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Background: Staphylococcus aureus (S. aureus) is the leading cause of various

infective diseases, including topical soft tissue infections. The goals of this

study were to investigate the roles of YycF and CodY in the regulation of

biofilm formation and pathogenicity.

Methods: Electrophoretic mobility shift assay (EMSA) was conducted to

validate the bound promoter regions of YycF protein. We constructed the

codY up-regulated or down-regulated S. aureus mutants. The biofilm biomass

was determined by crystal violet microtiter assay and scanning electron

microscopy (SEM). Quantitative RT-PCR analysis was used to detect the

transcripts of biofilm-related genes. The live and dead cells of S. aureus

biofilm were also investigated by confocal laser scanning microscopy (CLSM).

We constructed an abscess infection in Sprague Dawley (SD) rat models to

determine the effect of CodY on bacterial pathogenicity. We further used the

RAW264.7, which were cocultured with S. aureus, to evaluate the effect of

CodY on macrophages apoptosis.

Result: Quantitative RT-PCR analyses reveled that YycF negatively regulates

codY expression. EMSA assays indicated that YycF protein directly binds to

the promoter regions of codY gene. Quantitative RT-PCR confirmed the

construction of dual- mutant stains codY + ASyycF and codY-ASyycF. The

SEM results showed that the biofilm formation in the codY + ASyycF group was

sparser than those in the other groups. The crystal violet assays indicated that

the codY + ASyycF group formed less biofilms, which was consistent with the

immunofluorescence results of the lowest live cell ration in the codY + ASyycF

group. The expression levels of biofilm-associated icaA gene were significantly

reduced in the codY + strain, indicating codY negatively regulates the biofilm

formation. Furthermore, CodY impedes the pathogenicity in a rat-infection

model. After cocultured with bacteria or 4-h in vitro, the apoptosis rates of

macrophage cells were lowest in the codY + group.

Conclusions: YycF negatively regulate the expression of codY. By interaction

with codY, YycF could modulate S. aureus biofilm formation via both
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eDNA- dependent and PIA- dependent pathways, which can be a significant

target for antibiofilm. CodY not only impedes the pathogenicity but also

has a role on immunoregulation. Thus, the current evidence may provide a

supplementary strategy for managing biofilm infections.

KEYWORDS

antisense, biofilm formation, Staphylococcus aureus, YycFG, CodY

Introduction

Staphylococcus aureus (S. aureus), a Gram-positive
opportunistic pathogen, is the leading cause of various
infectious diseases, including topical soft tissue infections,
osteomyelitis, and endocarditis (Wertheim et al., 2004). Due
to biofilm formation, S. aureus infection has become more
challenging to treat in recent years (Schilcher and Horswill,
2020). Biofilm formation is responsible for persistent infections,
difficult to eradicate, and much more resistant to environmental
stimuli. Thus, biofilms are an essential target for infection
treatment, and many strategies targeting biofilms have been
developed to attenuate the pathogenicity of bacteria. In
S. aureus, approximately 16 TCSs (Two-component systems)
play a role in adaptation to environmental changes. YycFG
is the only TCS essential for the viability of bacteria and
significantly modulates gene expression, which is associated
with biofilm formation and pathogenicity (Villanueva et al.,
2018; Jenul and Horswill, 2019; Rapun-Araiz et al., 2020).
YycFG TCS, also known as the VicRK/WalRK TCS, consists
of the sensor histidine protein kinase YycG and its cognate
response regulator YycF. By phosphorylation, YycG activates
YycF and controls downstream gene expression (Wang et al.,
2021).

YycFG has a major role in controlling biofilm formation in
low-G + C Gram-positive bacteria, including S. aureus (Dubrac
et al., 2007). By directly binding to the promoter region of the
ica operon, activated YycF can positively trigger extracellular
polysaccharide (EPS) synthesis, which is associated with biofilm
construction (Xu et al., 2017). The ica operon is a chromosomal
gene locus that comprises the intercellular adhesion gene icaA
and regulates the production of polysaccharide intercellular
adhesin (PIA). Additionally, YycF can indirectly stimulate
the expression of ica operon by controlling the expression
of the global transcriptional regulator SarA, resulting in
biofilm aggregation (Wu et al., 2021b). Hence, the YycFG
TCS represents a promising target to modulate S. aureus
biofilms.

