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Abstract

An early burst of speciation followed by a subsequent slowdown in the rate of diversification is commonly inferred from
molecular phylogenies. This pattern is consistent with some verbal theory of ecological opportunity and adaptive radiations.
One often-overlooked source of bias in these studies is that of sampling at the level of whole clades, as researchers tend to
choose large, speciose clades to study. In this paper, we investigate the performance of common methods across the
distribution of clade sizes that can be generated by a constant-rate birth-death process. Clades which are larger than
expected for a given constant-rate branching process tend to show a pattern of an early burst even when both speciation
and extinction rates are constant through time. All methods evaluated were susceptible to detecting this false signature
when extinction was low. Under moderate extinction, both the c-statistic and diversity-dependent models did not detect
such a slowdown but only because the signature of a slowdown was masked by subsequent extinction. Some models which
estimate time-varying speciation rates are able to detect early bursts under higher extinction rates, but are extremely prone
to sampling bias. We suggest that examining clades in isolation may result in spurious inferences that rates of diversification
have changed through time.
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Introduction

The branching patterns of reconstructed molecular phylogenies

contain information about the tempo and mode of evolution [1],

[2]. This insight has been invaluable to our understanding of many

evolutionary processes and patterns. Recent studies have identified

a common pattern of apparent slowdowns in the rate of

diversification through time (reviewed in [3], [4]). Such a pattern

is consistent with some theoretical work on adaptive radiations,

based on the idea that diversification rates will decrease as species

fill available niches [5], [6], [7] (but see [8] for an alternate

interpretation). Phylogenies with slowdowns have been inferred for

diverse groups of organisms (e.g. lizards [9], birds [10], [11], fish

[12], and many groups of plants [13]).

The most commonly used metric for detecting shifts in the rate

of diversification is the c-statistic introduced by Pybus and Harvey

[14]. This statistic quantifies how internode distances (i.e. waiting

times to speciation) vary through time compared to what one

would expect under a pure-birth model of diversification. Under

the pure-birth null expectation, c is distributed according to a

standard normal distribution. A c-value less than 21.645 (one-

tailed test) represents a statistically significant slowdown in

diversification rate. Positive values of c can be caused by either

speed-ups in diversification rates or species turnover as recently

diverged lineages have have not been around long enough to have

been ‘‘pruned’’ by extinction, creating an overabundance of nodes

closer to the present (‘‘pull of the present’’; [2]). These two

scenarios cannot be distinguished with the c-statistic, so most

studies follow the authors’ [14] original recommendation to

disregard significantly positive c-values.

There has been considerable controversy surrounding the

interpretations of slowdowns using the c-statistic on molecular

phylogenies. A preponderance of studies have inferred significantly

negative c- values across a wide range of taxonomic groups.

McPeek [8] collected a large number of phylogenies from the

literature and found that 80% of clades had cv0 and 42% had

cv{1:96. However, a number of other studies have pointed out

that negative c-values can result from factors other than

slowdowns in diversification rates. It has been shown that c can

be biased by under-parameterization of the model of sequence

evolution [15] and non-random taxon sampling [16] (see [17] and

[18] for potential solutions to this problem). Recent speciation

events will have a similar effect; if speciation is modelled as a

process rather than as a singular event, this can lead to apparent

slowdowns in diversification rates [19], [20].

A recent simulation study, conducted by Liow et al. [21], found

that c tended to be positively biased when trees were simulated

under a birth-death process with variable rates of speciation. They

found that, even when present, slowdowns in net diversification

rates were very difficult to detect using c, as short branches near

the tips of the tree tend to obscure the signal of the slowdown.

Under the conditions simulated by Liow et al. [21], it should be
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only possible to observe a slowdown for a small subset of values of

speciation rate (l) and extinction rate (m) and if lineages are

sampled at a particular time in the clade’s history. It seems

unrealistic to propose that these two conditions are met for the

majority of phylogenies. Nevertheless slowdowns are commonly

inferred from empirical data. The reasons for the discordance

between the analysis of empirical data and expectations derived

from simulation studies are poorly understood and warrant further

investigation.

