min), a covert- and an overt-criterion practice block (~5 min combined), one

block of the covert-criterion task (~20 min), and one block of the overt-criterion task (~40

minutes). The order of the covert- and overt-criterion tasks was randomized across subjects.

Eight out of ten observers returned for a second session in which they completed an orienta-

tion-matching task (~20 minutes). Before starting the experiment observers were given

detailed instructions regarding the tasks they would be asked to complete. The two short (20

trial) practice blocks were used to ensure that observers understood the experimental tasks.

Before each block, a condensed version of the instructions and the name of the task were
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shown to remind observers of the procedure and inform them of the task they would be com-

pleting on that block.

Orientation-discrimination task. To estimate sensory uncertainty (i.e., the just notice-

able difference in ellipse orientation), observers performed a two-interval forced-choice proce-

dure in which two black ellipses were presented sequentially (Fig 1A). The observer’s task was

to report the interval containing the ellipse that was more clockwise by pressing 1 or 2 on the

keypad, respectively. After the response, auditory feedback was provided and the next trial

began.

The orientation of the ellipse in the first interval was chosen randomly on every trial from a

uniform distribution (θ1~unif(−74˚,74˚)). The orientation of the second ellipse (θ2) was ran-

domly oriented clockwise or counter-clockwise of the first by an amount Δθ ranging from

.25˚-16˚ (log-spaced). The difference in orientation between the two ellipses was selected using

an adaptive staircase procedure. Four staircases (65 trials each) were interleaved (two 1-up,

2-down and two 1-up, 3-down) and randomly selected on each trial [29].

Orientation-matching task. To estimate orientation-adjustment uncertainty, participants

performed an orientation-matching task (Fig 1B). A yellow line was briefly presented in the

center of the display. The observer’s task was to rotate a subsequently presented line (initially

vertical) by dragging it with the mouse to match the orientation of the first line. When satisfied

with the orientation setting, observers clicked on an enter button (not visible during adjust-

ments of the line) at the bottom of the screen and the next trial began. Line orientation was

chosen randomly and uniformly (θ1~unif(−90˚,90˚)). The block consisted of 260 trials.

Covert-criterion task. In the covert-criterion task (Fig 1C), observers were shown a

black ellipse and indicated to which of two categories (A or B) it belonged by key press.

Observers were told that there were two categories of ellipse, green and red, and that the

mean of the green category (μA) was always clockwise of the mean of the red category (μB).

The ellipse was equally likely to belong to either category. Auditory feedback indicated

whether the response was correct and visual feedback indicated the ellipse’s true category

membership: The fixation cross was shown in the color of the correct category. The observer

received a point for each correct response. The total score was shown at the top of the display

along with the feedback. After the feedback, the next trial began automatically. The block

consisted of 600 trials.

Ellipse orientation was chosen randomly from one of two overlapping Gaussian distribu-

tions representing the two categories of ellipses (θA~N(μA,σ) and θB~N(μB,σ)), where σ = 10˚

and μA< μB (Fig 1E). At the beginning of the block, μA was randomly selected from a uniform

distribution ranging from approximately -50˚ to 50˚. Finally, to equate the difficulty of the task

across observers, μB was rotated counter-clockwise from μA by an amount Δθ that corre-

sponded to d0 = 1 as estimated using the data from the orientation-discrimination task. The

overlap of these distributions introduced ambiguity: A given orientation could come from

either category and therefore categorization performance could not be perfect even in the

absence of sensory noise.

Overt-criterion task. In the overt-criterion task (Fig 1D), observers were required to

indicate their decision criterion explicitly on each trial. On each trial, observers adjusted the

orientation of a “criterion line” by dragging it with the mouse to best separate the green and

red ellipse categories. As in the covert-criterion task, they were informed that there were two

noisy categories of ellipses and that, on average, the green ellipses were clockwise of the red.

On each trial, the ellipse was equally likely to belong to either category. When satisfied with

the setting, observers clicked the enter button at the bottom the display. Then, either a green

or red ellipse appeared under the line and auditory feedback was provided. If the ellipse was

green and clockwise of the line or red and counter-clockwise of the line the observer received
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positive auditory feedback and one point. Otherwise, the observer received negative auditory

feedback and no points. The total score was shown at the top of the display along with the

feedback. Category A (green) and B (red) means and variances were chosen in the same man-

ner but the means were independent of those chosen for the covert-criterion block. Observ-

ers had to relearn the categories at the beginning of each block. The block consisted of 600

trials.