Research has shown that CodY [control of dciA (decoyinine
induced operon) Y] is a global repressor regulator in Gram-
positive bacteria (Chapeton-Montes et al., 2020). In response
to environmental signals such as the amount of branched-
chain amino acids (BCAAs) [isoleucine, leucine, and valine

(ILV)] and GTP, CodY adjusts metabolism and virulence gene
regulation (Pohl et al., 2009). Via recognition of a conserved
sequence motif (AATTTTCWGAAAATT) (Brinsmade, 2017),
CodY competes with RNA polymerase for binding to a
promoter and primarily represses the target genes. In S. aureus,
biofilm development is thought to occur mainly via PIA-
dependent and PIA-independent biofilm formation pathways.
CodY can act as a repressor of ica and modulates PIA-
dependent biofilm formation (Majerczyk et al., 2008). PIA-
independent biofilms are mainly based on the aggregation
of extracellular DNA (eDNA) and/or protein. CodY also
contributes to PIA-independent formation by repressing the
expression of secreted proteases and nucleases (Nuc) (Mlynek
et al., 2020). Both eDNA and PIA can work synergistically in
biofilm organization.

CodY-targeted biofilm genes have been extensively
studied in S. aureus, but the regulatory relationship between
CodY and YycFG TCS is largely unknown (Augagneur
et al., 2020). In this study, we used electrophoretic
mobility shift assays (EMSAs) to verify the binding of
YycF to codY promoters and identify negative regulation
of YycF on CodY by RT–PCR to gain insight into
the relationship between CodY and YycFG and their
coordinating adjustments to S. aureus biofilm formation
and pathogenicity. We showed that S. aureus YycF acts as a
repressor to control the activity of CodY, thus contributing
to biofilm formation and pathogenesis in infectious
diseases.

Methods and materials

Bacterial strains and biofilm growth
conditions

As previously described, S. aureus strain ATCC29213 was
cultured in tryptic soy broth (TSB) at 37◦C and 5% CO2.
Briefly, 500 µL of S. aureus suspension was inoculated into
10 mL fresh TSB medium to mid-logarithmic phase (optical
density at 600 nm [OD600] = 0.5), and a log-phase suspension
was prepared for further investigation. For biofilm formation,
sterilized glass disks (10-mm diameter) were dropped into
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24-well microtiter plates and cocultured with log-phased
suspension for 24 h.

Electrophoretic mobility shift assay to
detect bound codY promoter regions
of YycF protein

We performed electrophoretic mobility shift assays
to determine whether the YycF protein could directly
bind to the promoter regions of codY. To generate
YycF His-Tag fusion proteins, pET-22b (Novagen) was
applied to yield pET-yycF at Huabio Biotech (Hangzhou,
China). Then, the above plasmids were transformed
into E. coli BL21 for recombinant proteins. We isolated
recombinant proteins from bacterial suspension culture
after a 3-h induction with 1 mM IPTG. The acquired
recombinant proteins were purified through affinity
chromatography on Ni2+ NTA agarose (Qiagen). The
purified YycF protein was visualized via Coomassie staining
after SDS–PAGE.

The PCR amplicon of the codY promoter region was
generated from the S. aureus ATCC29213 genomic DNA
sample using primers labeled with the 5′ FAM (Roche) (see
Table 1). The amplified DNA fragments were purified according
to the manufacturer’s instructions (Tiangen Biotech, Beijing,
China). After purification, labeled DNA fragments (0.02 pmol)
were incubated with recombinant YycF protein at various
concentrations from 0 to 60 pmol. After 30 min of incubation
on ice, the samples were loaded on native PAGE gels in
0.5 × TBE buffer (44.5 mM Tris-HCl, 44.5 mM boric acid,
1 mM EDTA, pH 8.0). Native PAGE was prepared with 5× TBE
(445 mM Tris-HCl, 445 mM boric acid, 10 mM EDTA, pH
8.0), 30% Acr-Bis (29:1), 50% glycerinum, 10% ammonium
persulfate (APS), and N,N,N′,N′-tetramethylethylenediamine
(TEMED). Gel electrophoresis was performed at 110 V for
90 min on ice, according to our previous study (Lei et al.,
2018).