Several new modeling approaches have been developed to

detect non-homogeneous diversification. One is to use a model in

which speciation and/or extinction vary through time [22], [22],

[23], [24], [25]. Diversity-dependence (in which speciation rate

varies as a function of the number of taxa at a given time) has also

been proposed as an explanation for the patterns of species

richness [26]. This has recently been modeled in a number of

studies (e.g. [27], [28]) to look for signatures of an adaptive

radiation. Diversity-dependence is a useful approach as it is

seemingly consistent with theory on adaptive radiation, which

posits that diversification should slow as niches become filled [6],

[7]. There is also some evidence from the fossil record [29] (but see

[30] for an opposing perspective) to support this modeling

approach. However, such models from both paleobiology and

comparative biology are susceptible to the criticism that the

ecological mechanisms by which diversity dependence would

operate on the scale of a clade are not entirely clear [31]. While

the mathematics of the various methods differ, they all involve

fitting non-homogeneous birth-death models to phylogenies rather

than using summary statistics such as the c-statistic. The behavior

and performance of these methods have not been explored in as

much detail as the c-statistic.

One important consideration that is often overlooked in studies

of clade diversification is that our inferences may be biased by the

way we choose clades to investigate. There are several types of

sampling bias that are likely to be important. Cusimano and

Renner [16], Brock et al. [17] and Cusimano et al. [18]

investigated systematists’ tendency to sample representative taxa,

leading to an overabundance of nodes deep in the tree. However,

we should also consider that we are only sampling clades that

survive to the present day. This means that the observable

distribution of surviving trees is only a subset of all possible trees

[32],[33]. Another form of bias is that researchers interested in the

adaptive radiations are likely to be interested in the speciose

clades. These clades likely reside in the ‘tails’ of the distribution of

possible clade sizes and thus give a biased sample for the inference

of diversification rates [11]. This effect of sampling clades has

seldom been addressed in the literature (but see [32],[33]).

Inferences of early bursts are particularly problematic because

even under a constant pure-birth or birth-death process, large

clades are likely to show patterns of a rapid diversification early in

their history. This is simply due to the fact that in order to be large,

they are more likely to have undergone a stochastically high rate of

speciation early in the process and subsequently regressed to the

mean speciation rate [34], [11]. Analyzing large clades in isolation

may lead to inferring ecological processes (such as adaptive

radiations) attributable solely to these stochastic processes.

Phillimore and Price [11] investigated the influence of clade size

and age on the c-statistic though their simulations were limited to a

small set of parameter space. Specifically, they conditioned their

simulations on tree age to investigate the correlation between c
and clade size and on clade size to investigate the correlation

between c and tree age. As a result, the simulations tended to

produce trees where the distribution of the parameter of interest

was centered on the expected value. Here, we are specifically

interested in investigating the statistical properties of trees that are

unexpected, that is, unusually large. By simultaneously conditioning

our phylogenies on both tree age and size, we were able to obtain

trees from the ‘tails’ of the distribution. In addition to using the c-

statistic, we investigate the effects of the non-random sampling of

clades using a model selection approach. We show that the effect

of this bias can be severe but it affects different methods in

different ways, and we make recommendations on the appropriate

use of these methods.

Results and Discussion

For all phylogenies simulated, regardless of the value of

extinction rate used, large phylogenies are disproportionally likely

to have undergone an initial burst of speciation events [35], [11].

This can be visualized with a lineages-through-time plot (Figure 1).

This result has consequences for the inference of diversification

rate patterns; as the clades we choose to examine are not a random

sample of clades but often tend to be interesting and speciose and,

at least for molecular phylogenies, have survived to the present

day. It is also the case that these large clades are the ones most

amenable to statistical analysis.

We simulated phylogenies under constant-rate diversification,

conditioning on both the number of taxa in the clade (N) and the

age of the tree (t). We did this in order to investigate the statistical

properties of trees drawn from different parts of the distribution of

possible tree sizes that can result from a constant-rate process.

Consistent with previous work [35], [11], trees which are large at

the present day (i.e. those drawn from the ‘right tail’ of the

distribution) are more likely to harbor a signal of a slowdown using

the c-statistic even when the phylogeny is generated under a

constant-rate process with low extinction. This is evident in

Figure 2, where data points corresponding to tree sizes larger than

the expectation (denoted by a dashed line) show elevated Type-1

error rates when simulated under low extinction rates. However

this is not the case when background extinction rates are higher as

extinction alters the distribution of branch lengths on the

reconstructed phylogeny. The resulting distribution effectively

obscures any signal of a burst (in our simulations, the burst is

entirely attributable to stochastic processes) that might have

occured deep in the tree [10], [36], [21]. This is especially true for

large phylogenies (Figure 2); c is a summary statistic for all nodes

in the tree and therefore the few early branching events will have

an even smaller influence on the calculation of the c-statistic for

large trees with proportionally more nodes.

