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Abstract: Molecular signaling pathways play a significant role in the regulation of biological
mechanisms, and their abnormal expression can provide the conditions for cancer development.
The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins
and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and
invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have
been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA
(lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer.
In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and
lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3
expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds
suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC
cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators
of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of
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targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally,
we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of
GC cells.

Keywords: signal transducer and activator of transcription 3 (STAT3); gastric cancer; microRNA;
long non-coding RNA; cancer therapy; tumor microenvironment

1. Introduction

Gastric cancer (GC) is one of the leading causes of death worldwide and its incidence rate is
different among nations [1–3]. It has been reported that Eastern Asia claims the highest incidence rate
of GC and after that, Central/Eastern Europe has the second place. It seems that non-cardiac GC is
prevalent in the aforementioned places and cardiac GC has a high incidence rate in North America,
Australia and the United Kingdom [4]. It is worth mentioning that infections can lead to the emergence
of GC. The most well-known example of an infection resulting in GC is Helicobacter pylori (H. pylori)
infection. There is information about the involvement of Epstein–Barr virus (EBV) infection in GC
development [5]. The alterations in lifestyle play a significant role in GC emergence. Among them,
cigarette smoking, obesity, high salt intake and low vegetable consumption are of importance [5,6].
The metastatic nature of GC cells has made them a leading cause of death. In a recent study, it was
revealed that patients with GC exhibit metastasis into neighboring and distant tissues, such as the
liver, peritoneum, lung and bone [7]. So, it seems that GC is a multifactorial disorder and dealing with
this life-threatening disorder requires an understanding of the factors involved in its development
and malignancy.

To date, a large body of evidence has been provided about the factors leading to GC progression.
It seems that complex molecular pathways are the most important ones in GC malignancy [8].
The identification of these pathways can pave the way to effective GC therapy. Thanks to experiments
performed in this field, it has been reported that a high number of molecular pathways and their
upstream and downstream mediators, can contribute to GC development [9–11]. Due to limitations in
space, it is impossible to describe all these underlying pathways, but we briefly discuss them to shed
some light on the complexity of these signaling networks. The long non-coding RNAs (lncRNAs) are
considered as the most common upstream mediators of molecular signaling pathways, since they are
capable of the regulation of different pathways that affect biological mechanisms such as apoptosis,
proliferation differentiation and so on [12,13]. In GC cells, lncRNA LINC00511 reduces the expression
of microRNA (miR)-124-3p to induce PDK4. This axis leads to an increase in the proliferation and
progression of GC cells [14]. Notably, there are interactions between lncRNAs in GC. The lncRNA
PTCSC3 is an onco-suppressor factor and its expression undergoes downregulation in GC cells. There is
negative feedback between PTCSC3 and HOXA11-AS, so that the upregulation of PTCSC3 provides the
conditions for the downregulation of HOXA11-AS, resulting in decreased invasion and proliferation of
GC cells [15]. As mentioned earlier, GC cells have a high metastatic ability that is correlated with the poor
prognosis of patients. The epithelial-to-mesenchymal transition (EMT) is a signaling pathway capable
of enhancing the migration of cancer cells [16,17]. The non-coding RNAs are able to act as upstream
mediators of EMT in cancer cells [18]. In GC cells, the Wnt/β-catenin signaling pathway induces EMT
to ensure the migration and invasion of cancer cells. The miR-330-3p acts as an onco-suppressor factor,
inhibiting EMT through Wnt downregulation, leading to a decrease in the metastasis of GC cells, and an
improvement in prognosis [19]. It is suggested that the tumor microenvironment plays a significant role
in the progression and immune evasion of GC cells. The secretion of inflammatory cytokines, such as
IL-4 and IFN-γ, results in PD-L2 expression that in turn provides immune suppression, leading to
the proliferation and survival of cancer cells [20]. The growth of GC cells relies on the activation of
molecular pathways that promote glucose metabolism. Due to the uncontrolled proliferation of GC
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cells, these networks should be in precise regulation. The PI3K/Akt signaling pathway participates
in the proliferation of cancer cells and its disruption can pave the way to growth suppression [21].
In GC cells, HBXIP induces the PI3K/Akt pathway to enhance glucose metabolism. The inhibition
of the HBXIP/PI3K/Akt axis is correlated with an inhibition in the growth of GC cells [22]. Overall,
the studies are in line with the fact that a complicated network of molecular pathways is involved
in GC malignancy [23,24]. In addition to the identification of molecular pathways, there have been
attempts to target them using anti-tumor compounds. It seems that anti-tumor compounds, such as
chrysin, psoralen and tivatinib, are able to induce apoptosis in GC cells and suppress their angiogenesis
and migration through the downregulation of vascular endothelial growth factor (VEGF) [25–27].
In the current review, we present a comprehensive discussion of the STAT3 signaling pathway in GC
malignancy and its regulation by upstream mediators. Furthermore, we represent how anti-tumor
drugs can target STAT3 in suppressing GC progression and metastasis.