Construction of codY-upregulated or
-downregulated Staphylococcus
aureus mutants

We constructed the S. aureus yycF downregulating strain
(ASyycF) as previously described (Wu et al., 2021a). To
investigate the subsequent effects of codY, we constructed
codY-upregulated or -downregulated expression mutants. To
downregulate codY expression, antisense sequences were
applied to construct a codY-downregulated expression mutant
by transformation of a plasmid expressing antisense codY
(AScodY) into S. aureus ATCC29213. AScodY was engineered
by Sangon Biotech (Shanghai, China) by inserting the antisense

TABLE 1 Sequences of primers in this study.

Primers Sequence 5′–3′ (forward/reverse)

RT-qPCR

icaA 5′-GATTATGTAATGTGCTTGGA-3′/
5′-ACTACTGCTGCGTTAATAAT-3′

yycF 5′-TGGCGAAAGAAGACATCA-3′/
5′-AACCCGTTACAAATCCTG-3′

yycG 5′-CGGGGCGTTCAAAAGACTTT-3′/
5′-TCTGAACCTTTGAACACACGT-3′

icaD 5′-ATGGTCAAGCCCAGACAGAG-3′/
5′-CGTGTTTTCAACATTTAATGCAA-3′

16S rRNA 5′-GTAGGTGGCAAGCGTTATCC-3′/
5′-CGCACATCAGCGTCAACA-3′

EMSA

PcodY 5′-AGTCGATGAGTCTGGGACATAATT-3′/
5′-TGTGAAATATCAATTTGATTG-3′

sequences of codY into restriction sites between BamHI and
EcoRI. In addition, a codY-upregulated expression mutant
(codY +) was constructed by transformation of the codY-
encoding sequences inserted into the pDL278 plasmid in
ATCC29213.

The methods of construction for dual mutants were
modified according to our previous study (Zhang et al., 2022).
To generate overexpression strain codY + ASyycF (yycF low-
expression and codY overexpression mutant), codY−ASyycF
(codY low-expression and yycF low-expression mutant), anti-
sense sequences of yycF were obtained by oligonucleotides
synthesis and connected with cody coding region or antisense
codY cloned into the pDL278 shuttle vector (Sangon Biotech,
Shanghai, China), generating recombinant plasmid pDL278
codY + ASyycF or pDL278 codY−ASyycF.

Analysis of gene expression using
quantitative real-time PCR

To investigate the interactions between yycF and codY and
the effect on biofilm-associated gene expression, quantitative
real-time PCR (qRT–PCR) was performed. The codY−yycF−,
codY−, codY+yycF−, codY+, and ATCC29213 (as a control)
strains were cultured to the mid-logarithmic phase. Total
RNA was extracted and purified from each strain with the
MasterPureTM RNA Purification Kit (Epicenter Technologies,
Madison, WI, USA). The purified RNA was reverse transcribed
to cDNA with the RevertAid First Strand cDNA Synthesis
Kit (Thermo Scientific). Quantitative real-time PCR assays
were performed with a LightCycler 480 system (Roche, Basel,
Switzerland) with the primers listed in Table 1 and the 16S
rRNA gene as an internal control. Threshold cycle values (CT)
were determined, and the abundance of each gene was expressed
relative to that of the 16S rRNA gene. Each sample was analyzed
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in triplicate, and the data were analyzed according to the
2−11CT method.

Crystal violet assay and
epifluorescence staining for biofilm
biomass

A crystal violet assay was performed to evaluate the biomass
of biofilms, including codY−ASyycF, codY−, codY+ASyycF,
codY+, and ATCC29213 (as a control). After 24 h of culture
in TSB medium, the biofilm samples were stained with 0.1%
(w/v) crystal violet for 15 min. The dye bound to the biofilms
was transferred into a new plate, and the absorbance was
measured with a microplate reader (ELX800, Gene) at 595 nm
(Wu et al., 2021b). In addition, the biofilms were labeled with
SYTO9 and PI for epifluorescence observation. Live strains were
stained green, while dead strains appeared red. Three random
fields in each specimen were visualized using epifluorescence
microscopy (Nikon Eclipse TE-2000S, Melville, NY).

