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Abstract: Herein, we study electronic and thermoelectric transport in a type I Weyl semimetal
nanojunction, with a torsional dislocation defect, in the presence of an external magnetic field parallel
to the dislocation axis. The defect is modeled in a cylindrical geometry, as a combination of a gauge
field accounting for torsional strain and a delta-potential barrier for the lattice mismatch effect. In the
Landauer formalism, we find that due to the combination of strain and magnetic field, the electric
current exhibits chiral valley-polarization, and the conductance displays the signature of Landau
levels. We also compute the thermal transport coefficients, where a high thermopower and a large
figure of merit are predicted for the junction.

Keywords: weyl semimetals; transport; torsion; dislocation; magnetic field

1. Introduction

Since the experimental discovery of topological insulators, there has been an increasing
interest in the search for other materials that may exhibit non-trivial topological proper-
ties [1–5]. A remarkable example of three-dimensional gapless topological materials are
Weyl semimetals (WSMs). First proposed theoretically [6–12], WSMs were recently dis-
covered experimentally on TaAs crystals [13] and observed in photonic crystals [14]. In a
WSM, the conduction and valence bands touch each other in an even number of points with
linear dispersion, referred to as Weyl nodes. These nodes are protected from being gapped
because they are monopolar sources of Berry curvature, and thus their charge (chirality) is
a topological invariant [12]. In the vicinity of these nodes, low-energy conducting states can
be described as Weyl fermions, i.e., massless quasi-particles with pseudo-relativistic Dirac
linear dispersion [9–12]. In addition to their intrinsic electronic spin, in Weyl fermions
chirality determines the projection of the spin over their momentum direction, a condition
often referred to as “spin-momentum locked states”. While Type I WSMs fully respect
Lorentz covariance, such condition is not satisfied in Type II WSMs, where the Dirac cones
are strongly tilted [4].

The presence of Weyl nodes in the bulk spectrum determines the emergence of Fermi
arcs [13], the chiral anomaly, and the chiral magnetic effect, among other remarkable proper-
ties [4]. Perhaps the most studied is the chiral anomaly, which is the non-conservation of the
independent chiral currents in the presence of non-orthogonal electric and magnetic fields.
Therefore, considerable attention has been paid to understand the electronic transport
properties of WSMs [15–17]. For instance, there are recent works on charge transport [18] in
the presence of spin–orbit-coupled impurities [19], electrochemical [20] and nonlinear trans-
port induced by Berry curvature dipoles [21]. Regarding thermoelectric transport in WSMs,
it is known that the linear Dirac-type dispersion induces a non-trivial dependence on the
chemical potential [22]. Somewhat less explored are the effects of mechanical strain and
deformations in WSMs. From the theory perspective, it has been proposed that different
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sorts of elastic strains can be modeled as gauge fields in WSMs [23–25], similar to the case
of graphene. In previous works, we have studied the effects of strain and magnetic field
on the electronic [26,27] and the thermoelectric [28] transport properties of WSMs, using
the Landauer ballistic formalism in combination with the quantum mechanical scattering
cross-sections [29]. The study of thermoelectric transport properties is a field of permanent
interest, not only regarding WSMs but in a wide range of materials. For instance, there is
recent literature involving the experimental determination of the thermoelectric proper-
ties (in particular the figure of merit ZT) of Cu-Sn–based thiospinel compounds [30] and
SnTe-based materials [31].

This work focuses on the effect of a Repulsive Delta-Shell potential (RDSP), in addition
to the torsional strain and the external magnetic field studied early on in [26,28], on the
thermoelectric transport properties of type I WSMs. The RDSP is a toy model for the
surface repulsion produced by the mismatch between the lattices of the strained and the
non-strained WSMs. The effect of the delta potential in the context of the Dirac equation
is to produce a chiral rotation between the spinors on either side of the boundary that
represents the support of the delta function [32,33]. The rotation angle is proportional to
the strength of the delta barrier and depends on the chirality of the fermion scattered. This
RDSP model for the lattice mismatch of the dislocation is combined with a gauge field
representation of the torsional strain in a cylindrical geometry. In addition, an external
magnetic field directed along the axis of the dislocation is imposed at the junction, as
depicted in Figure 1.