Our results suggest two things about the use of the c-statistic.

First, the test has very low power to detect changes in speciation

rates when species turnover rates are even modestly high [21].

Second, while there is some concern that significantly negative c-

values may potentially be misleading [15], [16], [37], bias in

sampling large clades does not tend to create false signatures of a

slowdown under modest extinction rates. We know from the fossil

record that extinction rates have been moderately high for most

groups. This implies that, even if slowdowns in diversification rates

are relatively common, significantly negative c-values should be

rare. However, this is not the case [8]. The widely reported

evidence for slowdowns in studies using c is thus somewhat

paradoxical and deserves explanation. Pessimistically, we may

attribute this to some yet unstudied artifact such as sampling effort.

More intensive sampling of lineages would have the effect of

increasing the number of nodes close to the present. This would

deteriorate any signal of an early burst detectable by the c-statistic.

It should be noted however, that a number of the phylogenies that

provide evidence for a slowdown are near complete at the species

Sampling Bias Influences Inference of Early Bursts
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level (e.g. [11]), though there may still be additional lineages that

should actually be recognized as species. It may be the case that if

more lineages were included, many of the signatures of early bursts

in the literature would no longer be present. This is difficult to

evaluate except on a case-by-case basis.

We found that the diversity-dependent models are prone to bias

due to sampling in a similar manner as the c-statistic (Figure 3);

when death rates are low, the diversity-dependent model was

preferred to a constant birth-death model more frequently for

clades at the large end of the distribution of clade size. But even

with moderate extinction, the diversity-dependent model was

rarely preferred. In fact, for higher extinction rates, the reverse was

true–larger clades were less likely to fit a diversity-dependent

model than smaller clades (Figure 3). However, it should be noted

that the model of diversity-dependence we used here did not

explicity model extinction. Consequently the model estimates

Figure 1. Exemplar Lineages-Through-Time Plot. An example of a lineages-through-time (LTT) plot for a tree (shown on left) drawn from the
far right tail of the distribution of tree sizes (5 percent of surviving trees are expected to be this large or larger) for l~1, m~0:5 and t~5. The dotted
line is the expected number of lineages under a constant diversification rate. This LTT plot shows the typical signature of an early burst of speciation
yet this signature is not captured by the c-statistic (c~0:602; not significant) as the burst is masked by later extinction events.
doi:10.1371/journal.pone.0043348.g001

Figure 2. Type-1 Error Rate for the c-Statistic. Results from simulations showing the Type-1 error rate for the c statisitc, signifying a false
inference of a slowdown. All trees were generated under a constant-rate birth-death (or pure-birth) process. We recognize a Type-1 error if the value
of cv{1:645 (significant at p~0:05; one-tailed test). Extinction rate, e~m=l, varies across the plots (e~0,0:1,0:25,0:5); speciation rate, l, and total
tree-depth, t are held constant (l~1 and t~5). All are plotted against the expected number of taxa across the cumulative distribution of probability
densities (from 0.99 to 0.01). The dashed vertical line represents the expected value for N under the simulating conditions. Each point represents
1000 simulations. (Results for e~0:75 and e~1 not shown.)
doi:10.1371/journal.pone.0043348.g002

Sampling Bias Influences Inference of Early Bursts
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diversification rate as a function of contemporaneous lineages in

the reconstructed phylogeny rather than as a function of

contemporaneous lineages in the true (unobserved) phylogeny

[38]. Recently Etienne et al. [28] provided a full likelihood

solution for diversity-dependence with extinction which uses a

Hidden-Markov approach to fit the model to a phylogeny. We

justify the use of a diversity-dependent model which does not

estimate extinction in our simulation study due to the fact that it is

currently the more commonly employed approach. The diversity-

dependent model thus has the same drawback as the c-statistic.

Extinction will tend to erode the signal of the early diversification

events, especially so for large trees. The results from the time-

varying speciation rate model (Figures 4 and 5; discussed below)

suggest that this result will not hold if both extinction rates and

speciation rates are explicitly modeled. However, it should be

noted that there is some evidence that estimates of extinction can

be inconsistent when there is rate variation across clades [39].