Characterizing biofilm morphologies

To observe the biofilm structure of each group, scanning
electron microscopy (SEM) (Inspect, Hillsboro, OR, USA; SEM)
was conducted. The 24 h biofilm samples were washed with PBS
twice and fixed with 2.5% glutaraldehyde for 4 h. Then, the
biofilm samples were dehydrated and dried in a critical point
dryer. After being coated with gold powder, micrographs of the
biofilm samples were evaluated.

Abscess model for evaluation of
pathogenicity

The ability of S. aureus to form biofilms contributes to
major microbial infections. To determine the effect of codY
on biofilm infection, which can be modulated by YycF, we
constructed an abscess infection in Sprague Dawley (SD) rat
models. The animal experiments were approved by West China
Hospital Animal Welfare Committee (NO. 20220606004). The
rats were randomized into four experimental groups: S. aureus
as a positive control, SSN group, AScodY, codY + and normal
control group (n = 5 rats per group). After anesthetization with
ketamine (60 µg/g) and xylazine (6 µg/g), we injected 0.1 mL
of a bacterial suspension (1.2 × 109 CFU/mL) into deep calf
muscle and observed after 36 h. A palpable fluctuant mass in
the calf muscle was identified for model establishment (Wyss
et al., 2004). For histopathological analysis, the muscle tissue
was excised and fixed in 10% neutral-buffered formalin for 48 h.
Tissue sections were processed and stained with hematoxylin-
eosin (HE) according to standard protocols (Cardiff et al., 2014).

The effect of CodY on macrophages

We also used RAW264.7 cells to evaluate the effect of CodY
on macrophage apoptosis. RAW264.7 cells were cultured in
DMEM supplemented with 10% heat-inactivated fetal bovine
serum (FBS). Bacterial suspensions of S. aureus ATCC29213,
codY- and codY + strains at the log phase were diluted
to achieve a multiplicity of infection (MOI) of 100:1. The
number of S. aureus was determined by serial dilution with
the plate counting method. Cells were inoculated into a
6-well plate at 3.0 × 105 cells/well. After the cells grew
for 12 h and formed a monolayer, 200 µL of S. aureus
(MOI = 100:1) was added to each well for 4 h and treated
with lysostaphin (10 µg/mL) for 12 min to kill extracellular
S. aureus. To detect RAW264.7 cell apoptosis, we used the
Annexin V-FITC/propidium iodide (AV/PI) dual staining AP-
101-100-kit (Multisciences, China) to test the apoptosis rate
of RAW264.7 cells following the manufacturer’s instructions.
Briefly, after coculture with S. aureus, the cells were digested
with trypsin, collected by centrifugation, washed with PBS,
stained with Annexin V-FITC and PI, and analyzed by FCM
(Becton CytoFLEX) (Xu et al., 2020). The cell concentration for
FCM was modulated to 1.0 × 107/mL. Each sample was added
with 5µL Annexin V-FITC and PI for 30 min at 4◦C. After
centrifugation at 300 g for 5min, the supernatant was removed,
resuspended in 500 mL PBS and analyzed for cell apoptosis.

Data analysis

All statistical data were analyzed in SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA). The Shapiro–Wilk test was used to analyze
the distribution of data, and the Bartlett test was used to
determine the homogeneity of variances. For parametric testing,
we adopted one-way ANOVA to assess the statistical significance
of variables followed by the Tukey test. Differences in the data
were considered significant at P < 0.05.

