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The Hippo signaling pathway, an evolutionarily conserved protein kinase cascade, plays

a critical role in controlling organ size, cancer development, and tissue regeneration.

Recently, mounting evidence has suggested that Hippo signaling also has an important

role in regulating immunity, including innate and adaptive immune activation. In the

neuronal system, Our laboratory results, together with those from other studies,

demonstrate that the Hippo signaling pathway is involved in neuroinflammation, neuronal

cell differentiation, and neuronal death. In the present review, we summarize the

recent findings pertaining to the function and regulatory mechanism of Hippo signaling

components in the neuronal system, implicating the potential of Hippo signaling as a

therapeutic target for the treatment of neuronal system diseases.
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INTRODUCTION

The Hippo signaling pathway, originally identified in Drosophila, plays a critical role in regulating
cell contact inhibition, proliferation, differentiation, and apoptosis. As such, this pathway is
closely associated with the control of organ size, cancer development, and autoimmune diseases
(1–6). Importantly, the canonical Hippo signaling pathway is a highly-conserved evolutionary
pathway. As shown in Figure 1, the core components of this pathway in mammalian cells include
mammalian Ste20-like kinases 1/2 (MST1/2 [orthologs of Hippo in Drosophila]) and their adaptor
protein, Sav familyWWdomain containing protein 1 (SAV1 [orthologs of Salvador inDrosophila]).
The phosphorylation of MST1/2 activates large tumor suppressor 1/2 [LATS 1/2 (orthologs of
Warts in Drosophila)], a downstream protein, which in turn phosphorylates the downstream
Yes-associated protein (YAP [ortholog of Yki in Drosophila]) or a transcriptional coactivator with
PDZ-binding motif (TAZ); this results in the prevention of nuclear translocation by interacting
with cytosolic protein 14-3-3. Meanwhile, unphosphorylated YAP or TAZ are relatively enriched
in the nucleus and bind to their key transcriptional factors, the TEA domain transcription factor
(TEAD) family [TEAD 1–4 (orthologs of Sd inDrosophila)]; thus regulating the expression of many
genes that enhance cell proliferation, differentiation, and survival.

Although discovered in Drosophila, the Hippo signaling pathway in mammals also plays
critical role in the control of organ size, cancer development, and tissue regeneration. Recently,
accumulating evidence has suggested that Hippo signaling is important in regulating cancer
immunity, and for innate and adaptive immunity (7–13). However, compared with the peripheral
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FIGURE 1 | The core components of the Hippo pathway in Drosophila and mammalian. The core components of Hippo signaling in mammalian cells include MST1/2

(orthologs of Hippo in Drosophila) and their adaptor protein SAV1 (orthologs of Salvador in Drosophila). The phosphorylated of MST1/2 activates LATS 1/2 (orthologs

of Warts in Drosophila), which in turn phosphorylates the downstream YAP (ortholog of Yki in Drosophila) or TAZ, resulting in cytosolic retention by interacting with

protein 14-3-3. Meanwhile, unphosphorylated YAP or TAZ which is relatively enriched in the nucleus, bind to their key transcriptional factors TEADs (orthologs of Sd in

Drosophila), thus regulating the cell proliferation, differentiation, and survival.

immune system, the role and regulatory mechanism of this
pathway in the neuronal system is less well-known. In the
present review, we summarize the functions and regulation of
the Hippo signaling pathway in the neuronal system, to update
our understanding of this pathway and to raise awareness on
its implications for drug development and the clinical treatment
of disease.

EXPRESSION OF THE HIPPO SIGNALING
PATHWAY IN THE NEURONAL SYSTEM

MST1 and MST2 are core components of the Hippo signaling
pathway, that are highly expressed in several organs in
mice. Double knockout (KO) of MST1 and MST2 results in
early embryonic death (4); however, conventional deletion of
MST1 or MST2 would only cause a failure of induction of
tissue overgrowth or tumor development, thereby suggesting a
functional redundancy in MST1 and MST2 (7). Consistent with
this observation, organ overgrowth has been reported in many
tissue-specific double KOs of MST1 and MST2, such as in the
liver, intestine and heart (3–5, 14), suggesting that mammalian
MST1 and MST2 are important in the regulation of development
and growth.