2. STAT3 Signaling Pathway and Its Role in Pathological Events

Signal transducer and activator of transcription (STAT) proteins are mediators for transferring
signals from the extracellular matrix into the nucleus [28,29]. Among transcription factors, the role
of STAT proteins has been extensively examined [29–32]. There are seven members of STAT proteins
and STAT3 is of importance due to its role in affecting genes involved in cancer progression and
malignancy [33]. As a protein with 770 amino acids, STAT3 has six characteristic domains with special
functions. The protein–protein interactions are mediated via the N-terminal domain of the STAT3
protein. The coil–coil domain induces a nuclear localization signal. The interaction of STAT3 with target
genes is performed through a DNA-binding domain. Src homology-2 (SH2) participates in STAT3
dimerization by the identification of phospho-tyrosine in the target protein. The phosphorylation
of the C-terminal transcription activation domain (TAD) at serine sites provides the assembly of
STAT3 with other transcriptional activators [34–36]. This shows that the STAT3 structure has been
designed for interacting with different molecules, and this has resulted in pleiotropic impacts on STAT3
signaling pathway.

The STAT3 signaling pathway is induced by the binding of an extracellular ligand, such as
IL-6. This leads to the receptor dimerization and trans-phosphorylation/activation of Janus kinases
(JAKs). The JAK proteins are involved in providing docking sites for STAT3 by the phosphorylation
of cytoplasmic receptor tails. Then, JAK proteins activate the STAT3 signaling pathway via
phosphorylation at tyrosine 705. After activation, STAT3 separates from the receptor/kinase complex
to produce homodimers or heterodimers using its SH2 domain. Further signaling depends on
translocation into the nucleus and targeting genes. Upon nuclear translocation, the STAT3 signaling
pathway contributes to an enhancement in the proliferation, metastasis and migration of cancer cells.
During physiological conditions, suppressor of cytokine signaling (SOCS) proteins, protein inhibitor of
activated STAT (PIAS) proteins and phosphatases are able to negatively affect the expression of STAT3
and suppress its nuclear translocation. The SOCS3 interferes with JAK activity, while PIAS3 inhibits
the STAT3–DNA interaction. The phosphatases, such as SHP-1, SHP-2 and PTP1B, can dually suppress
JAK kinase activity or its nuclear interaction with target genes [37–44]. In cancer cells, the endogenous
inhibitors of the STAT3 signaling pathway undergo downregulation, which mediates the enhanced
proliferation and malignancy of cancer cells (Figure 1) [45–48].

Similar to other molecular signaling pathways, STAT3 can be considered as a downstream
target. Proviral integration site for Moloney murine leukemia virus (PIM) kinases are a category of
serine/threonine kinases and include PIM1, PIM2 and PIM3. PIM1 increases the proliferation and
growth of cancer cells via the downregulation of cycle cell suppressor p27 [49]. In lung cancer cells,
PIM1 stimulates STAT3 phosphorylation to suppress apoptosis [50]. The molecular pathways allowing
the survival of cancer cells target STAT3. Stomatin-like protein 2 (SLP-2) is an oncogene factor that
ensures the growth and viability of colorectal cancer cells via the upregulation of JAK2/STAT3 [51].
The lncRNAs are able to act as upstream mediators of STAT3 [52]. The lncRNA LINC01535 reduces
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the sensitivity of cancer cells to apoptosis and enhances their growth through the induction of the
JAK/STAT3 signaling pathway [53]. The anti-tumor compounds can target the STAT3 signaling pathway
in cancer therapy. For instance, Centipeda minima is a key member of Chinese traditional medicine
(CTM) that suppresses the invasion and malignancy of breast cancer cells via the downregulation of the
STAT3 pathway [54]. Brevilin A suppresses the phosphorylation of STAT3 at tyrosine 70 to restrict the
growth of lung cancer cells [55]. These studies are in line with the fact that STAT3 is a tumorigenesis
factor in cancer cells, and its inhibition is an ideal strategy in overcoming cancer (Table 1) [56–59].

Figure 1. The schematic representation of the STAT3 signaling pathway.

Table 1. The role and regulation of STAT3 in different cancers.