A correction that has been employed to increase the power to

detect slowdowns for both the c-statistic and diversity-dependent

models is to collapse some nodes close to the present. Species

delimitation is a problem that has recently received a great deal of

attention from molecular systematists (e.g. [40],[41],[42]). Subdi-

viding lineages into subspecies will necessarily increase the effect of

the pull of the present and further obscure evidence of a slowdown.

Collapsing these recent nodes will certainly influence our ability to

infer slowdowns and this procedure has been done by some

researchers (e.g. [11], [43]), by regarding recently-diverged species

as not being ‘‘good’’ species. However, there is currently a lack of

theory to guide such decision-making. We therefore recommend

that authors should be cautious in collapsing nodes as we do not

fully understand how species delimitation affects these methods.

The time-varying speciation models [36], [23] were preferred

for data generated under a constant-rate process with increasing

frequency as tree size increased. We found this to be true even

when extinction was present (Figures 4 and 5), though the effect

was dampened as extinction increased. As stated above, large trees

generated under a constant rate birth-death process are subject to

having undergone stochastic bursts of speciation in order to obtain

their current size. The time-varying speciation rate models are

sensitive to these bursts, which is both a positive and negative;

positive because they have more power to detect changes in

diversification through time and negative because these models are

more prone to inferring spurious results as a consequence of

sampling bias. We took two alternative approaches to compare

model fits of a constant-rate birth-death model versus a time-

varying speciation model: the full-likelihood approach of Rabosky

and Lovette [36] and an approximate approach based on the

coalescent process, recently derived by Morlon et al. [23] (see

Methods for details). Contrary to our expectations, we found that

these two approaches differed substantially in terms of which

model was prefered when using Akaike Information Criterion

(AIC). For trees from the larger end of the distribution, the

coalescent approach tended to provide support for a time-varying

speciation model over a constant-rate model at much higher

frequencies than the full likelihood approach, especially when

extinction rates were low (Figure 5). The reasons for these

differences are not entirely clear. While many of the large trees do

show ‘early bursts’ due to stochastically high rates early in the

process (see Figure 1 for an example), the proneness of the

coalescent-based approach to favor a model more complex than

the generating model is worrisome as sampling bias appears to

very strongly influence model choice. Both approaches are

relatively new and their respective statistical properties have not

been explored at all beyond the publications in which they were

presented [36], [23]. The statistical properties of these and other

related models is something that certainly warrants further

investigation. Researchers are increasingly fitting more complex

models of diversification to study diversity dynamics through time

and across clades (e.g. [44], [25], [24]) and it is imperative that we

have a good understanding of these if we are to make meaningful

inferences.

Stochastic bursts, which are more likely to have occured in

‘unusually large’ trees, may be falsely inferred to have been caused

by ecological processes (e.g. adaptive radiations). While the bursts

are certainly ‘real’, they are not attributable to any biological

phenomena. If the background extinction is close to zero, then all

methods investigated in this paper are susceptible to this false

inference. However, when background extinction is relatively

high, these stochastically generated slowdowns are not likely to be

detected by the c-statistic as the subsequent extinction removes the

signal. As a summary statistic for the whole phylogeny, the power

of the c-statistic to detect slowdowns (stochastically or ecologically

Figure 3. Proportion of Trees Showing Support for Diversity-Dependent Model. Results from simulations showing the proportion of
phylogenies for which a density-dependent (DD) model is preferred over a constant-rate birth-death (BD) model in using AIC to select amongst the
models. Only the DD model and a BD model were compared. We used a DAIC cutoff of 4 to favor a DD model when the generating model was a
constant-rate process. Extinction rate, e~m=l, varies across the plots (e~0,0:1,0:25,0:5); speciation rate, l, and total tree-depth, t are held constant
(l~1 and t~5). All are plotted against the expected number of taxa across the cumulative distribution of probability densities (from 0.99 to 0.01).
The dashed vertical line represents the expected value for N under the simulating conditions. Each point represents 1000 simulations. (Results for
e~0:75 and e~1 not shown.)
doi:10.1371/journal.pone.0043348.g003

Sampling Bias Influences Inference of Early Bursts
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produced) when species turnover is present is very low [21], [45].

It is fair to suggest that while there are some reasons to believe that

significantly negative c-values in the empirical literature may result

from known statistical artifacts [15], [16], [37], the cause of their

ubiquity remains unclear. We suggest that failing to sample cryptic

species may contribute to this. Methods that do not deal directly

with extinction and extinct lineages, like the diversity-dependent

model [27] used here, show similar patterns of performance to the

c-statistic.