The paper is organized as follows. In Section 2, we establish the Hamiltonian for
the model and describe each of its contributions. Then, we proceed with the Landauer
formulation for transport accross the junction, first analyzing the sole effect of the RDSP
that describes the lattice mismatch, and finally for the full system that includes the torsional
strain and the external magnetic field at the WSM junction, with mathematical details
presented in the Supplementary Materials. The analysis and discussion of the results are
presented in Section 3, with a final summary and conclusions presented in Section 4.

Figure 1. A pictorial description of the system under consideration: A WSM slab of dimensions
L×W, with a cylindrical region of radius a submitted to a combination of torsional strain and an
external magnetic field Bξ = (B + ξBS)ẑ and an RDSP on the boundary surface of the cylinder.

2. Theory

As a minimal model for a WSM, we start by considering a free Hamiltonian describing
Weyl quasiparticles in the vicinity of each of the nodal points with opposite chirality
ξ = ±1,

Hξ(k) = vF
(
σ1kx + σ2ky + ξσ3kz

)
(1)

with σj (j = 1, 2, 3) being the Pauli matrices. The spectrum of this “free” WSM Hamiltonian
is given by (for λ = ±the band index)

Eλ,k = λh̄vF|k|. (2)
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As depicted in Figure 1, we consider a nanojunction where the WSM is submitted
to torsional strain in a cylindrical region of radius a, and we further assume that the
axial length L satisfies L � a. As discussed in [25], the mechanical strain effect can be
incorporated as a gauge field AS = BS/2(−yê1 + xê2), where the constant BS plays the role
of a pseudo-magnetic field. Moreover, if a true magnetic field is imposed upon the junction
along the axis of the dislocation, i.e., B = ê3B0, then the combination is described by a
node-dependent gauge field Aξ = Bξ /2(−yê1 + xê2), with Bξ = (B0 + ξBS) an effective
pseudo-magnetic field. In addition to this combined effect, already discussed in our
previous work [26,28], here we also consider the lattice mismatch near the boundary of
the dislocation. As a simple model for this effect, we include a RDSP potential of the
form VRD(r) = V0δ(r− a). Therefore, the quasi-particle states inside the dislocation region
correspond to the solutions of the eigenvalue problem[

Hξ

(
k + Aξ

)
+ VRD(r)

]
|Ψ(λ,ξ)

n,m 〉 = Eξ
λ,n|Ψ

(λ,ξ)
n,m .〉 (3)

The spectrum inside the cylindrical region [29] corresponds to relativistic Landau
levels with an effective magnetic field Bξ that is node-dependent

Eξ
λ,n = λh̄vF

√
2n|Bξ |/φ̃0 + k2

z, (4)

with φ̃0 = (vF/c)h̄/e a modified magnetic flux quantum expressed in terms of the carrier
velocity vF. The effect of the RDSP potential (see Section S1 of the Supplementary Material
for mathematical details) introduces a rotation in the pseudo-spinor components across the
dislocation boundary r = a, with an “angle” α = V0/(h̄vF)

Ψ(λ,ξ)
n,m (r)

∣∣∣
r→a+

=

(
cos α − sin α
sin α cos α

)
Ψ(λ,ξ)

n,m (r)
∣∣∣
r→a−

. (5)

2.1. Transmission and Landauer Conductance

In the Landauer formalism, we define an energy-dependent transmission coefficient
along the x-direction based on the scattering differential cross section of the junction,

T̄(E) =
∫ π/2

−π/2
dφ cos φ

1
σ(E)

dσ

dφ
, (6)

where σ(E) is the total scattering cross-section at energy E. In what follows, we shall
assume that the cylindrical dislocation satisfies L� 1/kF. For instance [34], in TaAs where

b ∼ 0.08 Å
−1

and vF ∼ 1.3× 105 m/s, we have 1/kF ∼ 9 Å, so even a slab of a few microns
is already in the range of validity of this assumption. Moreover, for Cd3As2, b ∼ 0.2 Å

−1

and vF ∼ 1.5× 106 m/s, 1/kF ∼ 0.8 Å [34], and thus the applicability of this criteria is even
more striking in this second example. Therefore, for L� 1/kF, the differential cross section
is given in terms of the scattering phase-shift δm for each angular momentum channel
m [26,29], and integrating over the scattering angle (see Section S2 of the Supplementary
Material for mathematical details) we obtain the corresponding total cross section [26,29]
σ/L = 4

k⊥ ∑∞
m=−∞ sin2 δm.