Experiment 2

Expt. 2 was similar to Expt. 1 except that observers did not complete the orientation-matching

task and the category distribution means in the covert- and overt-criterion tasks were not con-

stant throughout the block. Rather, category means were updated on every trial following a

random walk. The category A mean on trial n+1 was μA,n+1 = μA,n+ε, where ε ~N(0,σrandom)

and σrandom = 5˚. The relative position (μA< μB) and the distance between the means remained

constant.

Computational models

In the covert-criterion task, the statistical structure of the task involves three variables: category

C, stimulus orientation S, and measurement X. On each trial, C is drawn randomly and deter-

mines whether S is drawn from category A (N(μA,σ)) or category B (N(μB,σ)). We assume that

on each trial, the true orientation is corrupted by sensory noise (with standard deviation σv) to

give rise to the observer’s measurement of orientation (X~N(S,σv)). The observer uses this

measurement to infer the category.

In the overt-criterion task, the statistical structure of the task involves five variables: crite-

rion orientation θc, criterion placement z, category C, stimulus orientation S, and measure-

ment X. On each trial, criterion orientation is inferred from the previous trials. We assume

that criterion orientation is corrupted by adjustment noise (z~N(θc,σa)). After the criterion is

set, C is drawn randomly and determines whether S is drawn from category A (N(μA,σ)) or cat-

egory B (N(μB,σ)). As in the covert-criterion task, we assume the true orientation of the stimu-

lus is corrupted by sensory noise (X~N(S,σv)). Finally, the observer uses this measurement and

the feedback about its category membership to update the criterion orientation for the next

trial. We found that model fits for the overt case could not discriminate adjustment noise (σa)

from sensory noise (σv), and so for this case, sensory noise was fixed and only an adjustment

noise parameter was fit. Sensory noise was set to each observer’s measured sensory uncer-

tainty. Below we describe both optimal and suboptimal models of criterion learning that vary

in computational and memory demands. The selection of the following models was partially

inspired by the models used in Summerfield and colleagues’ research [19] investigating per-

ceptual classification strategies in rapidly changing environments, in which they compared a

Bayesian observer model to a Q-learning model and a heuristic model that is similar to our

limited-memory model. In their models, sensory noise is omitted, and in its place, a fixed

degree of trial-trial choice variability is introduced by a probability-matching rule. In contrast,

we compare a more extensive set of models that include parameters controlling the level of

sensory noise and predict a specific response based on the noisy stimulus measurement and a

model of criterion update.

Ideal observer. For the covert-criterion task, the ideal Bayesian observer decides to which

category the current sample Xn+1 belongs by computing the posterior probability that the

observation belongs to each category given the noisy measurements of all previously observed

samples, integrating across the unknown category parameters. For the static case (Expt. 1) the
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posterior odds ratio is a sufficient statistic:

PðAjX1; . . .;Xnþ1Þ

PðBjX1; . . .;Xnþ1Þ
/

pA

ð

PðXnþ1jYAÞPðXA;1:nA
jYAÞPðXB;1:nB

jYBÞpðYA;YBÞdY

ð1 � pAÞ

ð

PðXnþ1jYBÞPðXA;1:nA
jYAÞPðXB;1:nB

jYBÞpðYA;YBÞdY

; ð1Þ

where Y ¼ ðYA;YBÞ ¼ ðmA; s
2
A; mB; s

2
BÞ, XA;1:nA

and XB;1:nB
are all of the previously observed

noisy samples from category A and category B (n = nA + nB), and pA = 0.5. The integral takes

into account the observer’s knowledge of the experimental conditions. In our case, we

restricted the integral to parameter sets for which s2
A ¼ s2

B ¼ s2 and μA was clockwise of μB.

That is, the ideal observer was not privy to the knowledge of the exact amount by which μA dif-

fered from μB. The prior on Θ was flat for the means over pairs for which μA was clockwise of

μB, and was a Jeffreys prior for the standard deviation (i.e., P(σ)/ 1/σ). The observer chooses

category A when the ratio in Eq 1 is greater than 1.

In the overt-criterion task, the ideal observer chooses the criterion that maximizes the prob-

ability of being correct given all previously observed samples:

znþ1 ¼ arg max
z

Pðcorrectjz;X1:nÞ: ð2Þ

This is equivalent to solving for the value of Xn+1 for which the posterior odds ratio (Eq 1) is

equal to one.

