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Experimental Physiology – Hot Topic Review

The relevance of central command for the neural
cardiovascular control of exercise

J. W. Williamson

Department of Health Care Sciences, University of Texas Southwestern Medical Center at Dallas, School of Health Professions, Dallas, TX, USA

This paper briefly reviews the role of central command in the neural control of the circulation
during exercise. While defined as a feedfoward component of the cardiovascular control system,
central command is also associated with perception of effort or effort sense. The specific factors
influencing perception of effort and their effect on autonomic regulation of cardiovascular
function during exercise can vary according to condition. Centrally mediated integration of
multiple signals occurring during exercise certainly involves feedback mechanisms, but it is
unclear whether or how these signals modify central command via their influence on perception
of effort. As our understanding of central neural control systems continues to develop, it will be
important to examine more closely how multiple sensory signals are prioritized and processed
centrally to modulate cardiovascular responses during exercise. The purpose of this article is
briefly to review the concepts underlying central command and its assessment via perception
of effort, and to identify potential areas for future studies towards determining the role and
relevance of central command for neural control of exercise.
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The neural control of the circulation during exercise
has been investigated since the late 1800s (Johansson,
1893). Convincing data have emerged demonstrating that
cardiovascular responses during exercise are governed
by both central (i.e. central command; Gandevia et al.
1993) and peripheral mechanisms (i.e. exercise pressor
reflex) and their interactions with the arterial baroreflexes
(Gallagher et al. 2006). Although many studies have sought
to explore the specific roles and contributions of these
mechanisms, the complexity of the human cardiovascular
control system and the redundancy between central and
peripheral components have often made interpretation
difficult. As identified by Mitchell (1990) over 20 years ago,
the relative importance of central command and exercise
pressor reflex components in determining responses to
exercise is dependent upon the type of exercise (static or
dynamic), the intensity of exercise, the time after onset
of exercise (immediate, steady state, exhaustion, etc.) and
the effectiveness of blood flow in meeting the metabolic
needs of the contracting muscles. Accordingly, the primary
purpose of this brief review is not to contrast central
command with the exercise pressor reflex or compare their
interactions with the arterial baroreflexes, but instead to
revisit the concept of central command and its assessment

as related to findings outside the field of exercise
science.

While defining central command is seemingly a
perfunctory ritual for discussion purposes, the way in
which one defines and uses the term ‘central command’
can have a primary role in determining its perceived
relevance. Most would agree that the concept of central
command involves descending neural signals from higher
brain centres, originally defined as ‘cortical irradiation’,
capable of influencing cardiovascular responses during
exercise (Krogh & Lindhard, 1913). The majority of
investigations involving study of central command have
typically defined central command as a ‘feedforward
mechanism involving parallel activation of motor and
cardiovascular centres’ (Goodwin et al. 1972). As such,
numerous animal studies investigating central command
have employed direct stimulation of brain regions,
namely subthalamic regions, capable of generating both
motor and cardiovascular responses (Eldridge et al.
1985; Waldrop et al. 1996). Innovative work by Green
et al. (2007) and Green & Paterson (2008)) in humans
has futher defined midbrain neurocircutry involving the
periaqueductal grey. Such studies have provided valuable
information regarding both the neural pathways and the
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influence of descending central signals on the autonomic
system and the neural control of the circulation. However,
central command has been associated with effort-related
cognitive processes involving less well-defined higher
cortical regions. Given the lack of direct measures of neural
activity from these cortical regions, the magnitude of the
central command response has been assessed using an
individual’s perception of effort or effort sense during
exercise, independent of workload or force production
(Mitchell, 1990). The rating of perceived exertion (RPE)
scale (Borg, 1973) has been widely used to assess the level
or magnitude of central command, yet the relationship
between central command and rating of perceived exertion
has not been clearly defined.