Let us first consider the effect of the RDSP only. For this case, the current is expressed
in terms of the transmission function T (E), evaluated at the free energy eigenvalues Eλ,k⊥
defined in Equation (2)

I = 2evF ∑
λ

∫ ∞

0
dk⊥T (Eλ,k⊥)

[
fL(Eλ,k⊥)− fR(Eλ,k⊥)

]
, (7)

where fL/R(E) = (exp[(E− µL/R)/(kBTL/R)] + 1)−1 are the Fermi–Dirac distributions at
the chemical potential µL/R and temperature TL/R of the left (L) and right (R) metallic
contacts, respectively (see Section S3 of the Supplementary Material for mathematical
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details). The factor of 2 accounts for the (symmetric) contribution from each chiral node
ξ = ± (see Figure 2). The corresponding expression for the differential conductance
G(T, V) = ∂I/∂V|T through the junction is

G(T, V) = 2
e2vF
kBT ∑

λ

∫ ∞

0
dk⊥T (Eλ,k⊥) fL(Eλ,k⊥)

[
1− fL(Eλ,k⊥)

]
. (8)

Let us now consider the transmission through the junction in its full level of complexity,
i.e., including the RDSP for the lattice mismatch, as well as the torsional strain (included
via the gauge field model) and the external magnetic field along the axis of the cylindrical
dislocation. For this case, scattering is no longer symmetric for each chirality, as seen in the
Landau level spectrum Eξ

λ,n defined in Equation (4) and in the corresponding scattering
phase shift (Figure 2). Therefore, the current for each chirality ξ = ± is expressed by the
transmission function T (E),

Iξ = evF ∑
n,λ
T (Eξ

λ,n)
[

fL(Eξ
λ,n)− fR(Eξ

λ,n)
]
, (9)

with the total current defined by the superposition of both chiral contributions I = I+ + I−.
As before, the differential conductance through the junction is obtained as the voltage
derivative of the expression above,

G(T, V) =
e2vF
kBT ∑

λ,n,ξ
T (Eξ

λ,n) fL(Eξ
λ,n)

[
1− fL(Eξ

λ,n)
]
. (10)

2.2. Thermoelectric Transport Coefficients

The energy current across the junction arising from each chiral node contribution
ξ = ± is also expressed in terms of the transmission function T (E) as follows [28]:

U̇ξ = vF ∑
n,λ

Eξ
λ,nT (Eξ

λ,n)
[

fL(Eξ
λ,n)− fR(Eξ

λ,n)
]
. (11)

On the other hand, according to the basic thermodynamic relation TdS = dU −
µdN between entropy S, internal energy U, and particle number N, the net heat current
transmitted across the junction arising from the node Kξ (for ξ = ±) is

Q̇ξ = U̇ξ −
(

µLṄξ
L − µRṄξ

R

)
. (12)

The thermal conductance is defined, as usual, under the condition that the net electric
current vanishes (I = 0)

κ(T, V) = − ∂Q̇
∂∆T

∣∣∣∣
I=0

= − ∂U̇
∂∆T

∣∣∣∣
I=0

, (13)

where ∆T = TR − TL is the temperature difference between the contacts and the total
heat flux is given by the superposition from both Weyl nodes Q̇ = Q̇+ + Q̇−, and similar
relations hold for the total energy flux U̇ and the total electric current I. The condition
of a vanishing electric current defines an implicit relation between the voltage difference
and the thermal gradient across the junction, by I(∆T, V, T) = 0. Therefore, we obtain the
Seebeck coefficient by applying the implicit function theorem [28]

S(T, V) = − ∂V
∂∆T

∣∣∣∣
I=0,T

=

∂I
∂∆T

∣∣∣∣
T,V

∂I
∂V

∣∣∣∣
T,∆T

, (14)
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where the temperature difference across the junction ∆T(V, T) is obtained as the solution
of the equation I(T, V, ∆T) = 0. Following the argument above, the thermal conductance
defined in Equation (13) is calculated by means of the chain rule and in terms of the Seebeck
coefficient [28]