The ideal observer for the dynamic case (Expt. 2) is analogous to Eq 1. It marginalizes not

only across a single set of mean and variance parameters, but rather across all trajectories the

means might have followed in preceding trials. The complexity of this calculation is daunting,

both for the human observer and even as a computer simulation. We don’t consider the ideal

observer for the dynamic case below.

Bayesian model selection. An alternative suboptimal Bayesian approach is model selec-

tion, in which the most probable parameters are selected, and then decisions are made based

on those values. For the static case, assuming flat priors and equal variance, the observer sets a

criterion for the next trial by first computing the most likely estimates of the category means:

m̂A; nþ1 ¼
1

nA

XnA

i¼1

XA; i

m̂B; nþ1 ¼
1

nB

XnB

i¼1

XB; i:

ð3Þ

For the covert-criterion task, the observer chooses the category whose estimated mean is

closest to the current observation. For the overt-criterion task, the observer places the criterion

halfway between the estimates:

znþ1 ¼
m̂A; nþ1 þ m̂B; nþ1

2
: ð4Þ

By maintaining a running average, the observer does not have to keep track of every indi-

vidual stimulus presentation but simply the last computed average and the total number of tri-

als. On each trial, the new estimate of the mean is a weighted sum of the previous estimate and
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the current stimulus value:

m̂A; nþ1 ¼
nA

nA þ 1

� �

m̂A; n þ
1

nA þ 1

� �

Xnþ1; ð5Þ

and similarly for a current observation from category B.

For the dynamic case, model selection requires the observer to track individual category

means. The Kalman filter [30] is the Bayesian mean-tracking rule for the random walk used in

the dynamic experiment, and has been used to model human tracking of reward value [21]

and consistent motor error [15]. Here, we briefly consider a Kalman-filter model in which the

observer assumes a fixed variance for the random walk, which we fit to the data, rather than

estimating it dynamically. In this model, suppose the observer assumes that category variance

s2
A ¼ s2

B ¼ s2. Note that category variance cannot be discriminated from sensory variance,

because both sources of noise are added to the underlying category means. If a category A
ellipse is shown on trial n, the estimate of the category A mean is updated as follows,

m̂A;nþ1 ¼ m̂A; n þ kndn; ð6Þ

where dn ¼ XA; n � m̂A;n is the prediction error, kn ¼ s2
total; n=ðs

2
total;n þ s2

AÞ is a trial-specific

learning rate (or Kalman gain), s2
total; n ¼ ð1 � kn� 1Þs

2
total; n� 1

þ s2
random and s2

random is the observ-

er’s estimate of the random-walk parameter. To start the process we set m̂A; 1 ¼ XA; 1 and

s2
total; 1 ¼ 0. The sequence of Kalman gains κn depends only on the ratio s2

random=s2
A and so we

may fix s2
A to the true value of the category variance, leaving s2

random as a free parameter. A simi-

lar process estimates the category B mean. This is an error-driven learning model similar to

temporal-difference learning or other delta-rule methods. The main difference is the addi-

tional tracking of uncertainty, which determines the trial-specific learning rate. After comput-

ing estimates of the category means, the criterion is set between the estimates (Eq 4). However,

for this simple one-dimensional Kalman filter, for reasonable values of s2
random=s2

A (e.g., ranging

from 0.1 to 10), the Kalman gain rapidly asymptotes to a fixed value (within 5–20 trials). Thus,

this model cannot be discriminated from a model with fixed gain, which is identical to the

exponentially weighted moving-average model discussed next. Therefore, for the dynamic

case, we begin with the exponential model.

Exponentially weighted moving-average. The exponentially weighted moving-average

model computes smoothed estimates of the distribution means by taking a weighted average

of the previously experienced stimuli for each category, where more recent stimuli are given

more weight. The following geometric progression was used as a discrete form of an exponen-

tial weighting function:

m̂A; 0 � unif ð� 90; 90Þ;

m̂A; nþ1 ¼ aXA; nþ1 þ ð1 � aÞm̂A;n n > 0;
ð7Þ

where α determines the exponential time constant and 0< α< 1. A similar equation deter-

mines the estimate of the category B mean. When Eq 7 is expanded, the weights on the previ-

ous trials are proportional to the terms of the geometric progression 1,1−α,(1−α)2,� � �,(1−α)n−1.