Recently, mounting evidence has shown that the Hippo
signaling pathway also plays a critical role in the neuronal
system. Using an RNA-Seq transcriptome and splicing database
of glia, neurons, and vascular cells of the cerebral cortex (15),

we analyzed the expression levels of the core components of
the Hippo signaling pathway. As shown in Table 1, MST1 and

MST2 are highly expressed in most cell types in the brain,
including astrocytes, neurons, oligodendrocyte progenitor
cells (OPCs), newly formed oligodendrocytes, myelinating
oligodendrocytes, microglia, and endothelial cells. The adaptor

protein SAV1 also has a similar expression pattern, and
downstream LATS1 and LATS2 are also highly expressed in
all of these cell types. However, the co-transcription factor

YAP is highly expressed only in astrocytes and endothelial

cells, with low expression in neurons, OPCs, newly formed

oligodendrocytes, myelinating oligodendrocytes, and microglia.

Conversely, TAZ exhibits a different expression pattern
compared with YAP, and it is highly expressed in all of these

cell types, suggesting that YAP and TAZ may have different
roles in the diverse cell types of the neuronal system. Different
expression patterns have also been observed in TEAD 1, 2, 3,
and 4. Specifically, TEAD1 is highly expressed in astrocytes and
neurons, but relatively less expressed in OPCs and endothelial
cells. TEAD2 is highly expressed in astrocytes and endothelial
cells, while TEAD3 is expressed in astrocytes and neurons,
with relatively lower expression levels in OPCs and microglia.
TEAD4 on the other hand only has relatively high expression
levels in endothelial cells. Hence, these diverse expression
patterns of components of the Hippo signaling pathway

suggest their diverse roles among the different cell types in
the brain.
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TABLE 1 | The expressions of Hippo components in the brain.

Gene name Cell type in the brain

Astrocyte Neuron OPC Newly formed oligodendrocyte Myelinating oligodendrocyte Microglia Endothelial

MST1(STK4) +*** +** +*** +*** +** +*** +**

MST2(STK3) +** +** +** +** +** +** +***

SAV1 +*** +** +*** +** +** +*** +***

LATS1 +*** +*** +*** +*** +** +** +***

LATS2 +*** +** +*** +*** +** +*** +***

YAP +*** +* +* + + + +***

TZA +*** +*** +*** +*** +*** +*** +***

TEAD1 +*** +*** +** + + + +**

TEAD2 +*** + + - - + +***

TEAD3 +*** +*** +** + + +** +

TEAD4 + + + + + + +**

An expression level of 0.5 < FPKM ≤ 1.0 was indicated as “*”; 1.0 < FPKM ≤ 5.0 was indicated as “**”; FPKM > 5.0 was indicated as “***” (FPKM, fragments per kilobase of transcript

sequence per million mapped fragments).

ROLE OF HIPPO SIGNALING IN NEURAL
STEM CELLS

In the vertebrate brain, neural stem cells (NSCs) are self-
renewing, multipotent cells that generate neurons and glial cells
during embryonic development (16). It is noteworthy that some
NSCs persisting in the subgranular and subventricular zones
continue to produce neurons throughout life. Consequently,
different states of NSCs exist and are tightly regulated in
the brain. Usually, NSCs either undergo symmetrical or
asymmetrical cell division into two daughter cells. In symmetrical
cell division, both daughter cells are stem cells; however, in
asymmetric division, NSCs produce differentiated daughter
cells and stemness daughter cells (17). There are also some
inactive state NSCs or quiescent NSCs, when proliferation is not
required (18).

Recently, mounting evidence has shown that the Hippo
pathway plays an important role in regulating NSC physiology.
In neural progenitors, inactivation of LATS1/2 kinases (upstream
inhibitors of YAP/TAZ) cause massive apoptosis through
the induction of YAP/TAZ activation, and upregulating a
series of genes associated with cell growth and proliferation
(19). Additionally, overexpression of YAP/TAZ in the mouse
embryonic brain induced cell localization in the ventricular zone
by increasing stemness. Moreover, introduction of YAP/TAZ
increased the frequency and size of neurospheres in a TEAD-
dependent manner, as a TEAD binding-defective YAP mutant
failed to induce this phenotype (20). The results from our study
demonstrated that bone treatment with morphogenetic protein-
2 (BMP2) could inhibit the proliferation of embryonic NSCs;
meanwhile, under the condition of YAP knockdown, BMP2
does not further reduce neurosphere formation, suggesting
the presence of cross-talk between BMP2 signaling and the
Hippo-YAP pathway. Mechanically, under BMP2 stimulation,
Smad1/4 complex is transported into the nucleus, where it
competes with TEAD1 for binding to YAP, resulting in the