κ(T, V) = − ∂U̇
∂∆T

∣∣∣∣
T,V

+ S(T, V)
∂U̇
∂V

∣∣∣∣
T,∆T

. (15)

From the general relations discussed above among the thermoelectric transport coeffi-
cients, we obtain the explicit formulae (see Section S4 of the Supplementary Material for
mathematical details) for the thermal conductance

κ(T, V) =
vF

kB(T + ∆T)2 ∑
ξ,λ,n
T (Eξ

λ,n)Eξ
λ,n

[
Eξ

λ,n − µ
]

fR(Eξ
λ,n)

[
1− fR(Eξ

λ,n)
]

+ S(T, V)
evF
kBT ∑

λ,n,ξ
T (Eξ

λ,n)Eξ
λ,n fL(Eξ

λ,n)
[
1− fL(Eξ

λ,n)
]
, (16)

and for the Seebeck coefficient

S(T, V) = −
T ∑λ,n,ξ T (Eξ

λ,n)
(

Eξ
λ,n − µ

)
fR(Eξ

λ,n)
[
1− fR(Eξ

λ,n)
]

e(T + ∆T)2 ∑λ,n,ξ T (Eξ
λ,n) fL(Eξ

λ,n)
[
1− fL(Eξ

λ,n)
] . (17)
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Figure 2. (Color online) Analytical expression for tan δm (in Equation (S29) in Supporting Information) plotted as a function
of α. The plots are computed for a wave vector k⊥ ∼ 1/a and an orbital angular momentum m = 1. (a) Node index ξ = 1;
the red (solid) line corresponds to a band index λ = 1 and the blue (dashed) line is for λ = −1. (b) Node index ξ = −1; the
orange (solid) line corresponds to a band index λ = 1 and the purple (dashed) line is for λ = −1.

3. Results

In this section, we will apply the analytical results derived in Section 2 to study the
response of the transport coefficients to the relevant physical parameters of the model, such
as the external magnetic field B0, the torsion angle θ, the temperature T, and the applied
bias voltage V [26,28]. In particular, we will analyze the effect of the RDSP, as a model for
the lattice mismatch, by varying the V0 parameter that characterizes the strength of the
repulsive barrier, expressed in terms of the “spinor rotation” angle α = V0/h̄vF.

By considering first the case where only the lattice mismatch effect is present (RDSP)
(see Equation (S29) in Section S2 of the Supplementary Material), we notice that the phase
shifts depend on the parameter V0 through tan α. Therefore, the results depend on α
periodically, with period π, as seen in Figure 2. It is also clear (from Equation (S29) in
Section S2 of the Supplementary Material) that if the only scattering mechanism is the
RDSP, the transmission is maximum for α = nπ, with n an integer. At these particular
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“magic” values, despite the presence of the lattice mismatch, the corresponding interfacial
energy barrier becomes transparent to the Weyl fermions of both chiralities ξ = ±.

In order to study the additional effect of torsion and magnetic field for TaAs, we
estimate [35] BS ≈ 1.8× 10−3T per angular degree of torsion. Furthermore, we have that the

modified flux quantum in this material is approximately φ̃0 ≡
h̄vF

e
=

1
2π

vF
c

hc
e

=
1

2π

1.5
300
·

4.14× 105 TÅ
2 ≈ 330 TÅ

2
. Using these values, we obtain the simple relation between the

torsional angle θ (in degrees) and the pseudo-magnetic field BS representing strain

BSa2 = 1.36 θ φ̃0. (18)

In this case, the analytical expression for the scattering phase shift is given by Equa-
tion (S32) in Section S2 of the Supplementary Material. We notice that the effect of the
barrier is again given by tan α, and thus it becomes minimal at “magic” values of α = nπ,
i.e., integer multiples of π. However, in this second case, the scattering phase-shift does
not vanish, due to the residual combined effect of torsion and magnetic field. This can
be seen in Figure 3, where for α = 0, π, 2π, tan δm 6= 0, in contrast to Figure 2. Actually,
the value of tan δm for α = nπ (n integer) and the consequences of the scattering by the
combined magnetic field and torsion, but in the absence of the lattice mismatch barrier,
was extensively discussed in our previous works [26,28,29].