As α approaches 0, this model converges to the model-selection approach above, and as α
approaches 1 this model converges to the limited-memory model below. On each trial, the

observer places the criterion between the two estimates of the category means (Eq 4) for the

overt-criterion task, and reports the category with the estimated mean closest to the current

observation for the covert-criterion task. While theoretically different than the reinforcement-

learning model described below (this model assumes the observer learns something about the
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category means), mathematically this model is equivalent to a reinforcement-learning model

in which on each trial an estimate of a category mean is updated by a proportion of the differ-

ence between the current stimulus and the previous estimate of that category mean, such that

for a category A trial, m̂A; nþ1 ¼ m̂A; n þ aðXA;n � m̂A; nÞ. Subsequently, the criterion is updated

such that znþ1 ¼ zn þ
1

2
aðXA; n � m̂A; nÞ. The same holds for a category B trial. Importantly, cate-

gory means are only updated when new information from the category is observed, but the cri-

terion is updated on every trial.

As in the Bayesian model-selection strategy, the observer needs to remember the previous

estimates of the category means. However, unlike the Bayesian model-selection strategy the

observer does not need to remember the total number of trials observed in each category to

combine the information. This model has two free parameters (α and σv or σa). The time con-

stant τ for the exponentially moving-average is a function of α and the sampling time interval

ΔT, such that t ¼ � DT
lnð1� aÞ

. In our results, we report the time constant where ΔT = 1. To compute

the time constant, α is estimated for each observer and averaged across individuals for a given

condition. The average time constant is then computed using the average α parameter. The

confidence interval on τ was determined by converting α±SE to τ.

Reinforcement learning (delta rule). The reinforcement-learning model is a model-free

approach that assumes the observer learns nothing about the underlying parameters of the dis-

tributions but simply interacts with the environment based on feedback. For both tasks, the

observer updates an internal criterion (zn) on each trial according to the delta rule:

znþ1 ¼
zn; if correct

zn þ bðXn � znÞ; if incorrect:
ð8Þ

(

Thus, the criterion is updated when negative feedback is received by taking a small step in the

direction of the difference between the stimulus sample and current criterion, where the step

size is scaled by the learning rate β. For the overt-criterion task, the observer simply reports the

current criterion. For the covert-criterion task, the current criterion is applied to the noisy

observation. β is a free parameter that is fit for each observer.

Limited memory. In the limited-memory model, the observer only stores the most

recently viewed samples of each category. The last sample drawn from each category is treated

as the current estimate of the category mean:

m̂A; nþ1 ¼ XA; nA

m̂B; nþ1 ¼ XB; nB
:

ð9Þ

The criterion (zn+1) is placed halfway between the current estimates (Eq 4) and is either

reported (overt task) or used to judge the next observation (covert task).

Data analysis

Estimating sensory uncertainty from orientation-discrimination data. A cumulative

normal distribution was fit to the orientation-discrimination data (probability of choosing

interval one as a function of the orientation difference between the first and second ellipse)

using a maximum-likelihood criterion [31]. From the fit curve we estimated the underlying

sensory uncertainty (σv) for each observer, which was compared to the estimates of sensory

uncertainty from the fits of the computational models.

Estimating adjustment uncertainty from orientation-matching data. For each of the

eight observers who completed the orientation-matching task, we calculated the adjustment

error as the standard deviation (σa) of the difference between the orientations of the observer’s
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setting and the previously displayed line. This value was compared to the estimates of adjust-

ment variability from the fits of the computational models.

Regression analysis. In addition to the model comparisons, we also performed a model-

free analysis of the data to determine the influence of prior trials on the current trial’s decision

or criterion setting. We computed “lagged regressions” in which the regressors were the orien-

tations of the nine most recently experienced ellipses from each category (that might have

been used to estimate the category means). For the covert-criterion task, the current to-be-cat-

egorized ellipse’s orientation was also a regressor. The orientation of the current trial’s ellipse

was not included for the overt-criterion task because the ellipse was always presented after the

criterion was set. The dependent variable was either the decision (for the covert-criterion task)

or the criterion placement (for the overt-criterion task). Because the dependent variable in the

covert-criterion task was binary and the dependent variable in the overt-criterion task was

continuous (ranging from -90˚ to 90˚), we conducted a logistic regression on the covert-crite-

rion data and a linear regression on the overt-criterion data.

These regressions provide a beta weight for each of the nine trials and provide insight into

how the task is performed. For example, if the current trial’s decision in the covert-task was

based on the difference between the current stimulus orientation and the average of orienta-

tions of the immediately preceding stimuli in each category (i.e., the limited-memory model),

we would expect to find a positive weight for the current trial, negative weights with half the

magnitude for the previous trial in each category, and zero weights for all other preceding tri-

als. Alternatively, if the decision is based on the difference between the current stimulus and a

weighted average of the past stimuli (i.e., the exponentially weighted moving-average model),

we would expect to find a positive weight for the current stimulus and smaller negative weights

for the previous trials with magnitudes that exponentially increase up to the preceding trial.