Our findings are also of relevance to studies examining the

efficacy of diversification rate models and statistics. There are a

multitude of ways to conduct simulations of birth-death models

and Stadler [46] has discussed the statistical properties of various

conditioning schemes in detail. We caution theoreticians to pay

close attention to these differences as conditioning simultaneously

on the number of taxa and the age of the tree can produce

phylogenies drawn from the ‘tails’ of the distribution and thus

prone to be bottom heavy. Such trees may lead to biased

estimation of parameters and misconstrued inferences.

We suggest three future directions to address this issue of

sampling bias. First, performing diversification analysis on

megaphylogenies, including the clade of interest, may be advisable

instead of examining clades in isolation. Investigating large clades

while ignoring closely related groups that are less speciose may

lead to spurious patterns of slowdowns in diversification. This will

require further development of methods that relax the assumption

of uniformity of the diversity dynamics across the tree (e.g. [44]).

We appreciate that for many groups, such an approach may not

always be feasible so we urge researchers to at least be cautious in

their interpretation of their results. Second, increased attention

should be given to how lineages are defined; lineages that are

currently denoted as subspecies may soon be considered ‘‘good’’

species [20]. Whether these lineages are included or not will

influence the inference of slowdowns. Third, further investigation

Figure 4. Proportion of Trees Showing Support for Temporally-Varying Speciation Model. Results from simulations showing the
proportion of phylogenies for which the temporally-varying speciation (TVS) model (the ‘SPVAR’ model of [36]) is preferred over a constant-rate birth-
death (BD) model using AIC to select amongst the models. Only the TVS and BD models were compared. We used a DAIC cutoff of 4 to favor a TVS
model when the generating model was a constant-rate process. Extinction rate, e~m=l, varies across the plots (e~0,0:1,0:25,0:5); speciation rate, l,
and total tree-depth, t are held constant (l~1 and t~5). All are plotted against the expected number of taxa across the cumulative distribution of
probability densities (from 0.99 to 0.01). The dashed vertical line represents the expected value for N under the simulating conditions. Each point
represents 1000 simulations. (Results for e~0:75 and e~1 not shown.)
doi:10.1371/journal.pone.0043348.g004

Figure 5. Proportion of Trees Showing Support for Temporally-Varying Speciation Model Using Coalescent Approximation. Results
from simulations showing the proportion of phylogenies for which a temporally-varying speciation (TVS) model (Model 4a of [23]) is preferred over a
constant-rate birth-death model (BD; Model 3 of [23]) using AIC to select amongst the models. Both the models were formulated according to a
coalescent-based approximation of the likelihood [23]. We used a DAIC cutoff of 4 to favor the TVS model when the generating model was a
constant-rate process. Extinction rate, e~m=l, varies across the plots (e~0,0:1,0:25,0:5); speciation rate, l, and total tree-depth, t are held constant
(l~1 and t~5). All are plotted against the expected number of taxa across the cumulative distribution of probability densities (from 0.99 to 0.01).
The dashed vertical line represents the expected value for N under the simulating conditions. Each point represents 1000 simulations. (Results for
e~0:75 and e~1 not shown.)
doi:10.1371/journal.pone.0043348.g005

Sampling Bias Influences Inference of Early Bursts
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of the statistical properties of these models may allow researchers

to be more confident that the patterns they observe represent truly

meaningful variation.

Methods

All of our simulations were carried out using constant rates of

speciation and extinction through time, so that any detection of a

slowdown can be considered a Type-1 error. Tree simulations

were conducted with Stadler’s [46] TreeSim R package, modified

slightly for the purposes of computational efficiency. For each

simulated phylogeny, we calculated the c-statistic [14] and fit five

models of diversification: 1) a constant-rate birth-death model

[47]; 2) a diversity-dependent model [27]; 3) a time-varying

speciation rate model [36]; 4) a constant-rate birth-death model

using a coalescent approach [23]; and 5) a time-varying speciation

rate model, also using a coalescent approach [23]. Models 1–3

were fit using the R package laser [48]. Models 4 and 5 were fit

using code from Morlon et al. [23], also modified for computa-

tional efficiency.