Another important aspect to notice is that, when we only consider the lattice mismatch
effect, the scattering phase shift is symmetric for both chiral nodes ξ = ±1, as seen in
Figure 2a,b. In contrast, when the magnetic field and torsion are present, this symmetry
is broken, as displayed in Figure 3a,b. As we explained in [26], this occurs because the
magnitude of the pseudo-field that combines torsion and magnetic field Bξ = B0 + ξBS
depends on the sign of the node chirality, a manifestation of the chiral anomaly which can
be also observed in the electric current (see Figure 8a).

3.1. Electronic Transport

The electric current (in units of evF/a) is computed from Equation (7) for the case of
the RSDP only, in the absence of torsion and magnetic field. Figure 4a shows the periodic
dependence of the total current as a function of the dimensionless parameter α = V0/(h̄vF)
that characterizes the magnitude of the lattice mismatch barrier, and for a temperature
T = 0.2 h̄vF/kBa. As expected, the maxima of transmission occur for the “magic angles”
α = nπ (n integer), and the overall effect of the barrier is to slightly reduce the current,
reaching minimal values near α = π/4 and α = 3π/4, respectively. The behavior of
the current, for the same temperature, as a function of the bias voltage is presented in
Figure 4b. As can be seen, for low temperatures the current across the junction displays an
approximately quadratic dependence on the applied bias voltage eV (in units of h̄vF/a),
that leads to an approximately linear dependence of the differential conductance (in units
of e2/h̄) on the bias voltage in Figure 5.
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Figure 3. (Color online) Analytical expression for tan δm (in Equation (S32) of Supporting Information) plotted as a function
of α. The plots are computed for a quantum number n = 1, orbital angular momentum m = 1, an external magnetic field
B0a2 = 25φ̃0 and a torsion angle θ = 10◦. (a) Node index ξ = 1; the red (solid) line corresponds to a band index λ = 1 and
the blue (dashed) line is for λ = −1. (b) Node index ξ = −1; the orange (solid) line corresponds to a band index λ = 1 and
the purple (dashed) line is for λ = −1.
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Figure 4. (Color online) Electric current (in units of evF/a) computed from the analytical expression in Equation (7) for the
case of the RDSP barrier alone and T = 0.2 h̄vF/kBa: (a) Plotted as a function of the applied bias eV (in units of h̄vF/a) and
(b) plotted as a function of α (dimensionless).

Now, when we include the combined effect of the delta barrier, the external magnetic
field, and the torsion strain, the current is calculated from the analytical expression in
Equation (9). Figure 6a presents the total current as a function of voltage at zero tempera-
ture, an external field B0a2 = 25φ̃0, a value of α = 3π/4, and different values of the torsion
angle θ. A remarkable feature at zero temperature is the appearance of plateaus in the
current; this is explained by the elastic scattering condition because the incident particle
energy must be resonant to one of the pseudo-Landau levels inside the cylinder, and thus
each subsequent plateau corresponds to the transmission of an additional Landau level.
Such plateaus tend to be smoothed with increasing temperature, as can be seen in Figure 7a.
As we discussed in our previous work in the absence of the RDSP contribution [26,28], for
a fixed external magnetic field the electric current increases with the torsion angle θ. This
effect is due to an enhanced transmission of the Weyl fermions arising from the K− node,
as for this particular chirality ξ = −1 the magnitude of the effective pseudo-magnetic
field |B−| = |B0 − BS| is smaller, thus increasing the spectral density of pseudo-Landau
levels (∼

√
|Bξ |n) for chirality ξ = −1, and consequently an increase in the number of
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channels available for transmission. Figure 8a presents the difference between the currents
originated at each node. Furthermore, for a fixed torsion angle, the transmitted current
decreases as the external magnetic field increases [26]. This effect occurs because, by in-
creasing the external field B0 (for a fixed torsion field BS), the magnitude of the effective
pseudo-magnetic field |Bξ | = |B0 + ξBS| increases for both chiralities ξ = ±, thus reduc-
ing the density of Landau levels available for transmission. Figures 6b and 7b present
a comparison of the current, for α = 0 and α = 3π/4, at T = 0 and T = 0.4 h̄vF/kBa,
respectively. We see that the magnitude of the current is reduced while the position of the
plateaus remains fixed. This effect is more significant at higher bias voltage, and is due to
the repulsive effect of the RDSP barrier that reduces the transmission. Finally, Figure 8b
compares the conductance (in units of e2/h̄) as a function of the bias voltage eV (in units
of h̄vF/a) for the case of an external magnetic field B0a2 = 25φ̃0; a torsion angle θ = 15◦;
T = 0.1h̄vF/kBa; and two different values of the lattice mismatch RDSP barrier, α = 0
and α = 3π/4, respectively. As expected, the conductance shows peaks as a consequence
of the plateaus observed in the current. The effect of the RDSP barrier is to reduce the
conductance without affecting the position of the peaks.