inhibition of its transcriptional activity. Furthermore, under
the condition of cyclin D1 (ccnd1) knockdown, an important
downstream target gene of YAP-TEAD signaling, BMP2 fails to
show additional inhibitory effect on mouse NSC proliferation
(21). YAP is also involved in neocortical astrocytic differentiation
and proliferation during brain development in mice. Conditional
KO of YAP, using Nestin-cre or GFAP-cre, decreases the number
of neocortical astrocytes and impairs astrocytic proliferation
through the BMP2-YAP-SMAD1 pathway (22). Furthermore, the
loss of Hippo or Warts induces the growth and proliferation
of NSCs in the Drosophila nervous system, suggesting that
Hippo signaling also plays a critical role in maintaining NSC
quiescence (23).

ROLE AND MECHANISM OF HIPPO
SIGNALING IN NEURONAL CELL DEATH

It has been established that Hippo signaling is involved in the
control of organ size and tumor development. Hippo inhibition
results in higher activity of YAP and leads to tumorigenesis;
however, its activation plays a role in neurodegeneration by
mediating oxidative stress-induced neuronal death. Oxidative
stress activates MST1 and then induces either YAP-dependent or
YAP-independent cell proliferation and cell death (24, 25).

The mammalian fork-head transcription factors of the O
class (FOXOs) are well-characterized substrates of MST1. By
stimulating oxidative stress, we found that MST1 phosphorylates
FOXO proteins, disrupts their interaction with protein 14-3-
3, and promotes FOXO nuclear translocation, thereby inducing
cell death in neurons (26, 27). Apart from phosphorylation,
we also found that methylation of FOXO3 was involved
in neuronal cell death. Consequently, Methyltransferase Set9
methylates FOXO3 at lysine 270, leading to the inhibition of
Bim expression and neuronal apoptosis (28). Moreover, we
discovered that the upstream kinase c-ABL, a non-receptor
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FIGURE 2 | The regulatory mechanism of Hippo/MST in neuronal cell death.

Oxidative stress activates upstream kinase c-ABL, which phosphorylates

MST1 and triggers the stabilization and activation of MST1. MST1 could

phosphorylate FOXO proteins, promote FOXO nuclear translocation and

induce cell death in neurons. Additionally, CDK1 and SET9 could regulate the

modification of FOXO proteins. HDAC2 could form a complex with FOXO3a

and regulate FOXO3a-dependent gene transcription and oxidative

stress-induced neuronal cell death.

tyrosine kinase involved in the oxidative stress-induced neuronal
cell death (29, 30), phosphorylates MST1 at Y433, which triggers
the stabilization and activation of MST1, and increases the

interaction between MST1 and FOXO3, thereby leading to
neuronal cell death (31). Finally, we discovered that histone
deacetylase 2 (HDAC2) could form a complex with FOXO3a and
regulate FOXO3a-dependent gene transcription and oxidative
stress-induced neuronal cell death, which describes a novel,
epigenetic modification-dependent regulatory mechanism of
FOXO3a-mediated selective gene transcription (32).

Interestingly, there is a functional interaction between
Hippo-YAP signaling and FOXO1 in treatments that induce
oxidative stress. YAP acts as a nuclear co-factor of FOXO1,
which modulates the FOXO1-mediated antioxidant response.
Activation of Hippo antagonizes YAP-FOXO1, leading to
increased ischemia/reperfusion (I/R)-induced cell death through
downregulation of catalase and MnSOD (33). These results
revealed that MST1 could induce both YAP-dependent and
YAP-independent gene transcription on oxidative stress, which
both determine cell survival or death in the neuronal system
(Figure 2).

ROLE OF HIPPO SIGNALING IN
NEURONAL SYSTEM DISEASES

Accumulating evidence has shown that dysfunctions in Hippo
signaling are involved in multiple neuronal system diseases. As

