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Purpose of review

Imaging constitutes one of the key pillars in the diagnostic workup after a first seizure as well as for the
presurgical workup in epilepsy. The role of imaging in emergency situations, mainly to support the
adequate diagnosis, as well as its role in planning of noninvasive image-guided therapies is less well
established. Here, we provide an overview on peri-ictal imaging findings to support differential diagnosis
in emergency situations and describe recent attempts toward minimal invasive therapy in the treatment of
epilepsy and its comorbidities based on a combination of imaging techniques with ultrasound.

Recent findings

Peri-ictal perfusion changes can differentiate ictal stroke mimics from acute ischemic stroke if focal areas of
increased perfusion are depicted by computed tomography or MRI. Postictal perfusion patterns in patients
with persisting neurological symptoms are frequently normal and do not reach enough diagnostic sensitivity
to differentiate between stroke and its mimics. Noninvasive magnetic resonance-techniques as arterial spin
labeling may provide a higher sensitivity, especially in combination with diffusion-weighted and
susceptibility-weighted MRI. Imaging guided focused ultrasound (FUS) bears the potential to ablate
epileptogenic tissue and allows suppression of epileptic activity. Imaging guided blood–brain-barrier
opening with FUS offers new options for local drug administration.

Summary

MRI should be considered the method of choice in the differential diagnosis of peri-ictal imaging findings
and their differential diagnosis. A combination of various MRI techniques with FUS opens new avenues for
treatment of epilepsy.
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INTRODUCTION

In their recent review, Sidhu et al. [1
&&

] provided an
extensive overview of the latest advances in structural
and functional imaging methods and of postprocess-
ing methods to improve the presurgical identification
of the seizure onset zone in patients with epilepsy.
Here, we aim to provide a complementary review of
advanced imagingmethods,which focuses on(1)peri-
ictal imaging and (2) new developments for imaging-
based therapy. Issue 1 (RW) describes developments
relating to the diagnostic workup of acute seizures.
The intention is to provide an overview of recent
functional imaging techniques that may help to deter-
mine the presence of ongoing ictal activity and to
differentiate between focal and generalized seizures.
Issue 2 (RB) will introduce new imaging-based ultra-
sound therapies for epilepsy and its comorbidities. The
new therapies allow low-invasive ablation of dysfunc-
tional tissue and noninvasive focal brain stimulation
for deep and superficial targets. In addition, low-inva-
sive blood–brain barrier (BBB) disruption for local
drug administration is now possible.
Peri-ictal imaging

During the past decade, increased availability of
advanced neuroimaging methods in emergency units
has supported advances in knowledge about peri-ictal
abnormalities related to transient biological processes
associated with epileptic seizures. The vast majority of
imaging data relate to the emergency diagnostic
workupofacuteischemicstroke[2

&&

,3–7,8
&&

].Peri-ictal
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KEY POINTS

� Susceptibility-weighted imaging, diffusion and perfusion
delineate peri-ictal MRI abnormalities related to ictal
and postictal conditions.

� Peri-ictal perfusion changes may aid in the differential
diagnosis between ischemic stroke and epilepsy-related
image abnormalities.

� Arterial spin labeling perfusion imaging identifies peri-
ictal perfusion abnormalities and provides
complementary information about the seizure-onset
zone noninvasively.

� High intensity FUS allows low-invasive ablation of
epileptogenic tissue and disruption of epileptic
networks.

� Noninvasive ultrasound neuromodulation has been
shown to suppress epileptic activity.
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clinical symptoms may mimic those of an acute ische-
mic stroke, and most of the adult patients suspected of
presenting with a stroke mimic have a seizure due to a
remote symptomatic cause or nonconvulsive status
epilepticus (NCSE) [9]. In a pediatric population, seiz-
ures that presented as stroke mimics were mainly
associated with an acute neurological illness [10].
Stroke mimics can be found in 2–30% of patients
admitted to a stroke unit [11], whereas peri-ictal pre-
sentations account for 20% of all stroke mimics. Tran-
sient peri-ictal abnormalities (TPA) can be depicted by
computed tomography (CT), using iodinated perfu-
sion-contrast or by MRI, using diffusion-weighted
imaging (DWI), susceptibility-weighted imaging
(SWI), arterial spin labeling (ASL) or gadolinium-
enhanced perfusion MRI. TPA may thus encompass
focal DWI restrictions, perfusion-related changes in
magnetic susceptibility (SWI), or regional perfusion
abnormalities. The incidence and imaging patterns
of TPA are time-dependent, and may vary between
heterogeneous study populations and methodolo-
gies. Imaging sequelae may partially resolve if the
interval between ictus and scan acquisition is
delayed. Dynamic fluctuations of the imaging
parameter may occur over time, ranging from initial
hyperperfusion, predominant vasogenic extracellu-
lar edema to cytotoxic edema and ictal-related neu-
ronal loss and gliosis [12].