Determination of the specific sensations that drive
perception of effort during exercise, as well as
their potential influence(s) on central command,
has proven more difficult in the interpretation of
human research studies. Perception of effort has
been associated with somatosenory signals (e.g. from
skeletal muscles, heart and lungs; Amann et al.
2008), neurocognitive mechanisms (e.g. cognitive ability,
environment, experience, knowledge of exertional cues
and exercise end-point; Faulkner & Eston, 2008), general

Figure 1. Schematic diagram to show the potential interactions between central command and
perception of effort or exertion
The red arrows represent the central command pathways (efferent), while the blue (sensory afferent) and green
arrows indicate feedback pathways that may influence perception of effort and central command. The open
arrows (labelled A, B and C) denote some of the unresolved issues regarding interactions between perception of
effort and central command, as follow. Can perception of effort modulate central command or vice versa (A)?
Can perception of effort (or specific inputs) influence cardiovascular responses independent of central command
during exercise (B)? Can anticipation (as a feedfoward stimulus) modify perception of effort (C)?

discomfort, pain, thermal stress and thirst (Cabanac,
2006), as well as psychobiological factors such as
depression and neuroticism (Morgan, 1994). In addition,
based on more recent findings from Poulet & Hedwig
(2007), evidence was presented that perception of effort
can be driven by a corollary discharge from motor
to sensory centres during exercise (Marcora, 2009).
In concept, the corollary discharges do not generate
movement, but may interact with self-generated sensory
signals. There remains controversy concerning the specific
factors and/or sensations associated with perception
of effort that may influence autonomic regulation of
cardiovascular function during exercise. From a system
perspective, the central integration of afferent sensory
feedback is designed to support different types of physical
activity that can have different goals, contexts, time courses
and exertional levels, each requiring a unique response to
meet the body’s physiological needs (Craig, 2006).

It is clear that perception of effort represents a very
complex interaction involving multiple feedback signals
(Fig. 1), yet it has been used as an index of central
command. While this does not suggest that ratings of
perceived exertion are an inappropriate measure of central
command, it does raise questions regarding the potential
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involvement of feedback mechanism(s) in determining
the magnitude of central command. Although central
command functions effectively in a feedforward role, it
is still possible that central command could also involve
conventional feedback mechanisisms (Rowell et al. 1996).
Multiple feedback signals integrated in perception of
effort can affect the cardiovascular system independent
of exercise (e.g. pain). It is possible that some of these
signals may be able to alter cardiovascular responses in
concert with central command (Fig. 1, path A), while
others may function independent of central command
(Fig. 1, path B). Furthermore, there may be similarities in
the central integration of signals capable of modulating
both central command during exercise and non-exercise-
related ‘cortical modulation of the cardiovascular system’
(Verberne & Owens, 1998). While there may not be
definitive answers to these issues, they do merit further
discussion in assessing the relevance of central command.

Central command and feedforward control

From an engineering perspective, there are several aspects
of a feedforward component in a control system. First,
a feedforward component receives its information from
a source external to the system and then acts to modify
the system before the external influence has a chance to
affect the system. In the case of central command, simply
the anticipation (e.g. of an increased effort required to
ascend a hill) can stimulate a centrally generated command
signal which elicits a parallel activation of motor and
cardiovascular centres. Second, an effective feedforward
component should have the capacity to anticipate the
effect of perturbations on the system accurately and send
an appropriate signal. For example, as one approaches a
hill, centrally mediated increases in heart rate, breathing
and muscle activity would become evident prior to the
ascent. In most situations, the cardiovascular and motor
responses are closely matched to the exercise intensity
(i.e. workload, force production), and central command
certainly contributes to this response in a feedforward
capacity. However, a third point regarding systems control
is that even complex feedforward mechanisms cannot
always provide perfect compensation. If the anticipated
cardiovascular adjustments needed to ascend the hill
were underestimated (and not corrected), performance
could be compromised. Eventually, feedforward errors will
occur and accumulate, resulting in a mismatch between
cardiovascular responses and metabolic demand.