shown in Table 2, in MST1 and MST2 KO mice, MST2—but
not MST1—was shown to be a critical regulator of caspase-
mediated photoreceptor cell death in a mouse model of
retinal detachment (RD). Mechanically, KO of MST2 decreases
caspase-mediated photoreceptor cell death and proinflammatory
cytokines, such as monocyte chemoattractant protein 1 and
interleukin (IL)-6 during the early phase of RD (36). Moreover,
MST1 has been reported to function as a key determinant of
neurodegeneration in amyotrophic lateral sclerosis (ALS) (35).
Furthermore, KO of MST1 delays disease onset and extends
survival in mice expressing the human SOD1 G93A mutant.
Mechanically, deficiency of MST1 also decreases the activation
of p38 mitogen-activated protein kinase and caspases, and
impairs autophagy in spinal cord motor neurons. Consistently,
in Drosophila, Warts signaling is required for autophagic flux in
neurons, and mutants of the Warts pathway cause progressive
polyglutamine (PolyQ)-mediated neurodegeneration in the adult
stage. Importantly, phosphorylated MST1—the active form of
MST1—was reported to be significantly increased in the post-
mortem cortex of patients with Huntington’s disease (HD).
Meanwhile, YAP nuclear localization was decreased in both HD
post-mortem cortex and neuronal stem cells derived from HD
patients (24), suggesting that the activation of Hippo signaling
may contribute to HD.

Additionally, MST1 was reported to be activated in a
model of intracerebral hemorrhage established by injecting
autologous blood into the right basal ganglia. Hence, genetic
knockdown MST1 or chemical inhibition could effectively
reduce the levels of p-LATS1 and p-YAP, and decrease
neuronal cell death and inflammatory reactions, leading to a
reduction in brain edema, blood-brain-barrier (BBB) damage,
and neurobehavioral impairment (34). Furthermore, it has
been reported that I/R resulted in decreased levels of YAP
and TAZ; hence, the intraperitoneal injection of the YAP
agonist, dexamethasone, led to decreased BBB permeability,
decreased cerebral edema, smaller brain infarct sizes, and
improved neurological function, suggesting a neuroprotective
effect of YAP on the I/R-induced damaged brain (37). Moreover,
supplementation with melatonin could activate the YAP-Hippo
pathway; thus enhancing mitochondrial fusion and ultimately
reducing brain reperfusion stress. Mechanically, the YAP-
Hippo pathway regulates melatonin-modified OPA1 expression,
while blockade of the YAP-Hippo pathway results in neuronal
cell death and mitochondrial damage (38). Additionally, the
administration of biodegradable selenium (Se) nanoparticles led
to the protection of axons in the hippocampus region and
myelination of the hippocampal area after cerebral ischemic
stroke. Mechanically, Se administration suppressed excessive
inflammation and oxidative metabolism, and Hippo signaling
was shown to be involved in this process (39).

ROLE OF HIPPO SIGNALING IN
NEUROINFLAMMATION

Apart from the important role of Hippo signaling in controlling
organ size and cancer development, its role in immunity
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TABLE 2 | The functions of Hippo components in the neuronal system diseases.

Gene Diseases Function/change References

Mst1 ICH Decrease neuronal cell death and inflammatory reaction, leading to the reduced brain edema, blood-brain

barrier damage, and neurobehavioral impairment

(34)

ALS Decreased the activation of p38 mitogen-activated protein kinase and caspases, impaired the autophagy in

spinal cord motor neurons

(35)

HD Phosphorylated MST1 increased in post-mortem HD cortex (24)

Mst2 RD A critical regulator of caspase-mediated photoreceptor cell death (36)

Wts Aging Causes progressive polyglutamine (PolyQ)-mediated neurodegeneration in the adult stage (24)

Yap HD Decreased in the both HD post-mortem cortex and neuronal stem cells (24)

I/R Decreased cerebral edema, smaller brain infarct sizes, and improved neurologic function (37)

ICH, intracerebral hemorrhage; ALS, amyotrophic lateral sclerosis; HD, Huntington’s disease; RD, retinal detachment; I/R, ischemia/reperfusion.

activation has recently been extensively studied. The key
component of the Hippo signaling pathway, MST1, is highly
expressed in lymphoid tissues. MST1 KO mice also exhibit
normal T cell development, but low numbers of mature naive
T cells and relatively normal numbers of effector/memory T
cells (7). In 2012, Abdollahpour et al. reported a homozygous
premature termination mutation of MST1 with a novel
clinical phenotype including T- and B-cell lymphopenia,
intermittent neutropenia, and atrial septal defects; this
suggest that MST1 deficiency is a novel human primary
immunodeficiency syndrome. Moreover, enhanced loss of
mitochondrial membrane potential and increased susceptibility
to apoptosis was observed in MST1-deficient lymphocytes and
neutrophils (8). In the same year, Nehme et al. reported a
similar primary immunodeficiency phenotype associated with
MST1 deficiency that was characterized by a progressive loss
of naive T cells, recurrent bacterial and viral infections, and
autoimmune manifestations (10). Subsequently, in 2015, Halacli
et al. reported a novel STK4 mutation with clinical features
including autoimmune cytopenias, viral skin and bacterial
infections, mild onychomycosis, mild atopic, and seborrheic
dermatitis, lymphopenia, and intermittent mild neutropenia
(40); these features are similar with those of DOCK-8 deficiency,
a form of autosomal recessive (AR) hyperimmunoglobulin E
syndrome. Hence, these results strongly indicate that MST1 plays
a critical role in the immune system.