Results

YycF negatively regulates CodY
expression

The methods of construction for dual mutants were
modified according to our previous study (Zhang et al., 2022).
To generate overexpression strain codY + ASyycF (yycF low-
expression and codY overexpression mutant), codY-ASyycF
(codY low-expression and yycF low-expression mutant), anti-
sense sequences of yycF were obtained by oligonucleotides
synthesis and connected with codY coding region or antisense
codY cloned into the pDL278 shuttle vector (Sangon Biotech,
Shanghai, China), generating recombinant plasmid pDL278
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codY + ASyycF or pDL278 codY-ASyycF. Quantitative RT–PCR
analyses revealed that the transcription of codY was elevated in
ASyycF strains (Figure 1A). To reveal the possible interactions
between YycF and candidate targeted genes, EMSA was
performed on the promoter regions of the codY gene. As
demonstrated in Figure 1B, the promoter region of codY
contained a putative YycF-binding consensus motif. The YycF
protein directly binds to the promoter regions of the codY gene.

CodY interaction with YycF affects
biofilm morphology

Quantitative RT–PCR demonstrated that in the dual-mutant
stains codY + ASyycF and codY-ASyycF, the expression levels
of yycF genes were significantly reduced. Furthermore, the

expression levels of the biofilm-associated icaA gene were
significantly reduced in the codY + ASyycF strain compared with
the S. aureus and codY-ASyycF strains (P< 0.05; Figure 2A),
which can be attributed to the reduced biomass of the
codY + ASyycF strain. The SEM results showed that the biofilm
formation in the codY + ASyycF group was sparser than those
in the other groups (Figure 2B), and that codY interacted
with yycF in regulating biofilm formation. Quantitatively, we
evaluated the ability of the S. aureus strains to form biofilms
in the TSB culture. The biomass was quantified via the
crystal violet assay, and the codY + ASyycF group formed
fewer biofilms than the S. aureus group, as demonstrated by
the reduction in OD595 values from 1.9 to 1.0 (Figure 3A).
Similarly, the immunofluorescence density of the live cells in
the codY + ASyycF group was the lowest compared with the
S. aureus and codY-ASyycF groups (Figure 3B).

FIGURE 1

YycF negatively regulates codY expression. (A) Consensus YycF binding motif and candidate sequences in promoters of codY.
TGTWAH-NNNNN-TGTWAH, where W is A/T and H is A/T/C; EMSA in which promoter regions were obtained by PCR and FAM-labeled. As the
negative control, a DNA fragment the same size as the promoter region and similar AT: GC mole ratio, but missing the YycF consensus binding
sequence, was used to rule out non-specific binding. (B) Quantitative RT-PCR analysis showed the gene transcripts in S. aureus, and ASyycF
strains. S. aureus gene expression was relatively quantified by RT-PCR using 16S as an internal control (n = 5, ∗P < 0.05).
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FIGURE 2

CodY interaction with yycF affects biofilm morphology. (A) Quantitative RT-PCR analysis showed the gene expressions in S. aureus,
codY + ASyycF, and codY-ASyycF dual- mutant stains. S. aureus gene expression was relatively quantified by RT-PCR using 16S as an internal
control (n = 5, *P < 0.05). (B) SEM images of S. aureus, codY + ASyycF, and codY-ASyycF dual- mutant stains.

CodY suppressed biofilm morphology
and biofilm-associated genes

To further explore the potential roles of the codY gene
in biofilm formation, we constructed the codY + strain
(codY overexpression strain) and AScodY strain (codY low-
expression strain). Quantitative RT–PCR analyses demonstrated
the construction of the codY + strain and AScodY strain
(Figure 4A, blue column). Furthermore, the expression levels
of the biofilm-associated icaA gene were significantly reduced
in the codY + strain but increased in the AScodY strain
(P < 0.05; Figure 4A, red column), indicating that codY
negatively regulates biofilm-associated genes. The SEM results
showed that the biofilm formation in the codY + group was
sparser than that in the other groups (Figure 4B). In particular,
the AScodY strains presented dense biofilms. The biomass was
quantitively measured by crystal violet staining (Figure 5A).

The codY + group formed the lowest biomass, while the
AScodY strain presented the highest biomass, as demonstrated
by the reduction in OD595 values from 2.5 to 1.0 (Figure 5A).
Accordingly, the immunofluorescence density of the live cells in
the codY + group was the lowest compared with the S. aureus
and AScodY groups (Figure 5B).