To help account for potential feedforward errors, the
system also integrates somatosensory signals via feedback
mechanisms. As noted previously, the exercise pressor
reflex serves as a primary feedback component to
correct errors during exercise. Somatosensory signals (e.g.
chemical and mechanical) from the working muscle are

transmitted to areas of cardiovascular control within
the medulla (Mitchell et al. 1983) and to regions
of the motor cortex (Martin et al. 2008). However,
these same sensory signals have been implicated in
perception of effort (Amann et al. 2008). The role of
this somatosensory feedback, as well as other factors,
in determining perception of effort and/or the level
of central command during exercise has been debated
(Amann et al. 2008; Marcora, 2009). Do the sensations
from the working limbs influence perception of effort and
modify central command? This question has important
implications, in that if somatosensory feedback is involved
in modulating the level of central command, then it would
suggest that central command (or another effort-related
central mechanism working independently from central
command) could also function as a feedback component
in the overall scheme of cardiovascular regulation during
exercise.

Central command and feedback control

Control systems which incorporate both feedfoward and
feedback components can significantly improve system
performance over single-component systems (Heylighen
& Joslyn, 2001). While a feedforward component acts
before an external pertubation has a chance to affect
the system, a feedback component typically responds
to an internally generated signal(s) and offers error-
controlled regulation. Feedback control can be very
effective when deviations (e.g. mismatch between blood
flow and metabolism) appear gradually or increase slowly,
giving the controller the chance to intervene while the
deviation is still minimal. Thus, in steady-state conditions,
with a very precise feedback component, systems can
often work purely in feedback mode. In the case of
central command, somatosensory signals arising from
the working muscles may provide a feedback signal
capable of influencing central command via alterations
(or modifications) of perception of effort or effort sense
(Amann et al. 2008). On the contrary, there are data
demonstrating that perceived exertion or effort sense
can be modulated to evoke changes in cardiovascular
responses independent of changes in muscle afferent input
or motor activity (Morgan et al. 1973; Thornton et al.
2001; Williamson et al. 2001, 2002). These studies used
hypnosis during exercise to influence a subject’s perceived
exertion without altering the afferent signals from the
working muscles (i.e. cycling at a constant workload). In
this scenario, hypnosis was able to modify central neural
cardiovascular control mechanisms through alterations in
perception of effort.

Perception can be defined as the simultaneous entry
of several afferent messages, including those retrieved
from memory, into consciousness (Cabanac, 2006).
Ratings of perceived exertion have often included
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sensations related to general discomfort, pain, thermal
stress and thirst (Cabanac, 2006). Although exercise
scientists have long used ratings of perceived exertion
as an index (indirect measure) of central command,
should ratings of hedonicity (e.g. pleasant/unpleasant,
comfortable/uncomfortable, painful/not painful) be
included within the context of central command? If
so, this would certainly expand the role and scope
of central command beyond that of being exclusively
a feedforward component. If not, as these hedonistic
factors can modulate cardiovascular responses during
exercise (e.g. pain), should an additional ‘central feed-
back’ component be more explicitly recognized or
acknowledged along with central command and the
exercise pressor reflex in discussions pertaining to
the neural control of the circulation during exercise?
Before reaching any immediate conclusions, it may
be worthwhile to consider a few findings more
closely associated with the behavioural neurosciences or
psychobiology which may have relevance to the field of
exercise science. Some of the same signals and inputs
relevant to the autonomic regulation of the cardiovascular
system during exercise are also related to what could be
termed cortical modulation of the cardiovascular system
(Verberne & Owens, 1998) or, as termed in this review,
cortical cardiovascular modulation.

Central command or cortical cardiovascular
modulation

While an operational definition has been provided
for central command, cortical modulation of the
cardiovascular system (Verberne & Owens, 1998) can
be defined as the involvement of the cerebral cortex
in cardiovascular control mechanisms (not necessarily
associated with exercise). Through interaction with
the autonomic nervous system and modulation of
sympathetic and parasympathetic activity, both central
command and cortical cardiovascular modulation appear
to be very similar in their functions, one exception being
that central command is associated with perceived exertion
or effort during exercise and a parallel activation of motor
and cardiovascular systems. With regard to the latter point,
it has previously been reported that central command,
as assessed by ratings of perceived exertion, can evoke
cardiovascular changes during exercise, independent of
motor activation (Williamson et al. 2006). In other
words, a ‘central motor command’ component can be
uncoupled from a ‘central cardiovascular command’
component. Furthermore, brain regions involved in
central cardiovascular command (Williamson et al. 2006;
Green & Paterson, 2008) and cortical cardiovascular
modulation (Verberne & Owens, 1998) include both
the insular cortex and the medial prefrontal cortex;
these regions have been implicated in cortically evoked

circulatory responses. Given the striking similarity in
cortical neuroanatomy, is the central integration and
processing of information involved in cardiovascular
modulation during exercise (e.g. central command)
similar for non-exercise-related cortical cardiovascular
modulation (e.g. muscle pain) or do they engage distinct
neural networks?