Cancer Type Signaling Network Effect on STAT3 Results Refs

Breast cancer

BHLH40-AS1/IL-6/STAT3 Induction Promoting progression and proliferation [60]
IL-6/STAT3 Induction Radiation induces STAT3-mediated inflammation and radio resistance [61]

MiR-454/VGLL4/STAT3 Induction MiR-454 induces the STAT3 signaling pathway via VGLL4
downregulation, leading to cancer malignancy [62]

PAK1/STAT3 Induction Stimulation of the nuclear translocation of STAT3 and enhancing breast
cancer stem cell proliferation [63]

SIRT4/IL-6/STAT3 Inhibition Sensitizing cancer cells to tamoxifen chemotherapy [64]

Prostate cancer
IL-8/STAT3/MALAT1 Induction STAT3 upregulates the expression of MALAT1, leading to progression

and proliferation [65]

MiR-17/JAK/STAT3 Inhibition MiR-17 reduces the expression of pro-survival factors, such as Bcl-2, and
induces apoptosis via STAT3 downregulation [66]

Bladder cancer
MiR-4500/STAT3/CCR7 Inhibition Suppressing migration and proliferation [67]
CD44/Akt/ERK/STAT3 Induction Inhibition of apoptosis and cell cycle arrest [68]

Lung cancer

B7-H4/PD-1/STAT3 Induction Promoting proliferation and invasion via immune evasion [69]
KCP10043F/STAT3 Inhibition Induction of apoptotic cell death [70]

BIS/STAT3 Induction Reducing sensitivity of cancer cells to digoxin-mediated migration and
growth inhibition [71]

Glioblastoma

Annexin-A2/STAT3/oncostatin M receptor Induction Promoting the proliferation and invasion of cancer cells [72]

Hsa-miR-181d/STAT3 Inhibition Garcinol upregulates the expression of hsa-miR-181d to inhibit STAT3
and the malignancy of cancer cells [73]

TROP2/JAK2/STAT3 Induction Promoting proliferation and migration [74]
Bradykinin B1 receptor/STAT3/IL-8 Induction Enhancing malignant behavior [75]

3. Targeting STAT3 in Clinical Trials: A Focus on Cancer Therapy

In respect to the role of STAT3 in the development and progression of cancer, a variety of clinical
trials have focused on targeting STAT3 in the treatment of patients with cancer. Table 2 summarizes
the clinical trials related to targeting STAT3 in cancer therapy. In a study, AZD9150, as an inhibitor of
STAT3, was administered for the treatment of patients with lymphoma and lung cancers. Before the
introduction of AZD9150 in clinical trials, its efficacy was investigated in preclinical models of
lymphoma and lung cancer. It effectively inhibited the proliferation and invasion of cancer cells. Then,
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it was translated into clinical trials. Similarly, in patients with lymphoma and lung cancer, AZD9150
demonstrated high anti-tumor activity [76], demonstrating its potential for being used in clinical trials.
Notably, clinical trials have focused on using an expression profile of STAT3 as a prognostic factor.
This study demonstrated that the expression of phosphorylated STAT3 (p-STAT3) is associated with the
desirable prognosis of patients with luminal breast cancer. This phase III study puts an emphasis on
the positive relationship between STAT3 and favorable prognosis [77]. Although this study provides
controversial results that are not in line with our aforementioned statements, another study (104 French
patients) also confirms that the expression of p-STAT3 is associated with the improved overall survival
of patients with rectal cancer [78]. More studies are needed to clarify these discussions.

One of the challenges faced in radiotherapy is the resistance of cancer cells. Clinical trials have
examined the relationship between STAT3 and the response of cancer cells to radiotherapy. It seems
that STAT3 accumulation in cancer cells and its nuclear translocation can lead to radio resistance.
In patients who are resistant into radiotherapy, genes associated with retinoid IFN-induced mortality-19
(GRIM-19) can inhibit STAT3 accumulation, resulting in enhanced sensitivity to radiotherapy [79].

Complicated molecular pathways are involved in ensuring the malignant behavior of cancer
cells. In ovarian cancer, IL-6 induces STAT3 expression that in turn activates hypoxia inducible factor
(HIF), resulting in the resistance of patients with ovarian cancer to chemotherapy with sunitinib [80].
Another clinical trial considered STAT3 as a factor involved in the migration of prostate cancer cells.
In this study, 456 people were enrolled and it was found that STAT3 induction has a reverse correlation
with distant metastasis, but it can lead to the local progression of prostate cancer cells [81].

Table 2. Targeting STAT3 in cancer therapy in clinical trials.

Drug/Molecular Pathway Effect on STAT3 Clinical Trial Phase Major Outcomes Refs

AZD9150 Inhibition Phase I Anti-tumor activity in pre-clinical
models and clinical trial [76]

GRIM19 Inhibition - Sensitizing into radiotherapy [79]
- - Phase I STAT3 provides local progression [81]

Nilotinib Inhibition Phase II Diminution in cancer growth [82]

OPB-31121 Inhibition Phase I High tolerance
Inhibition of tumor growth [83]

4. Search Strategy

We conducted a literature search in different databases, such as PubMed, Scopus and Google
scholar. Articles in English that were published before April 2020 were collected. The keywords
included “STAT3 & gastric cancer”, “drug & STAT3 & gastric cancer”, “lncRNA & STAT3 & gastric
cancer” and “miR & gastric cancer & STAT3”.