0 2 4 6 8 10 12 14

0

10

20

30

40

50

eV

G

Figure 5. (Color online) Differential conductance (in units of e2/h̄), for the RDSP barrier alone, plotted
as function of applied bias eV (in units of h̄vF/a) for α = 3π/4 and T = 0.2 h̄vF/kBa, computed from
Equation (8).
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0

50

100

150

200

eV

I

θ = 15º

(b)

Figure 6. (Color online) (a) Electric current (in units of evF/a) as function of applied bias eV (in units of h̄vF/a), computed
from the analytical expression in Equation (9) at zero temperature, for an external magnetic field B0a2 = 25φ̃0 and α = 3π/4.
The blue line corresponds to a twist angle θ = 0◦, red is for θ = 5◦, green is for θ = 10◦, and the orange line corresponds to
θ = 15◦. (b) Comparison of electric currents at zero temperature, for B0a2 = 25φ̃0 and θ = 15◦: the purple line is for α = 0,
and the orange line corresponds to α = 3π/4.
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Figure 7. (Color online) (a) Electric current (in units of evF/a) plotted as function of applied bias eV (in units of h̄vF/a),
computed from the analytical expression in Equation (9) at T = 0.4 h̄vF/kBa, for an external magnetic field B0a2 = 25φ̃0 and
α = 3π/4. The blue line corresponds to a twist angle θ = 0◦, red is for θ = 5◦, green is for θ = 10◦, and the orange line
corresponds to θ = 15◦. (b) Comparison of electric currents at T = 0.4 h̄vF/kBa, for B0a2 = 25φ̃0 and θ = 15◦: the purple
line is for α = 0 and orange corresponds to α = 3π/4.
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Figure 8. (Color online) (a) Node-polarized components of the currents computed for an external magnetic field B0a2 = 25φ̃0,
a torsion angle θ = 15◦, and α = 3π/4: the magenta line corresponds to the contribution of I− arising from the K− node
and the green line corresponds to the contribution of I+ arising from the K+ node. (b) Comparison of conductance (in
units of e2/h̄) as a function of the bias voltage eV (in units of h̄vF/a) for the case of an external magnetic field B0a2 = 25φ̃0,
T = 0.1h̄vF/kBa, and a torsion angle θ = 15◦. The purple line is for α = 0, orange corresponds to α = 3π/4, and the
magenta line corresponds to the difference between both ∆G = G(α = 0)− G(α = 3π/4).

3.2. Thermal Transport

Let us now analyze the thermoelectric transport coefficients. Figure 9a presents the
electric conductance (in units of e2/h̄) as a function of temperature (in units of h̄vF/kBa)
for an external field B0a2 = 25φ̃0, a bias voltage eV = 0.5 h̄vF/a, α = 3π/4, and different
torsion angles θ. On the other hand, Figure 10a presents the thermal conductance (in units
of e2/h̄) as a function of temperature, for the same set of parameters as in Figure 9a. Both
transport coefficients show a monotonic increase with temperature. This effect occurs
because Weyl fermions are the same entities transporting current and energy, because as
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we explained in Section 2, in the present work we only consider the electronic contribution
to the transport. Other effects, such as phonons, will be analyzed in future work.