We simulated phylogenies conditioned on both the age of the

tree t and the number of taxa N (for a discussion on various

methods of conditioning simulated phylogenies, see [46]). In order

to simulate trees from different regions of the cumulative

probability distribution (i.e. 1st percentile, 2nd percentile, . . .,

99th percentile), we used the equations of Foote et al. [49] for

calculating Pr(N Dl,m,t) where l is the instantaneous speciation

rate per unit time and m is the instantaneous extinction rate per

unit time. The probability of observing a phylogenetic tree of age

t, containing at least n taxa, is given by the equations:

for l~m

Pr(N§njl,m,t)~1{
m(exp½(l{m)t�{1)

l exp½(l{m)t�{m
{

Xn{1

i~1

(1{a)(1{b)bi{1

ð1Þ

and

b~
la

m

and for l=m

Pr(N§nDl,m,t)~1{
lt

(1zlt)
{
Xn{1

i~1

(lt)i{1

(1zlt)iz1
ð2Þ

Note that in their formulation of these equations, Foote et al.

[49] use the paleontological convention of denoting l as p and m as

q. We set l~1, t~5 and varied m (m~f0,0:1,0:25,0:5,0:75,1:0g).
Conditioning on the survival of at least one lineage to the present

day, we used (1) and (2) to calculate the number of taxa associated

with the percentiles of the cumulative distribution as discussed

above. For each value of m and each percentile

(p~0:01,0:02, . . . ,0:99), we simulated 1000 phylogenies under a

constant-rate birth-death model (or in the case of m~0, pure-

birth). We also varied l and t but the results of our analysis did not

differ qualitatively.

As stated above, the c-statistic [14] quantifies the temporal

distribution of internode distances. We calculated c for each

phylogeny using the R package ape [50]. Following the author’s

original recommendation [14] and the conventions of the

literature, we used a one-tailed test, such that c was considered

to be significant if it was v{1:645. Again, as all phylogenies were

simulated under a constant-rate process, we considered it to be a

Type-1 Error if c was significantly negative.

The diversity-dependent (DD) model we used was the

exponential declining model of Rabosky and Lovette [27] where

speciation rate is modeled as a function of the number of

contemporaneous lineages in the reconstructed phylogeny. If N(t)
the number of lineages at time t, l(0) is the initial (background)

speciation rate and k describes the strength of diversity-depen-

dence, l(t)
can be described as the function

l(t)~l(0)N(t){k: ð3Þ
In the DD model, background extinction rates are assumed to be

0. The decline in diversification rates at higher densities is thus

only due to a decrease in speciation rate.

To model time-varying speciation without explicitly considering

diversity-dependence, we used the ‘SPVAR’ model of Rabosky

and Lovette [36] where speciation rate is an exponential function

of time such that

l(t)~l(0)e{xt ð4Þ
where x is a constant describing the relationship. Here, extinction

rate m is explicitly modeled but assumed to be constant across the

phylogeny.

As an alternative to using the full-likelihood equation for a time-

varying speciation model [36], we also employed a recently

derived approach [23] for fitting birth-death models, based on the

coalescent process from population genetics [51]. Morlon et al.

[23] model a population of species evolving under the Wright-

Fisher process. Following Morlon et al. [23], the likelihood L of

observing the internode distances gi between node i and node iz1
can be written as

L(gi)~
i(iz1)

2

1

N(ui)
exp {

i(iz1)

2

ðui

ui{gi

1

N(t)
dt

" #
ð5Þ

where ui is the distance between node i and the present and N(t) is

the number of species (population size in population genetics) at

time t in the past. Note that this is an approximation of the

likelihood as N(t) is approximated by its expected value E N(t)½ �
[23]; this was done to make the model analytically tractable. The

constant-rate birth-death model we use corresponds to Model 3

from [23]. The time-varying speciation model was specified in the

same way in the full-likelihood approach described above, such

that l(t)~l(0)e{xt. This corresponds to Model 4a from [23].

For the model-based approaches, we compared a constant-rate

birth-death model to each alternative model in our set. We used an

AIC approach (sensu [52]) to select the best fit model between a

constant-rate birth-death model and a time-varying speciation

rate/diversity-dependent model. We emphasize for clarity that

only 2 models were considered at a time. We used a DAIC cutoff

of 4 for the more parameter-rich model to be favored. While a

DAIC of 4 is an arbitrary value, we justify its use as it is

conventionally used in phylogenetic comparative methods,

following recomendations in [52]. All analyses were conducted

in the R programming environment [53]. The code modified from

Stadler [46] and Morlon et al. [23] will be available upon

acceptance on M.W.P.’s personal website http://mwpennell.

wordpress.com/
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