5. STAT3 and Gastric Cancer

5.1. MicroRNA-Mediated Regulation of STAT3

Although the STAT3 signaling pathway is an upstream mediator of a number of transcription
factors, it can be regulated by miRs. Briefly, miRs are endogenous non-coding RNA with a low
length of 19–23 nucleotides and can affect various biological processes via targeting different molecular
pathways [84–89]. A high number of studies have demonstrated that miRs are able to regulate the STAT3
signaling pathway by targeting upstream mediators, such as ROCK1 [59], suppressing translation and
phosphorylation [90], affecting JAK proteins [91] and influencing the nuclear translocation of STAT3 [92].
A similar phenomenon occurs in GC cells. It seems that miRs are able to target the STAT3 signaling
pathway in GC to affect its metastasis and growth. In this way, miRs are divided into two categories,
including onco-suppressor miRs, which reduce the expression of STAT3, while oncogene miRs are
capable of enhancing the expression of STAT3. The miR-143 is considered as an onco-suppressor
factor in GC, and its overexpression is associated with a decrease in survival and proliferation [93].
This miR can negatively affect both the proliferation and metastasis of GC cells via targeting molecular
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pathways such as DNMT3A and MYO6 [94,95]. In GC cells, miR-143 diminishes the expression of
the STAT3 signaling pathway. Although expression of miR-143 undergoes downregulation in GC
cells, enhancing the expression of this miR-143 paves the way for the downregulation of STAT3 and
suppressing the invasion and proliferation of GC cells [96]. The miR-125a is another onco-suppressor
miR whose downregulation mediates the undesirable prognosis of GC cells [97,98]. There is a reverse
relationship between miR-125a and STAT3 in GC cells, as miR-125a reduces the expression of STAT3 to
suppress the activation of its downstream target, HAS1, leading to a decrease in the migration and
metastasis of GC cells [99]. As mentioned earlier, infection with H. pylori is one of the predisposing
factors for GC development. This infection can lead to changes in immune responses and the enhanced
production of inflammatory factors [100,101]. Accumulating data demonstrates that H. pylori infection
results in the abnormal expression of miRs, which provide the conditions for GC development [102–104].
The miR-375 undergoes downregulation by H. pylori infection. Enhancing the expression of miR-375
is considered as a promising strategy in suppressing H. pylori-mediated GC development via the
downregulation of the STAT3 signaling pathway. By the inhibition of STAT3, miR-375 suppresses the
metastasis (Twist1 downregulation) and proliferation (Bcl-2 downregulation) of GC cells [105].

The miR-148a as an onco-suppressor factor that decreases the growth and invasion of GC cells and
is capable of enhancing the sensitivity of GC cells to chemotherapy [106,107]. By the downregulation
of the STAT3 signaling pathway, miR-148a suppresses cholecystokinin B receptor (CCK-BR) to interfere
with the proliferation and migration of GC cells [108]. In respect to the high metastatic capability of
GC cells, revealing the molecular pathways involved in their migration is of interest. Angiogenesis is a
molecular mechanism that demonstrates overexpression in cancer cells [109,110]. In fact, based on
the high growth and proliferation of cancer cells, they need a high amount of energy and oxygen
supplies. By the induction of angiogenesis, cancer cells can promote their ability to proliferate.
Besides, angiogenesis can enhance the migration of cancer cells [111–113]. Various molecular pathways
have been considered as upstream mediators of angiogenesis, and STAT3 is one of them [114].
By the inhibition of STAT3, the induction of angiogenesis is inhibited and the growth of cancer
cells is inhibited [115,116]. In GC cells, the STAT3 signaling pathway induces angiogenesis via the
upregulation of VEGF. The miR-874 as an onco-suppressor factor that diminishes the expression of
STAT3 to disrupt the STAT3/VEGF axis, leading to a decrease in the proliferation and migration of GC
cells by the inhibition of angiogenesis [117]. In addition to angiogenesis, the STAT3 signaling pathway
can regulate EMT in cancer cells. Increasing evidence demonstrates that the STAT3 pathway is capable
of the induction of EMT in cancer cells, and in this way, a number of upstream mediators, such as
miR-449b-3p and SIX4, act as inducers of STAT3/EMT [118,119]. The anti-tumor compounds inhibit
EMT via STAT3 downregulation [120]. These studies exhibit the critical role of STAT3 in the regulation
of EMT in cancer cells. The miR-216a has demonstrated great potential in suppressing the invasion
and migration of GC cells via targeting the STAT3 signaling pathway. It seems that miR-216a inhibits
the JAK2/STAT3 axis to downregulate EMT, resulting in a decrease in the metastasis of GC cells [121].