From Figures 9a and 10a, it is clear that both transport coefficients, i.e., the thermal
and the electric conductance, increase with torsion. This effect, already observed in our
previous work in the absence of the lattice mismatch barrier contribution [28], is due to the
enhancement of the pseudo-Landau levels density of states arising from the ξ = −1 chiral
node, as already discussed in the previous section.
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Figure 9. (Color online) (a) Conductance (in units of e2/h̄) as a function of temperature (in units of h̄vF/kBa) for external
B0a2 = 25φ̃0, a bias eV = 0.5 h̄vF/a, and α = 3π/4. The blue line corresponds to θ = 0◦, red is for θ = 5◦, green is for
θ = 10◦, and the orange line corresponds to θ = 15◦. (b) Comparison of conductance for θ = 15◦: the purple line is for
α = 0, whereas the orange line is for α = 3π/4.
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Figure 10. (Color online) (a) Thermal conductance (in units of kBvF/a) as a function of temperature (in units of h̄vF/kBa),
computed from the analytical expression in Equation (16), for external B0a2 = 25φ̃0, a bias eV = 0.5 h̄vF/a, and α = 3π/4.
The blue line corresponds to θ = 0◦, red is for θ = 5◦, green is for θ = 10◦, and the orange line corresponds to θ = 15◦.
(b) Comparison of the thermal conductance for θ = 15◦: the purple line is for α = 0 whereas the orange line is for α = 3π/4.

Figure 11a shows the Seebeck coefficient (in units of kB/e) as a function of temperature
(in units of h̄vF/kBa), for the same set of parameters as in Figures 9a and 10a. We have
chosen the chemical potential as µ = 1.0 h̄vF/a > 0, such that the negative charge carriers
dominate the transport, which explains the negative sign of the Seebeck coefficient. As can
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be seen, the slope of S is very steep at low temperatures and varies monotonically. On the
other hand, the absolute value of S increases with the torsion angle θ.

Now, let us discuss the effect of the RDSP barrier representing the lattice mismatch
via the parameter α. Figures 9b and 10b present a comparison of the α = 0 and α = 3π/4
cases for the electric and thermal conductance, respectively, as a function of temperature.
For the case of electric conductance, the effect is hardly noticeable, with a tiny decrease of
the conductance for the case with the RDSP barrier present, α 6= 0. On the contrary, the
effect is most notorious for the case of the thermal conductance, which increases when the
lattice mismatch barrier is present. In both cases, the effect tends to be more significant at
high temperatures.
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Figure 11. (Color online) (a) Seebeck coefficient (in units of kB/e) computed from the analytical expression in Equation (17)
as a function of temperature T (in units of h̄vF/kBa). The plot is for fixed B0a2 = 25φ̃0, a bias eV = 0.5 h̄vF/a, and α = 3π/4.
The blue line corresponds to θ = 0◦, red is for θ = 5◦, green is for θ = 10◦ and the orange line corresponds to θ = 15◦.
(b) Comparison of the Seebeck coefficient for θ = 15◦: the purple line is for α = 0 whereas the orange line is for α = 3π/4.

For the characterization of the thermoelectric performance of this WSM junction, a useful
quantity is the magnitude of the figure of merit ZT, defined by the well-known formula

ZT = S2 T G(T, V)

κ(T, V)
. (19)

Figure 12a presents the figure of merit ZT (dimensionless), as a function of temperature
and for various torsion angles θ. As we showed in our previous work, in the absence of
the lattice mismatch effect [28], it is important to notice that extremely high values of ZT
can be achieved through the combination of external magnetic field and torsional strain.
The value of ZT increases with the torsion angle θ, and the effect is more appreciable at
low temperatures. The effect of the RDSP barrier representing lattice mismatch by the
parameter α is shown in Figure 12b. The presence of the barrier produces a small reduction
of the figure of merit at high temperatures.

It is also pertinent to explore the deviation from the metallic behavior by studying the
Lorenz number as a function of temperature. The Lorenz number is defined by the formula

L =
κ(T, V)

TG(T, V)
. (20)