Computed tomography

The overall sensitivity of perfusion CT (PCT) to
identify perfusion anomalies in patients with per-
sisting neurological deficits is moderate and
depends on the time between ictus onset and scan-
ning. Previous studies have reported perfusion
1350-7540 Copyright � 2019 The Author(s). Published by Wolters Kluwe
abnormalities related to peri-ictal neurological def-
icits in 37–78% up to 72 h [8

&&

,13–15]. Van Cau-
wenberge et al. [8

&&

] retrospectively analyzed 133
patients with postictal focal neurologic deficits or
ongoing seizure within 3.25 h of admission with
volume PCT. Persistent hyperperfusion was present
in 59% of the patients with ongoing seizures during
scanning and 38% of those admitted with a seizure.
Ictal presentation on admission, age, and a history
of complex partial seizures predicted hyperperfu-
sion. The diagnostic sensitivity was low, since the
majority of postictal patients presented with normal
perfusion or a cortical–subcortical hypoperfusion.
Cortical hyperperfusion should thus be considered a
specific but insensitive finding in ictal and some
postictal patients, providing diagnostic utility [8

&&

].
Strambo et al. [13] investigated patients with a

persistent neurological deficit more than 1h and a
final diagnosis of a seizure or status epilepticus that
received PCT for suspected transient ischemic attack
(TIA) or acute ischemic stroke within 24h. They
detected focal hyperperfusion in 30% and focal hypo-
perfusion in 8% of their patients. There was a signifi-
cant association between the clinical status at the time
of PCT) and the imaging findings, with hypoperfusion
being detected in patients with focal neurological
deficit and hyperperfusion in the presence of ongoing
clinical seizure activity. Austein et al. [4] reported
hyperperfusion in 59% and hypoperfusion in 40%
of patients with stroke-like symptoms that were exam-
ined with PCT and presented with persistent neuro-
logical deficits, mainly (75%) within 3h of symptom
onset. Beyond a temporal relationship between the
time of onset and the presence of hyperperfusion and
hypoperfusion patterns, cortical perfusion patterns
favor ictal hyperperfusion, while postictal patterns
frequently extend into the subcortical white matter
[14]. Such studies provide evidence that TPA should
alert clinicians to consider a seizure/stroke mimic in
patients presenting with a focal neurological deficit or
impaired consciousness. TPA can be distinguished
from ischemic stroke patterns, if CT angiography is
included in the protocol and other causes of symp-
tomatic perfusion deficits (e.g. due to a migraine
attack, reversible encephalopathy syndrome, meta-
bolic or inflammatory disorders) can be excluded
(Exemplary perfusion abnormalities are displayed in
Fig. 1a and b, peri-ictal perfusion patterns; stroke
hypoperfusion and ictal hyperperfusion patterns).

MRI

Magnetic resonance (MR)-based advanced neuroim-
aging in the peri-ictal period is mainly employed to
enable a swift differentiation between conditions
related to increased metabolic demands and associ-
ated cortical hyperperfusion and conditions where
r Health, Inc. www.co-neurology.com 531



FIGURE 1. (a) Exemplary perfusion maps for ictal hyperperfusion (cerebral blood flow map, upper row) and hypoperfusion (time
to peak map, lower row). Ictal hyperperfusion is restricted to the cortex, while the areas of hypoperfusion encompass the white
matter and exceed the vascular territories. (b) Different perfusion imaging patterns in a patient who presented with an ischemic
stroke and witnessed seizure with postictal aphasia (left) and a patient who presented with aphasia and motor hemiparesis
suspected for an ischemic stroke (right). The perfusion patterns reflect hypoperfusion within a segmental artery (cerebral blood flow,
left) characteristic for an ischemic stroke vs. multisegmental hyperperfusion (TTP, right) characteristic for peri-ictal abnormalities.