In addition to onco-suppressor miRs, the role of oncogene miRs in the regulation of STAT3
in GC has been examined. As mentioned earlier, EMT can enhance the migration of GC cells via
transforming epithelial cells into mobile mesenchymal ones [122,123]. The matrix metalloproteinase
proteins (MMPs) are also capable of promoting the metastasis of cancer cells via the degradation of
the extracellular matrix (ECM) [124]. MMP-9 is a key member of this family and its role in GC has
been investigated. It seems that MMP-9 upregulation enhances the metastasis of GC cells and is
associated with an unfavorable prognosis [125,126]. The STAT3 signaling pathway induces MMP-9
to elevate the progression and metastasis of GC cells. The oncogene miR-93-5p inhibits STAT3 via
IFNAR1 downregulation, leading to a decrease in MMP-9 expression and the malignant behavior
of GC cells [127]. Notably, miRs are able to target endogenous inhibitors of the STAT3 signaling
pathway, such as PIAS3, in cancer cells [128,129]. The miR-18a is suggested to be an oncogene factor in
cancer and its downregulation can pave the way to suppressing cancer malignancy [113,130]. In GC
cells, miR-18a down-regulates PIAS3 to induce the STAT3 signaling pathway. As a consequence,
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downstream targets of STAT3 including, c-Myc, Survivin and Bcl-xl, undergo upregulation that ensures
the viability and proliferation of cancer cells [131]. Overall, studies are in agreement with the fact that
miRs are potential upstream mediators of the STAT3 signaling pathway in GC and the modulation of
the miR/STAT3 axis can lead to effective GC therapy (Table 3, Figures 2 and 3).
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Table 3. The regulation of STAT3 by miRs in gastric cancer.

MiiR MiR Type Cancer Cell Line Effect on STAT3 Major Outcomes Refs

MiR-143 Onco-suppressor GC cell lines (AGS, SNU-1, SNU-5, SNU-16,
NCIN87 and KATOIII) Downregulation Disrupting the proliferation and invasion

of cancer cells [96]

MiR-125a Onco-suppressor Human GC cell lines MKN45, SGC7901 and
NCI-N87 Downregulation Reducing the expression of HAS1 and

interfering with the migration of cancer cells [99]

MiR-375 Onco-suppressor Human GC cell lines BGC-823, AGS, SGC-7901
and MKN-45 Downregulation Inhibiting proliferation and migration via

STAT3 downregulation [105]

MiR-148a Onco-suppressor

GC cell lines SNU-1 (ATCC: CRL-5971),
SNU-16 (ATCC: CRL-5974), AGS (ATCC:
CRL-1739), NCI-N87 (ATCC: CRL-5822) and
KATOIII (ATCC: HTB-103)

Downregulation
Suppressing growth and metastasis by the
downregulation of CCK-BR via STAT3
downregulation

[108]

MiR-874 Onco-suppressor
Human GC cell lines AGS and BGC823,
MKN28 and SGC-7901, as well as the human
normal gastric epithelial cell line GES-1

Downregulation
Disrupting the STAT3/VEGF axis
Inhibition of angiogenesis and the
malignancy of cancer cells

[117]

MiR-216a Onco-suppressor
Normal human gastric epithelium cell line
(GES-1) and GC cell lines (SGC-7901, MGC-803,
MKN-28 and BGC-823)

Downregulation Suppressing the metastasis of cancer cells
via disrupting the STAT3/EMT axis [121]

MiR-93-5p Oncogene AGS and HEK293 cells Upregulation Downregulation of the STAT3/MMP-9 axis
Inhibition of metastasis and invasion [127]

MiR-18a Oncogene Human GAC cell lines MKN28 and MKN1 Upregulation
STAT3 induction
Promoting the malignant behavior of
cancer cells

[131]

MiR-155 Oncogene
Human GC cell lines BGC-823, NCI-N87,
SGC-7901, AGS, MKN-45 and immortalized
gastric mucosa epithelial cell line GES-1

Upregulation

Stimulation of STAT3
Activation of MMP-2 and MMP-9
Enhancing invasion and migration of
cancer cells

[132]

MiR-106a-3p Oncogene Human GC cell line including SGC-7901 and
BGC-823 Upregulation

Stimulation of aptinib resistance
Activation of JAK2/STAT3 signaling
SOCS2, SOCS4 and SOCS5 downregulation

[133]