The Lorenz number is represented, at fixed bias and magnetic field, as a function
of temperature for different values of torsion in Figure 13a. Strong deviations from the
Wiedemann–Franz law are observed at low temperatures. This effect occurs because the
electronic conductance exhibits a non-metallic behavior at low temperatures, due to the
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discrete pseudo-Landau level spectrum, as can be seen in the staircase pattern in Figure 6.
It is precisely this effect that explains the extremely high ZT values at low temperatures, in
agreement with the experimental evidence reported [36] that suggested values as high as
ZT ∼ 10. In contrast with the ZT behavior, the presence of the delta barrier increasing the
Lorenz number at high temperatures, as can be seen in Figure 13b. This trend is explained,
as we discussed previously, by the fact that at high temperatures the thermal conductance
increases with the delta barrier, while the electric conductance slightly decreases.
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Figure 12. (Color online) (a) The figure of merit ZT (dimensionless) as a function of temperature (in units of h̄ vF/kBa),
calculated for fixed B0a2 = 25φ̃0, a bias eV = 0.5 h̄vF/a, and α = 3π/4. The blue line corresponds to θ = 0◦, red is for
θ = 5◦, green is for θ = 10◦, and the orange line corresponds to θ = 15◦. (b) Comparison of the figure of merit ZT for
θ = 15◦: the purple line is for α = 0 whereas the orange line is for α = 3π/4.
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Figure 13. (Color online) (a) The Lorenz number (in units of k2
B/e2) as a function of temperature (in units of h̄ vF/kBa),

calculated for fixed B0a2 = 25φ̃0, a bias eV = 0.5 h̄vF/a and α = 3π/4. The blue line corresponds to θ = 0◦, red is for θ = 5◦,
green is for θ = 10◦, and the orange line corresponds to θ = 15◦. (b) Comparison of the Lorenz number for θ = 15◦: the
purple line is for α = 0 whereas the orange line is for α = 3π/4.

4. Discussion

In this work, we studied the thermoelectric transport properties of a type I Weyl
semimetal with a torsional defect, in the presence of an external magnetic field along
the axis of the dislocation in a cylindrical geometry. Moreover, the effect of torsion was
modeled by a combination of a gauge field representation, and a repulsive delta-shell
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potential (RDSP) representing the lattice mismatch at the edge of the cylindrical region. We
remark that the mechanical gauge field, in combination with the external magnetic field
imposed upon the region, combine into an effective node-dependent pseudo-magnetic field
Bξ = B+ ξBS (for ξ = ±) that breaks time-reversal symmetry and thus the nodal symmetry.
Therefore, our analysis shows that the electronic states within the region correspond to
effective node-polarized Landau levels, leading to a node-polarization effect of the total
electric current I = I+ + I−. In particular, the low-temperature differential conductance
displays the corresponding characteristic trend of discrete peaks corresponding to each
of such Landau levels. We also demonstrated that the effect of the lattice-mismatch,
represented by the RDSP, is periodic in the strength of the repulsive barrier V0, in the form
tan(V0/h̄vF), thus revealing the presence of “magic angles” (the zeroes of the tangent)
where the barrier becomes transparent. This somewhat surprising effect is a manifestation
of the Klein tunneling effect of Dirac’s theory, observed in this particular context and
geometry. Finally, we also studied the thermoelectric transport coefficients—thermal
conductivity and Seebeck—as a function of temperature, external magnetic field, torsion,
and strength of the lattice mismatch (RDSP).

We would like to emphasize that our analytical equations, and the corresponding
figures presented in Section 3, are expressed in terms of dimensionless groups involving
structural parameters (such as the radius a of the torsional defect and the dimensions W
and L of the WSM slab) as well as the material’s specific parameters (such as the Fermi
velocity vF). This has the advantage that the equations presented are quite general, and
thus our theoretical predictions for the transport coefficients can be compared with specific
experimental measurements by choosing the appropriate material-dependent parameters.
For instance, choosing the dimensions of the slab as W ∼ L ∼ 50 nm and the radius of
the cylindrical strip as a ∼ 15 nm, we obtain an electrical resistivity ρ ∼ 2.15× 10−4 Ωm
which is within the range reported in [37] (ρ ∼ 2× 10−2 Ωm for Bi and ρ ∼ 10−5 Ωm for
TaP). On the other hand, for the case of the thermal conductivity, using the Fermi velocity
vF ∼ 1.5× 106 m/s for the material Cd3As2 [34], and the same values for a, L, and W as
before, we found a value of κ ∼ 6.6 W/mK which is of the same order of magnitude to
those reported in [36] (∼ 3 W/mK for Pb1−xSnxSe) and in [37] (∼ 5− 25 W/mK for TaP).

Finally, we point out that our theoretical calculations suggest that a very high figure of
merit can be obtained from such configuration (torsional strain + RDSP), thus constituting
a very interesting candidate for thermoelectric applications in energy harvesting.
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