CodY impeded pathogenicity in a rat
infection model

Thirty-six hours after muscle injection of S. aureus, codY+ ,
and AScodY strains, the rats were sacrificed by euthanasia under
deep anesthesia (ketamine/xylazine) by cervical dislocation. The
infection sites were dissected under macroscopic observation.
Among all groups, infectious lesions with diameters of
approximately 3 mm and 1.5 mm were observed in the
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FIGURE 3

CodY interaction with yycF regulates the biofilm biomass. (A) Biomass of S. aureus, codY + ASyycF, and codY-ASyycF dual- mutant stains were
quantified by crystal violet staining. Optical densities at 595 nm were measured (n = 5, ∗P < 0.05). (B) The CLSM observations of S. aureus,
codY + ASyycF and codY-ASyycF dual- mutant stains. Green, viable bacteria (SYTO 9); red, dead bacteria (PI); scale bars, 250 µm.

S. aureus and AScodY groups, respectively. However, in the
codY-overexpressing group (codY +), the abscess in muscle
was obscure, and there were only unhealthy tissues with a
diameter of less than 2 mm (Figure 6A). Correspondingly, the
percentage of inflammatory cell infiltration was measured by

ImageJ, and there were approximately 13% inflammatory cells
in the S. aureus group. The percentages of inflammatory cell
infiltration were approximately 9 and 6% for the AScodY and
codY + groups, respectively (Figure 6B). After coculture with
bacteria for 4 h in vitro, the apoptosis rates of macrophages
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FIGURE 4

CodY suppressed biofilm morphology and biofilm-associated genes. (A) Quantitative RT-PCR analysis showed the gene expressions in
S. aureus, codY + and codY- mutant stains. S. aureus gene expression was relatively quantified by RT-PCR using 16S as an internal control (n = 5,
∗P < 0.05). (B) SEM images of S. aureus, codY + and codY- mutant stains.

were measured by flow cytometry. The total apoptosis rate in
S. aureus (ATCC29213) was 86.61%. In the AScodY group, the
total apoptosis rate was 72.60%, which was higher than that of
66.24% in the codY + group (Figure 6C).

Discussion

Staphylococcus aureus is a major human pathogen that
is responsible for a wide range of infectious diseases. The
propensity of bacteria to form biofilms is one of most
crucial factors contributing to pathogenesis and resistance
(McCarthy et al., 2015). In S. aureus, biofilm organization is
thought to occur mainly via two mechanisms, polysaccharide
intercellular adhesin (PIA)-based and eDNA/protein-based
pathways. Both pathways contribute to the construction
of a self-produced extracellular matrix, which is primarily
comprised of exopolysaccharides, proteins, and extracellular

DNA (eDNA) for cell-to-cell or cell-to-host attachment. The
potential mechanisms of biofilm formation are critical for
developing strategies to control biofilms and biofilm-related
infections.

PIA synthesis is modulated by the ica locus. According to
a previous study, the expression of ica is positively controlled
by YycFG, which is the only essential TCS in S. aureus that
regulates bacterial metabolism, including virulence and biofilm
formation (Clausen et al., 2003; Wu et al., 2019b). YycFG
is reported to modulate Staphylococcus epidermidis biofilm
formation in an ica-dependent manner (Xu et al., 2017). In
Bacillus subtilis, YycFG is directly involved in regulation of
cell wall synthesis and modification (Wu et al., 2019). The
YycG protein acts as a sensor to respond to environmental
signals, and YycF can directly regulate different sets of vital
functional genes by binding to promoter regions (Winkler and
Hoch, 2008). The putative recognition sequence of YycF is
composed of two hexanucleotide direct repeats separated by five
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FIGURE 5

CodY decreases the biomass of S. aureus biofilm. (A) Biomass of S. aureus, codY + and codY- mutant stains were quantified by crystal violet
staining. Optical densities at 595 nm were measured (n = 5, ∗P < 0.05). (B) The CLSM observations of S. aureus, codY + and codY- mutant
stains. Green, viable bacteria (SYTO 9); red, dead bacteria (PI); scale bars, 250 µm.