5.2. Drug-Mediated Regulation of STAT3

Based on the role of the STAT3 signaling pathway in enhancing the progression and malignancy
of GC cells, much attention has been directed towards the regulation and targeting of this pathway
in GC therapy. Anti-tumor compounds are able to target STAT3 in GC therapy [134,135]. It is worth
mentioning that, to date, most of the anti-tumor drugs applied in the treatment of GC cells by targeting
STAT3 have been isolated from plants. The plant-derived natural compounds have demonstrated
great potential in the regulation of the STAT3 signaling pathway in cancer therapy [136]. In GC
therapy, the natural products capable of targeting the STAT3 signaling pathway have been applied.
In Table 4, we summarize these anti-tumor compounds, and this section, we describe their ability in
suppressing GC malignancy and proliferation. Cucurbitacins are anti-tumor compounds and well
known in traditional Chinese medicine [137]. These plant-derived natural compounds have anti-tumor
activity against GC cells and are able to suppress the growth and viability of GC cells via the induction
of cell cycle arrest [138]. A newly published article has shed some light on the anti-tumor activity of
cucurbitacins in GC cells. It seems that the STAT3 signaling pathway ensures the growth and survival
of GC cells via the induction of Bcl-xl and c-Myc upregulation. The administration of cucurbitacin
B is correlated with the downregulation of STAT3 and its downstream targets. In the inhibition of
STAT3 activity, cucurbitacin B attaches to the DNA-binding domain of STAT3. This decrease in STAT3
activity and expression caused by cucurbitacin B paves the way for a reduction in the proliferation
of GC cells and their sensitization into the anti-tumor activity of cisplatin as a chemotherapeutic
agent [126]. This study highlights the fact that natural products can be used as chemosensitizers in GC
therapy. The examination of molecular pathways demonstrates that anti-tumor compounds are able to
enhance the generation of reactive oxygen species (ROS) to modulate the expression of STAT3. In fact,
phytochemicals induce ROS production to stimulate apoptotic cell death via the downregulation of
STAT3 phosphorylation [139]. This strategy is not only beneficial in the induction of apoptosis in GC
cells, but it can also mediate the stimulation of cell cycle arrest. After the administration of glycitein as
an anti-tumor agent, GC cells undergo cell cycle arrest at the G0/G1 phase. This anti-tumor activity
partially emanates from the inhibitory effect of glycitein on the expression of STAT3 [140]. However,
natural products with anti-tumor activity can reduce the viability of GC cells via the reduction of
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ROS levels. In fact, they are not just dependent on the induction of ROS generation. This is due to
the dual role of ROS in cancer cells. Although ROS can mediate the mitochondrial dysfunction and
stimulation of endoplasmic reticulum (ER) stress [141–143], accumulating data demonstrates that
ROS can lead to tumorigenesis via the activation of oncogene signaling pathways, such as STAT3 and
Wnt/β-catenin [144,145]. In these cases, decreasing ROS production can pave the way to effective cancer
therapy. A similar strategy is used by lycopene as a potential anti-tumor agent [146]. In suppressing
GC development, lycopene reduces ROS generation that in turn inhibits the STAT3 signaling pathway,
as a carcinogenesis factor [147].

In cancer cells, IL-6 functions as an upstream mediator of STAT3 signaling pathway. It has been
demonstrated that IL-6 can induce STAT3 to ensure the malignant behavior of cancer cells [148].
Apigetrin (APG) is a flavonoid compound with excellent anti-tumor activity [149]. In GC cells,
the administration of APG induces apoptosis and remarkably diminishes their growth and proliferation.
The examination of molecular pathways demonstrates that APG inhibits STAT3 through IL-6
downregulation. Besides, APG triggers the dephosphorylation of JAK2/STAT3 [150], making it
a suitable compound in GC therapy. NF-kB is an oncogene signaling pathway responsible for the
enhanced proliferation and migration of cancer cells [151]. Increasing evidence demonstrates that
there is a dual relationship between NF-kB and STAT3 through the p65 and p50 subunits [152,153].
Targeting the STAT3/NF-kB axis is a potential strategy in cancer therapy [154]. Troxerutin (TXN) is a
natural flavonoid rutin with different pharmacological activities, such as anti-diabetes, hepatoprotective,
neuroprotective, antioxidant and anti-inflammatory [155,156]. Newly recorded studies are in line with
the fact that TXN is capable of affecting molecular pathways, such as NF-kB and MDM2, in cancer
therapy [157,158]. TXN supplementation is associated with a decrease in the survival of GC cells
and their sensitivity to 5-fluorouracil chemotherapy. It is said that TXN is able to suppress STAT3
phosphorylation, which subsequently reduces the expression of NF-KB, leading to the decreased
viability and growth of GC cells [159].