Neuroimaging
neuronal activity is downregulated due to metabolic
exhaustion or compensated by activity of inhibitory
interneurons. Transient peri-ictal MRI abnormalities
(TPMA) include a variety of reversible brain lesions
that encompass signal abnormalities on conven-
tional T2w and FLAIR sequences, vasogenic and cyto-
toxic edema on DWI, diamagnetic and paramagnetic
susceptibility changes and, similar to PCT, perfusion
abnormalities. Most peri-ictal MRI studies have either
532 www.co-neurology.com
focused on DWI or perfusion MRI. A recent system-
atic review of 96 articles with 575 case descriptions
with ictal induced MRI changes identified the mesial
temporal structures and neocortex as the most vul-
nerable cortical locations and the thalamus and pul-
vinar as the most frequent subcortical grey matter
locations. The frequency of MRI abnormalities varied
between 0.007% after a single seizure or seizure clus-
ter and 29.4% after a status epilepticus. MRI findings
Volume 32 � Number 4 � August 2019
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encompassed restricted diffusion, reduced apparent
diffusion coefficient values, and hyperintense
area on FLAIR or T2w images [16

&&

]. From a clinical
perspective, the development of periodic lateralized
epileptiform discharges concordant with ictal imag-
ing change was associated with worse clinical prog-
nosis and patients with symptomatic origin of their
seizure were more likely to develop related imaging
abnormalities. Contrast-enhanced perfusion studies
resemble the patterns of PCT, with hyperperfusion
occurring mainly during ongoing seizure activity or
immediatelypostictalorhypoperfusioninthepostictal
phase. Perfusion asymmetries have been reported in
22% of patients with migraine associated with aura,
lasting up to 24h after symptom onset [17]. In contrast
toTPMA,DWIrestrictionsinpatientswithmigraineare
exceptional and cortical oligemia is predominantly
observed in the parieto-occipital cortex, reflecting pre-
dominantly language and sensory symptoms in
patients with perfusion abnormalities [17]. Mitochon-
drial myopathy, encephalopathy, lactic acidosis, and a
stroke-like episode may present with atypical combi-
nations of focal hypoperfusion and hyperperfusion
with cytotoxic and vasogenic edema and clinically
manifest headache and/or seizures and should be con-
sidered as a rare stroke-mimic, migraine-mimic and/or
epilepsy-mimic. TPMA abnormalities can also be
depicted without gadolinium injection. Pseudo-nar-
rowing of cortical veins has been demonstrated in
association with focal perfusion increase in patients
with NCSE, indicating an association between lower
deoxyhemoglobinlevelsincorticalveinsandincreased
focalcerebralperfusion[18]. Incontrast,pseudo-prom-
inent cortical veins have been described during the
postictalstatewhileregionalperfusionisdecreased[19]
(Fig. 2, predilection areas of DWI restriction).
FIGURE 2. Diffusion-weighted imaging maps (b¼1000 mms/s
hippocampus, neocortex, pulvinar of the thalamus and the spleniu
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Compared to contrast-enhanced PCT and MRI,
ASL offers advantages when slowly varying changes
in brain function are investigated. ASL can be per-
formed with reproducible results during routine
MRI examination and has a potential use for the
comparison of within-subject and between-subject
differences associated with epilepsy-induced state
changes and baseline differences in regional cerebral
blood flow (CBF) [5]. ASL outperforms DWI as a
surrogate marker of TPMA; however, TPMA are an
inconsistent finding in ASL perfusion studies
[20,21,22

&&

]. Some retrospective studies reported
prolonged hyperperfusion exceeding the period of
postictal neurological deficits without ongoing sei-
zure activity in EEG [20,21] for several days. These
findings may be partially explained by the inclusion
of epileptogenic lesions that may favor sustained
hyperperfusion themselves, local tissue pressure,
carbon dioxide level or persisting epileptic activity
not detectable by surface EEG. Patients with idio-
pathic generalized epilepsy, that were investigated
with multidelay, multiparametric ASL perfusion
MRI, showed hypoperfusion when compared to
healthy controls or healthy volunteers [23]. Recent
ASL studies revealed consistent downregulation of
CBF, localized to brain areas involved in seizure
generation and propagation in the early postictal
period (average 65 min, 45–116). This has been
shown in patients with drug-resistant epilepsy when
compared to interictal epochs and seizure freedom
[22