nucleotides [5′-TGT(A/T)A(A/T/C)-N5-TGT(A/T)A(A/T/C)-
3′]. However, CodY, as a global regulator, can negatively regulate
ica expression and inhibit biofilm formation. In Clostridium
difficile, the variability of CodY-dependent regulation is an
important contributor to the bacterial virulence and sporulation
(Nawrocki et al., 2016). In Bacillus subtilis, CodY can
be seen to regulate the entire protein utilization pathway
(Barbieri et al., 2015). Additionally, in major gram-positive
pathogens, several virulence factors are regulated by CodY

(Stenz et al., 2011). To identify the interaction of YycF and codY,
we analyzed the promoter of codY, and the consensus motif of
YycF was found (Figure 1A). The EMSA results revealed that
YycF can bind to the promoter of codY and potentially regulate
its expression (Figure 1A).

The mutation in yycF reduced biofilm formation and led
to decreased transcripts in the ica operon (Howden et al.,
2011). However, our RT–qPCR assays showed downregulation
in yycF combined with subsequent elevated expression in
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FIGURE 6

CodY impedes pathogenicity in a rat-infection model. (A) Gross observation of the abscess in S. aureus, codY + and codY- infected group; scale
bars, 1 cm. (B) HE staining of the abscess lesions in S. aureus, codY + and codY- infected group; scale bars, 200 µm. (C) The apoptosis rates of
macrophage cells when co-cultured with S. aureus, codY + and codY- respectively were measured by the flow cytometer.

codY (Figure 1B). Thus, we speculated that YycF negatively
modulated the expression of codY. To further explore the
interactions of YycF with codY, we constructed dual mutants
expressing codY and yycF (Figure 2). In the codY-ASyycF
group (indicating that both codY and yycF expression were
downregulated), the PCR results indicated that the expression
of codY decreased while ica expression significantly increased.
Consistent with previous work, ica (PIA synthesis) is negatively
regulated by CodY (Majerczyk et al., 2008, 2010). With the
relatively higher ica expression in the codY-ASyycF group,
the biofilm biomass increased (Figures 2B, 3A). Whereas the
codY + ASyycF group presented lower ica expression, the
biofilm biomass significantly decreased (Figures 2B, 3A).

In addition, YycFG TCS (also known as WalRK, VicRK, and
MicAB TCS) plays a central role in bacterial viability (Haag and
Bagnoli, 2017; Villanueva et al., 2018). In the codY + ASyycF
group, the density of strains was significantly downregulated
(Figure 3). However, both yycF and codY expression decreased
in the codY-ASyycF group, and the accumulation of strains was
similar to that in the S. aureus group (Figure 3). Therefore,
the downregulation of yycF can inhibit S. aureus viability,
and this viability alteration can be partially complemented by

repressing codY. CodY, as a global transcription factor, typically
represses gene expression and regulates physiology for growth
and survival under various levels of nutrient depletion (King
et al., 2018). YycF as an essential and global regulator responds
to various physiological metabolic processes in S. aureus (Wu
et al., 2021a). Therefore, multiple reasons including eDNA-
dependent and PIA- dependent pathways as well as slow
growth rate and reduced viability will inhibit biofilm formation.
In addition to CodY/YycF regulated eDNA- dependent and
PIA- dependent pathways, we also found reduced viability in
Figures 3, 5 and slow growth rate in Supplementary Material.

In addition to bacterial growth and biofilm formation, YycF
also regulates the expression of genes involved in cell wall
metabolism and virulence (Bleul et al., 2021). Subsequently,
to observe the specific effect of codY on biofilm organization,
which can be modulated by YycF, we constructed codY
overexpression (codY +) and downregulation (codY-) mutants.
The decrease in CodY activity promotes cell aggregation
and biofilm formation (Brinsmade, 2017). Our SEM result
in Figure 4B indicated a significant increase in the AScodY
biofilm, which is consistent with this conclusion. By utilizing
available eDNA and PIA, CodY demonstrates a synergistic effect
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FIGURE 7

Working model of CodY interactions with YycF affects biofilm formation in Staphylococcus aureus.

combining a DNA-dependent strategy with a PIA-based strategy
for biofilm formation (Mlynek et al., 2020). Considering the
present findings, YycF negatively modulates codY expression
while positively participating in an eDNA/PIA dual-dependent
manner for biofilm organization in S. aureus (Figure 7).