The sign change between lag zero and lag one is consistent with previous findings [32]. Simi-

larly, in the overt-criterion task, the beta weight for each of the nine trials provides insight into

how the current criterion is set. For example, if the current criterion is set between the category

means and each category mean is estimated by taking a weighted average of past stimuli from

that category, we would expect to find positive beta weights that exponentially increase up to

the preceding trial. That is, the criterion rotates in the same direction (clockwise or counter-

clockwise) as the preceding ellipses’ orientations, regardless of the category, with more weight

given to the most recently experienced ellipse.

Cross-correlation analysis. To determine how well observers tracked the changing cate-

gory means in Expt. 2, in the overt-criterion experiment we computed the cross-correlation

between the ideal criterion for an omniscient observer who knows the two category means on

each trial (i.e., halfway between the true underlying category means for each trial) and each

observer’s trial-by-trial criterion placement. The trial lag resulting in peak correlation provided

an estimate of how quickly each observer updated the criterion.

Model fits. To obtain a quantitative measure of model fit, we computed Deviance Infor-

mation Criterion (DIC) scores using Markov Chain Monte Carlo (MCMC) methods to sample

model parameters from each potential model using Gibbs sampling [33] as implemented in

JAGS (http://mcmc-jags.sourceforge.net/). DIC scores provide a measure for how well each

model fits the data while penalizing for model complexity (effective number of parameters).

DIC is a hierarchical modeling generalization of Akaike’s Information Criterion (AIC). DIC is

particularly useful when the posterior distributions of the models must be approximated using

MCMC. A lower DIC score indicates a better model fit. Models with a DIC score 7 or more

above that of the best-fitting model are considered poor models for the data [34,35,36].

For each observer, model and task, JAGS sampled the posterior of the model for 1000 adap-

tation steps, 1000 burn-in samples and 10,000 effective samples. Traces (i.e., the sequence of
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sampled values) for sensory uncertainty (σv) in the covert-criterion task and adjustment uncer-

tainty (σa) in the overt-criterion task, deviance, and all other free parameters were monitored

and estimates of the posterior density for each were calculated. Uninformative priors were

used for all monitored parameters; these distributions were Jeffreys priors for all σ parameters

(proportional to 1/σ) and flat distributions for all other parameters. Parameter lists for each

model are shown in Tables 9 and 10. It is important to note that sensory uncertainty was not

fit to the overt-criterion data but was fixed and set to each observer’s measured sensory noise.

Thus, for the overt condition only adjustment uncertainty (σa) was fit. Three chains were run,

and visually checked for convergence for each parameter. Additionally, we report Gelman and

Rubin’s [37] potential scale reduction factor R̂ for all parameters. Large values of R̂ indicate

poor convergence and values near one suggest convergence. The average value of R̂ (across

parameters and observers) was 1.0007 and all values were<1.1, indicating good convergence.

Due to the possibility that observers’ data were generated using different models, we used ran-

dom-effects Bayesian model selection for analysis at the group level [38]. This method is par-

ticularly useful when populations are heterogeneous and is more robust in the face of outliers

than frequentist statistical tests (e.g., t-tests). Specifically, we used all subject-specific model

evidence to compute the exceedance probability (i.e., the certainty with which we can conclude

that model k is more likely than any other model, given the group data) for each model. The

log evidence for each subject i and model k was approximated by −DICi,k/2. This was com-

puted for each task and condition. The group analysis was conducted using the open-source

software package Statistical Parametric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm).
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Table 9. Model parameters for the covert-criterion task.

Model Number of parameters Parameters

Ideal Bayesian 2 σv,σ
Bayesian model selection—Expt. 1 1 σv

Exponentially weighted moving-average 2 σv,α
Reinforcement learning 2 σv,β
Limited memory 1 σv
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Table 10. Model parameters for the overt-criterion task.

Model Number of parameters Parameters

Ideal Bayesian 2 σa,σ
Bayesian model selection—Expt. 1 1 σa

Exponentially weighted moving-average 2 σa,α
Reinforcement learning 2 σa,β
Limited memory 1 σa

Note: Sensory uncertainty is not fit in the overt-criterion case because it was fixed in our models and set to an observer’s measured sensory uncertainty.

doi:10.1371/journal.pcbi.1005304.t010
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