In previous section, we mentioned that miRs can function as upstream regulators of the STAT3
signaling pathway in cancer cells. The accumulated data demonstrate that the STAT3 signaling
pathway can also regulate miR expression as an upstream mediator [160,161]. This crosstalk is of
importance in cancer cells. The miR-373 is an oncogene factor capable of increasing the malignancy and
proliferation of cancer cells via targeting molecular pathways. This miR dually promotes metastasis
and proliferation, and its inhibition can remarkably suppress cancer malignancy, leading to their
sensitivity to chemotherapy [162–164]. Exposing GC cells to isoproterenol sensitizes GC cells to cell
death. Isoproterenol inhibits STAT3 phosphorylation to suppress miR-373 expression, resulting in the
inhibition of drug resistance and metastasis via the upregulation of E-cadherin [165]. As discussed
earlier, H. pylori can cause a predisposition to GC. It has been reported that H. pylori stimulates the STAT3
signaling pathway in GC development. The administration of docosahexaenoic acid (DHA) induces
peroxisome proliferator-activated receptor gamma (PPAR-γ) to inhibit the phosphorylation of STAT3 at
tyrosine 705. Besides, DHA enhances the expression of SOCS3 and suppresses the nuclear translocation
of STAT3, resulting in a decrease in the proliferation and invasion of GC cells [166]. Taking everything
into account, studies are in agreement with the fact that anti-tumor compounds are able to inhibit
STAT3 in different stages, including targeting upstream mediators, the activation of endogenous
inhibitors, the downregulation of downstream targets and suppressing STAT3 expression [167–174].
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Table 4. Natural products as anti-tumor compounds in GC therapy via targeting STAT3.

Anti-Tumor Compound Cell Line Dose Duration of Experiment Results Refs

Piperine TMK-1 human GC cell line 25, 50 and 100 µM 1 h

Downregulation of STAT3
Inhibition of IL-1β and IL-6
Decreasing viability and proliferation
of cancer cells

[175]

Tanshinone IIA
Human GC cell lines
(SNU-638, MKN1 and
AGS)

2.5, 5 and 10 µg/mL 12, 24, 48 and 72 h
Inhibition of STAT3
Reduction in the progression and
malignancy of cancer cells

[176]

Oxymatrine

Human GC cell lines
SGC-7901, MGC-803,
BGC-823, HGC-27, AGS
and GES-1

0.5, 1, 2, 4 and 8
mg/mL 24, 48 and 72 h

Diminishing proliferation and
malignancy of cancer cells
Inhibition of IL-21R-mediated STAT3

[177]

Luteolin

Gastric tumor cell lines of
SGC7901, SGC7901/DDP,
HGC27, MGC803, BGC803
and BGC823

10 µM -

Selective eradication of STAT3
overexpression-GC cells
Increasing the binding of STAT3 to
SHP-1

[178]

Parthenolide Human GC drug-resistant
SGC-7901/DDP cell line

1.25, 2.5, 5 and 10
µmol/L 24, 48 and 72 h

Induction of apoptosis
Inhibition of drug resistance via the
downregulation of STAT3

[179]

Curcumin analogue Human GC cell lines
(BGC-823, SGC-7901)

0.5, 1, 5, 10, 20, 50, 80
and 100 µM 24 and 48 h

Induction of apoptosis and mitotic
arrest
Downregulation of STAT3

[180]

Nifuratel Human GC cell lines
SGC-7901 and BGC-823 75, 150 and 300 µM 24 h Inhibition of IL-6-mediated STAT3

activation [181]

Cryptotanshinone Human GC cell lines
SGC-7901 and HGC-27

2.5, 5, 7.5, 10, 15 and
20 µM 4 h

Enhancing anti-tumor activity of
doxorubicin
Inhibition of STAT3 phosphorylation

[182]

Asiatic acid SGC7901 (metastatic
carcinoma of lymph node) 1, 5, 10, 25 and 50 µM 12 h

Stimulation of apoptosis
Inhibition of proliferation and
migration
Downregulation of STAT3

[183]

Sulforaphane Human GC cell lines
MGC803 and BGC823 2.5, 5 and 10 µM 72 h

Sensitizing cancer cells to
chemotherapy
Suppressing cancer stem cell-like
properties
Upregulation of miR-124 and
subsequent downregulation of
IL-6/STAT3

[184]

Thymoquinone
Three human GC cells
(HGC27, BGC823 and
SGC7901)

25, 50 and 75 µmol/L 24 h
Suppressing STAT3 phosphorylation
Downregulation of survival factors
such as Bcl-2 and cyclin-D

[185]

Paeoniflorin

Human gastric carcinoma
MGC-803 cells and human
normal gastric mucosa
GES-1 cell lines

5, 10 and 20 µmol/L 48 h
Downregulation of STAT3
Interfering with the proliferation and
invasion of cancer cells