&&

]. Gaxiola et al. reported postictal perfusion
decrease in 71.4% and a partial to complete overlap
with the presumed seizure onset zone in 80% of
cases with overt hypoperfusion. Postictal hypoper-
fusion was also positively correlated with seizure
duration, while interictal hypoperfusion in periods
2) of typical peri-ictal patterns of restricted diffusion in the
m of the corpus callosum.

r Health, Inc. www.co-neurology.com 533



Neuroimaging
of seizure freedom was a rare finding. The study
confirmed previous investigations that observed
high agreement (18/20 pts) between hypometabo-
lism of FDG-PET and hypoperfusion in ASL-MRI in
the affected hemisphere. In the assessment, expert-
based hypotheses encompassing clinical history,
neuropsychological assessment and electrophysio-
logical findings were considered in 12/20 cases.
Although most perfusion abnormalities during post-
ictal conditions reflected hypoperfusion, excep-
tional cases of hyperperfusion have been reported�

[23,24]. These findings indicate, similar to peri-ictal
imaging in emergency situations, the clinical uncer-
tainty or lack of knowledge about precise termina-
tion of seizure and persistence of ongoing epileptic
activity in the absence of clinical signs.

Transient peri-ictal MRI abnormalities
after a first seizure

Several studies showed that the presence of vascular,
postinfectious and posttraumatic brain damage
increases the risk of a subsequent seizure up to 70%
if there is no specific treatment [25,26]. MRI has
become the method of choice to detect structural
epileptogenic lesions that predispose patients to
develop epilepsy after a first seizure. Factors like
temporal or frontal lobe epilepsy, focal EEG dis-
charges, and focal lesion signs on brain imaging
increase the risk of seizure recurrence [26]. According
to the International LEague against Epilepsy, 50–
99% of MRIs and up to 70% of scalp EEGs may be
negative, despite an underlying epileptic disorder
which hampers proper diagnosis at the first event
[27]. Differential diagnosis encompasses a variety of
seizure mimics in all age groups, including dissocia-
tive events, TIAs, migraine, vegetative and cardiac
disorders. Here, detection of TPMA after a first
unprovoked seizure points to its epileptic cause
and, thus, supports definite diagnosis. H€ubers
et al. [28] identified DWI restrictions in 19% of
patients with SE/seizure series and in 3% of patients
after single focal and 2.5% after single generalized
seizures that underwent MRI within 24 h after sei-
zure onset�. Kim et al. retrospectively investigated
69 patients who presented with a first seizure or
status epilepticus within 24 h after seizure onset�

[20]. Abnormal hyperintensities on DWI and FLAIR
images were noted in 16%, affecting predominantly
the neocortex, hippocampal structures and thala-
mus, confirming the predilection areas detected in
previous studies in patients with status epilepticus
or after single seizures [29–33].

ASL perfusion revealed areas of focal hyperper-
fusion that corresponded to the presumed seizure
onset zone in newborns [34] and in children who
presented with a first seizure and normal MRI [35

&

].
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Perfusion changes were detected in 58% of children
(focal in 36 and generalized in seven patients) with
an overlapping area between the TPMA and the
suspected seizure onset zone in 76%. A promising
approach beyond imaging of TPMA is to investigate
large-scale network differences between patients
with new onset epilepsy and healthy controls.
Reduced functional connectivity between regions
within the fronto-parietal attention network and
other areas of the brain has recently been demon-
strated in patients with newly diagnosed epilepsy
and normal brain MRI [36

&

]. These findings open a
potential new window for imaging, since they pro-
vide preliminary evidence that functional brain
abnormalities are not necessarily a consequence of
secondary effects of chronic epilepsy rather than
being present at the onset of epilepsy.