The diverse KO of major components of Hippo signaling
models and some functional studies have also revealed that
Hippo signaling plays an essential role in both innate and
adaptive immunity. In innate immunity, the loss of Hippo
or activation of Yki in fat bodies (the Drosophila immune
organ) results in a decreased antimicrobial response and
increase vulnerability to infection by Gram-positive bacteria.
Mechanically, Gram-positive bacteria could activate Hippo-Yki
signaling through Toll-Myd88 signaling, in which Yki directly
regulates the transcriptional activity of Cactus, the Drosophila
IκB homolog (11). However, an opposite role of Hippo signaling
was shown in mammalian macrophages. Furthermore, MST1/2
deficient bone-marrow-derived macrophages exhibited higher
toll-like receptor 4-mediated nuclear factor (NF)-κB activation,
resulting in increased levels of some pro-inflammatory cytokines,

such as IL-6, tumor necrosis factor-alpha, and IL-1β (41).
Moreover, the downstream effector YAP was reported to
negatively regulate antiviral immune response. Deficiency of YAP
also resulted in enhanced innate immunity, and a decreased viral
load, and morbidity in vivo (42). Additionally, YAP functions as
a transcriptional coactivator of β-catenin in mesenchymal stem
cell-mediated immune regulation. Deficiency of macrophage
YAP or β-catenin increased XBP1-mediated NLRP3 expression,
thus regulating macrophage polarization. In adaptive immunity,
MST1 and MST2 have been demonstrated to also be important
in T- and B-cell development, differentiation, and function
(13, 43–45).

The functions of Hippo signaling in the neuronal system have
recently been elucidated.We found that KO ofMST1 inmicroglia
protects from acute cerebral I/R-induced neuroinflammation
and brain injury. Mechanically, in the acute cerebral I/R
condition, MST1 directly phosphorylates IκB at residues S32
and S36, thus regulating the activation of NF-κB signaling
in microglia. Deficiency of MST1 in microglia significantly
suppressed NF-κB signaling and microglial activation. Moreover,
we found that Src kinase functions upstream of MST1-IκB
signaling, and that administration of the Src inhibitor AZD0530
exhibited a phenotype similar to MST1 deficiency in microglia
(46). Consistent with this result, suppression of MST1 was
also reported to reduce early brain injury after subarachnoid
hemorrhage in mice by inhibiting NF-κB/MMP-9 signaling (47).
These results suggest that MST1 positively regulates NF-κB
signaling and that inhibition of MST1 plays a protective role
in microglial activation-induced neuroinflammation. Moreover,
YAP has been reported to be highly expressed in astrocytes,
and YAP deletion induced the over-activation of astrocytes,
along with microglial activation and BBB dysfunction in mice
(48). Mechanically, KO of YAP in astrocytes increased the
action of the JAK-STAT inflammatory pathway; thus, inducing
reactive astrogliosis. Results from our laboratory demonstrated
that YAP conditional KO (cKO) in the lens led to cataracts in
mice (49). Mechanistically, YAP cKO reduced proliferation of
epithelial cells, delayed fiber cell denucleation, and increased
cellular senescence in the lens; the inflammation levels were
also significantly altered in YAP cKO mice. Collectively, these
results suggest that Hippo signaling is also important in
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neuroinflammation in the neuronal system, which may not be
consistent with its functions in the peripheral immune system;
thus, warranting further investigations.

CONCLUDING REMARKS

The Hippo signaling pathway is not only critical in controlling
organ size, cancer development and tissue regeneration, but it is
also important in regulating immunity, including the activation
of the innate and adaptive immune systems. Recently, multiple
studies have shown that Hippo signaling components paly
critical role in the neuronal system, including the regulation
neural stem cell proliferation and differentiation, oxidative stress-
induced neuronal cell death, and in neuroinflammation; thus
implicating a potential therapeutic target for the treatment
of neuronal system diseases. However, the role and the

regulatory mechanism of Hippo signaling in the neuronal system
still requires clarification, especially in different diseases or
environmental conditions.
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