In S. epidermidis, YycF is bound to the promoter of ica and
increases ica expression (Xu et al., 2017). Similarly, YycF was
shown to interact with the ica promoter region and contribute to
PIA-based biofilms in our previous study (Wu et al., 2021b). In
the present study, YycF was speculated to modulate PIA/eDNA-
based biofilm formation by repressing codY. Therefore, YycF
negatively modulates Cody for PIA/eDNA-based biofilms and
also affects ica for PIA biofilms. Notably, the biofilm disassembly
of the dual mutant (codY + ASyycF) was more obvious than
that of codY + (Figures 2B, 4B). As S. aureus in biofilms is
1,000 times more tolerant to antibiotics and recalcitrance than
planktonic cells, the susceptibility of the pathogen was reversible
without the shelter of the biofilm (Shenkutie et al., 2020; Gimza
and Cassat, 2021).

A potential mechanism of CodY limits the host damage of
S. aureus, in which it transitions from a commensal bacterium
to an invasive pathogen. The decreased CodY activity promotes
a more invasive lifestyle of S. aureus (Waters et al., 2016).
Similarly, our animal experimental results indicated that the
ability of AScodY strains to invade was higher than that of
codY + and they formed a larger abscess (Figure 6A). Similar
with Montgomery et al., we found CodY can represses virulence
in vivo. In Montgomery study, Cody as a global regulator

can decrease expression of agr and saeRS, as well as the
gene encoding the toxin alpha-hemolysin (hla). Also, Cody
can restrain the expression of the lukF-PV gene, encoding
part of the Panton-Valentine leukocidin (PVL) (Montgomery
et al., 2012). By multiple pathways, Cody can mediate the
virulence of USA300. In our study, CodY-mediated repression
was focus on CodY/YycF interaction and biofilm formation.
And our results indicated CodY can impede the pathogenicity
of S. aureus by biofilm inhibition which has a potential
role on immunoregulation. By histological examination, we
observed that invasive AScodY stains could recruit more
immune cell infiltration surrounding the infectious region than
codY + strains (Figure 6B). Therefore, YycF could indirectly
enhance bacterial aggregation by repressing CodY (Figure 7).
According to this mechanism, our previous antisense yycF
(ASyycF) is base-paired with yycF and downregulates yycF
expression, which indicates therapeutic potential for infectious
diseases (Wu et al., 2021a). One previous study indicated that
CodY repression of sae expression (an exoprotein expression
TCS SaeRS to secrete virulence factors) delays immune evasion
and reduces immune cell death (Mlynek et al., 2018). In the
present study, the AScodY group also had a higher apoptosis rate
of macrophage cells than that of the codY + group (Figure 6C).
However, in the S. aureus ATCC29213 group, the apoptosis rate
was even higher than that in the AScodY group. This may be
induced by the positive regulation of CodY on genes such as
fnbA and spa, which encode the microbial surface components
recognizing adhesive matrix molecule (MSCRAMM) proteins
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(Brinsmade, 2017). It could be speculated that CodY as a
repressor of target can also positively regulate bacterial redox
balance and protease induced biofilm formation (Shivers et al.,
2006; Roux et al., 2014). In addition, the construction of AScodY
including the introduction of an exogenous plasmid vector may
interfere intracellular homeostasis (Senadheera et al., 2009; Lei
et al., 2015). All those items will affect bacterial metabolism and
indirectly interaction between AScodY and macrophages, which
may attribute to a lower apoptosis rate in AScodY group instead
of S. aureus.

Conclusion

In summary, YycF binds to the promoter regions of codY
and negatively regulates the expression of codY. By interacting
with codY, YycF could modulate S. aureus biofilm formation
via both eDNA-dependent and PIA-dependent pathways, which
can be a significant target for anti-biofilms. CodY impedes
pathogenicity and also has a role in immunoregulation. CodY
not only impedes the pathogenicity but also has a role on
immunoregulation. By interacting with CodY, YycF plays
essential roles in host-pathogen interactions and pathogenesis.
Thus, the current evidence may provide a supplementary
strategy for managing biofilm infections.
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