Neuronal current imaging

Although perfusion MRI and DWI are indirect
methods, which focus on imaging correlates of
hypersynchronous discharges and postictal exhaus-
tion, alternative attempts have focused on fMRI
methods that can detect neural magnetic fields
directly [37]. A new MRI method using a spin-lock
pulse has attracted attention because of its potential
for detecting small oscillating magnetic fields.
Experimental studies have suggested that MRI
could detect oscillating magnetic fields directly
by using the spin-lock technique. Spin-locking
experiments enable the investigation of contrasts
in populations of labile protons with a Larmor
frequency that is different from water. If synchro-
nized magnetic fields are generated by neuronal
signaling during epileptic discharges, they interact
with the externally applied oscillating magnetic
field and attenuate local MR signal intensity. Detec-
tion of the neuronal current-induced MR signal
attenuation requires a temporal synchronization
between the synchronized magnetic field and the
image acquisition. A detection of neuronal activity
can eventually be achieved by lowering the Larmor
frequency toward frequencies in the high and ultra-
high frequency domain by interactions with the
Spin-locking mechanism. A first technical report
of effects on magnetic field perturbations in a small
series of patients that underwent presurgical phase
II workup reported a hemispheric concordance in
seven of eight patients. Notably, the effects of the
spin-lock experiment were absent after successful
epilepsy surgery (Engel Class I), but remained
detectable in cases of less favorable outcome [38].
Clinical studies are mandatory to validate this
experimental technique in patients, for example
after a first seizure (Fig. 3, schematic overview:
neuronal current imaging).
Volume 32 � Number 4 � August 2019



FIGURE 3. Schematic description of the spin-locking experiment: local neuronal currents produce weak transient magnetic
fields that attenuate focal magnetic resonance signal intensity. The key approach of the proposed method is nonhemodynamic
resonant saturation effect, whereby epilepsy-related oscillations in the high and ultrahigh frequency domain (80–600 Hz) are
overlaid with processing spins in the magnetic field of the magnetic resonance scanner. The spins synchronize with oscillations
in preselected frequency domain, which – if present – generate a weak signal attenuation in the magnetic field. The method
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Neuroimaging
New developments in imaging-based therapy

In recent years, groundbreaking research has focused
on imaging-based ultrasound techniques which
allow new low-invasive or noninvasive therapies
for brain diseases. These methods use ultrasound
for low-invasive and highly focal ablation of dysfunc-
tional tissue, noninvasive focal and exactly targeted
neuromodulation, and low-invasive and exactly tar-
geted opening of the blood brain barrier (BBB). The
major new technique for focal ablation are high-
intensity focused ultrasound (HIFUS). Focal neuro-
modulation uses low-intensity ultrasound. BBB dis-
ruption also uses low energy but is combined with
intravenous microbubble administration.

Tissue ablation with high-intensity-focused
ultrasound

The current state of the art for HIFUS ablation are
FDA-approved hemispherical transducers with 1024
channels, which are mounted on the MRI table
[39

&&

,40,41]. They operate either at 650 kHz for ther-
mal ablation, or at 220 kHz for thermal ablation and
histotripsy (i.e. mechanical destructions due to oscil-
lating gas bubbles which are inherent in the target
tissue). Clinical FDA approval has been granted for
refractory essential tremor [42], but current investi-
gations include a wide variety of diseases [39

&&

]. A
typical ablation session for the ventral intermediate
nucleus of the thalamus (essential tremor therapy)
lasts 2–4 h with 10–15 sonications. Imaging is an
essential part of the new therapies. Diffusion tensor
imaging helps to define the exact neuroanatomical
localization of the targets for ablation. Functional
MRI can be used to monitor the ablation effect either
online or via longitudinal functional monitoring post
ablation. The significance of HIFUS for epileptic dis-
orders relates to the possibility of ablating the epilep-
togenic zone or disrupting epileptic networks with
low invasiveness [41,43]. Clinical trials are investigat-
ing FUS ablation for lesional epilepsy (including dys-
plasia) and for removingcortical seizure foci.A further
trial concerns prevention of secondary generalization
with partial-onset refractory epilepsy by targeting the
anterior thalamic nucleus [39

&&

].