Central command and muscle pain do share common
neural substrate, it that both activate regions of the
insular cortex and anterior cingulate cortex (Williamson
et al. 2002; Macefield et al. 2007). However, it has
been proposed that central command is involved in the
central modulation of exercise-induced muscle pain (Ray
& Carter, 2007). It was found that central command
modulates the perception of muscle pain during exercise,
in that pain perception was increased in the absence of
central command. In this instance, is central command
serving as a ‘distracting stimulus’ to modify the pain
response? Another possibility is that central command
may be suppressing muscle afferent input at the spinal
level via release of GABA (Degtyarenko & Kaufman,
2003). To further complicate matters, central command
as measured by ratings of perceived exertion can itself
be modified by distractive stimuli (e.g. music; Boutcher
& Trenske, 1990). In this scenario, attention to the
external environment is thought to reduce the awareness
of physiological sensations and negative emotions, which
can serve to decrease perception of effort. On the contrary,
the removal of distracting external information (via
sensory deprivation) can increase perception of effort.
It has been suggested that preconscious processing can
selectively filter the information available for conscious
awareness, leading to effort sense (or perception of effort),
from which conscious decisions are made regarding the
continuation of exercise (Hampson et al. 2001). The
implication is that central command has the capacity
to modify or modulate sensory information. It would
appear that another measure of central command (e.g. skin
sympathetic nerve activity; Vissing & Hjortso, 1994; Ray &
Wilson, 2004) could be of value in assessing and clarifying
the complex interactions between central command and
the specific neural signals and sensations associated with
ratings of perceived exertion.

Summary

Highly regulated neural inputs are critical to maintaining
normal cardiovascular function. Operationally, central
command is typically associated with perception of
effort during exercise, while cortical cardiovascular
modulation is more commonly associated with non-
exercise conditions, such as emotion, stress and pain. The
neuroanatomical infrasturcure used by central command
for cardiovascular control during exercise is basically
the same as that employed for central modifications
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of the cardiovascular system in non-exercise conditions.
While the mental processes and behaviours involving
sensation, perception, motivated behaviours and control
of movement can be included under the umbrella of
the behavioural neurosciences, they can also be studied
during exercise (e.g. exercise neuroscience?). With regard
to the ‘role of the cortex in the neural control of
the circulation’, is this a situation where the disciplines
of exercise neuroscience and behavioural neuroscience
have been looking at different sides of the same coin?
Some may argue the differences, yet there are certainly
numerous similarities between central command and
cortical cardiovascular modulation that should not be
overlooked. Whether some of the more clearly defined
mechanisms underlying behavioural sciences can be
applied to central command during exercise remains
unknown.

The association between central command and
perception of effort has raised questions. An individual’s
perceived exertion (or effort) during muscular exertion
appears to integrate all afferent sensory inputs along with
hedonistic sensations, which can also involve motivation
(Cabanac, 2006). As such, central command appears to
have the capacity to function as a feedback component.
The magnitude of central command within the central
nervous system is likely to be the result of complex
interaction of feedforward as well as various feedback
mechanisms (Amann et al. 2008). Identification of the
specific roles of the various feedback mechanisms remains
problematic in human investigation. As one feedback
component is removed, the system may compensate
by altering the influence of other inputs. Furthermore,
modification of neural control systems may also occur in
various disease states; the role of central command can be
altered by myocardial infarction (Koba et al. 2006). Central
command is a critical part of the cardiovascular control
system, but should it be viewed as more than a feedforward
component? Only through a clearer understanding of the
role of central command in the integration of sensory
information can we define more completely the relevance
of central command for the neural control of exercise.
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