Noninvasive neuromodulation of deep and
superficial targets

Recent technical developments enable exactly tar-
geted focal neuronal stimulation through the skull
uses nonhemodynamic resonant saturation effects to detect magne
activity in epileptic neural tissue (1). The spins are sensitized to ne
(here exemplarily displayed for frequencies between 120 and 48
activity is present, the oscillations induce weak distortions of the m
acquisition related images are subtracted, deconvolved and postp
adaptive filtering (3) and the effects can be z-transformed and dis

536 www.co-neurology.com
and to any area of the brain using ultrasound and
imaging [44,45]. Despite impressive neuromodula-
tion data previously obtained with electromagnetic
techniques like transcranial magnetic stimulation or
transcranial direct current stimulation, these meth-
ods did not allow focal deep brain stimulation and
secure targeting within pathological brains [46

&

]. FUS
beams typically operate at a frequency less than
0.7 MHz, apply energy levels less than 100 W/cm2

in a pulsed mode, and have lateral and axial resolu-
tions around 5 and 20 mm. The highest spatial reso-
lution reported is 90 mm [47]. Possible mechanisms of
action center on direct effects on the cell membrane
via mechanosensitive ion channels, alteration of
membrane potentials and pore formation [48]. These
may result in increased levels of serotonin, dopa-
mine, and various neurotrophic factors, as well as
cell proliferation and glial activation. Several studies
showed modulation of superficial and deep human
brain activity with effects on evoked potentials,
motor behavior and cognition [44,45]. The first
patient study by Lohse-Busch et al. [49

&&

] used a trans-
cranial pulse stimulation technique with a nonnavi-
gated global stimulation approach. Potential clinical
applications include all diseases that have already
been studied by electromagnetic techniques, but
for the first time noninvasive deep brain area stimu-
lation is possible. For epilepsy, efficient suppression
of epileptic activity has been shown in an animal
study via thalamus stimulation [50

&

]. Therapeutic
applications may therefore focus on seizure suppres-
sion, epileptic network modulation, and cognitive
rehabilitation [51].
Opening of the blood–brain barrier with
focused ultrasound

A new therapeutic option for a wide variety of brain
diseases is offered by localized opening of the BBB.
This technique combines intravenous administra-
tion of microbubbles with low-energy FUS [52,53].
In the sonicated areas, oscillating microbubbles
broaden the endothelial cell junctions of the BBB
and collapsing microbubbles may induce blood-tis-
sue permeation. Several commercial sonication
techniques and FDA-approved microbubble types
currently exist. The artificial BBB leaks allow focal
administration of drugs (about 98% of drug com-
pounds are usually blocked by the BBB). They also
tic field oscillations induced by large rhythmic electrical
uronal magnetic fields oscillating at different frequencies
0 Hz) that colocalize with epileptic activity. If epileptic
agnetic field (2). The spin-lock on and spin-lock off
rocessed using gray matter/white matter segmentation and
played on anatomical images.
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allow focal gene delivery for long-term expression of
therapeutic proteins via viral vectors, liposomes
or nanobubbles (about 200 nm in diameter). Fur-
thermore, BBB opening generates immunogenic
responses (e.g. activation of microglia and neuro-
glia) and stimulates neurogenesis. It may also mod-
ulate local neuronal activity, including cognitive
enhancement [54]. The feasibility of nonthermal
tissue ablation and focal disconnection of brain
network components has also been shown in animal
studies [55,56]. These mechanisms are being inves-
tigated in clinical trials on brain tumors, Alzheimer’s
disease, Parkinson’s disease (PD), dementia and
amyotrophic lateral sclerosis. The importance of
imaging tools relates to the definition of BBB targets,
brain temperature control by magnetic resonance
thermometry and control of BBB opening via Gd-
DTPA MRI. Functional consequences can be moni-
tored via functional MRI [57]. Although no specific
studies on epilepsy have yet been published, thera-
peutically applicable mechanisms may include local
administration of high dosages of antiepileptic
drugs, alternative ablation of epileptogenic tissue,
alternative epileptic network disruptions, cognitive
enhancement and benefits from stimulation of
neurogenesis.
CONCLUSION

Seizures can induce TPA that can be depicted by
structural and functional imaging techniques. TPA
may alert clinicians to consider a seizure or a NCSE
in the differential diagnosis of focal neurological
deficits in emergency situations. Although patterns
of regionally or global cortically increased perfusion
are predominantly observed during an ictus or in the
immediate postictal period, postictal patterns are
less consistent and observed during postictal deficits
or prolonged seizures. Yet, it remains unclear which
individuals do develop TPA and which do not.
Beyond new technological developments to lever-
age decision making after a first seizure and during
peri-ictal periods, new developments also concern
new imaging-based therapies. Combinations of var-
ious MRI techniques with focused ultrasound open
new avenues for innovative treatment of epilepsy.
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