[186]

Eupatilin Human GC cell line
MKN45 50 and 100 µM 16 h

Inhibiting the STAT3 signaling
pathway
Suppressing VEGF and the growth of
cancer cells

[187]

Epigallocatechin-6-gallate Human gastric cancer
(AGS) cells

5, 10, 25 and 50
µmol/L 24 h Suppressing IL-6/STAT3/VEGF results

in growth inhibition [188]

Cucurbitacin B GC MKN-45 cells 0.1, 1 and 10 µM 12, 24 and 48 h Sensitizing cancer cells to cell death
Downregulation of JAK2/STAT3 [189]

Ponicidin Human MKN28 cell line 10, 25 and 50 µmol/L 48 h Induction of apoptosis
Downregulation of JAK2/STAT3 [190]

Cycloastragenol
Human gastric
adenocarcinoma SNU-1
and SNU-16 cells

1, 5, 10, 30 and 50 µM 24 h

Inhibition of STAT3 phosphorylation
at tyrosine 705 via suppressing Src
and JAK1/2 activation
Induction of apoptosis

[191]

Fucoxanthin SGC-7901 cells 25, 50 and 75 µM 24 h
Downregulation of STAT3
Induction of apoptosis and cell cycle
arrest

[192]

HJC0152 (niclosamide)
Six GC cell lines (AGS,
HGC-27, MKN28, MKN45,
SGC7901 and BGC-823)

5, 10 and 20 µM 1, 2 and 4 h

Suppressing the STAT3 signaling
pathway and subsequent decrease in
the expression of survival factors such
as Survivin and Mcl-1

[193]

Piceatannol Human GC SGC-7901 cell
line 10 and 20 µM - Inhibiting STAT3 phosphorylation [194]

BP-1-102
Five human GC cell lines
(AGS, HGC-27, MKN28,
MGC803 and SGC7901)

2, 4 and 6 µM 72 h

Suppressing the invasion and
proliferation of cancer cells in a dose-
and time-dependent manner
Downregulation of STAT3

[195]
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5.3. LncRNA-Mediated Regulation of STAT3

The lncRNAs are key members of non-coding RNAs with lengths more than 200 nucleotides [196].
Similar to miRs, lncRNAs are able to affect and regulate a number of biological mechanisms, such as cell
proliferation, differentiation, angiogenesis, migration and so on [197,198]. These modulatory effects of
lncRNAs have led to the investigation of their roles in different diseases, particularly cancer [199,200].
Newly published studies have shown that lncRNAs are able to target molecular pathways by the
induction of their effects [201,202]. It is worth mentioning that a large body of evidence has examined
the relationship between lncRNAs and the STAT3 signaling pathway [203,204]. The oncogene lncRNAs
are able to upregulate the expression of STAT3, while onco-suppressor lncRNAs reduce the expression
of STAT3 [205–208]. It is held that targeting the lncRNA/STAT3 axis is of importance in cancer
therapy [209,210]. Fortunately, experiments have attempted to provide information about the dual
relationship between lncRNAs and STAT3 in GC cells, and it has been shown that not only can lncRNAs
function as upstream regulators of STAT3, but also STAT3 can affect the expression of lncRNAs [211,212].
The identification of this feedback is of importance in effective GC therapy. To date, just oncogene
lncRNAs targeting STAT3 and their regulation have been investigated in GC. The lncRNA SNHG16
is an oncogene factor that is correlated with the invasion and growth of cancer cells. This lncRNA
enhances the migration of cancer cells via the induction of EMT. Besides, the lncRNA SNHG16 regulates
miRs in exerting their stimulatory effect on cancer cells [213–215]. In GC cells, SNHG16 considerably
reduces the expression of the onco-suppressor miR-135a to activate the JAK2/STAT3 signaling pathway.
This leads to an increase in colony formation and the growth of GC cells and reduces their sensitivity
to apoptotic cell death [195]. Based on the role of oncogene lncRNAs in promoting the malignant
behavior of GC cells, their modulation can pave the way into effective cancer therapy. It is held
that the downregulation of the lncRNA HOTAIR, as an oncogene factor, enhances the expression of
miR-454-3p. This miR is able to negatively affect the survival of GC cells by the induction of apoptosis
and cell cycle arrest partially via the inhibition of the STAT3/cyclin D1 axis [216]. As mentioned earlier,
STAT3 can induce angiogenesis via targeting VEGF. This results in an increase in the proliferation
and viability of cancer cells [217,218]. It is held that lncRNAs can regulate the STAT3/VEGF axis in
GC cells to affect angiogenesis and their proliferation. The lncRNA PVT1 is an oncogene lncRNA
that induces angiogenesis via the activation of the STAT3/VEGF axis. This axis and the stimulation
of angiogenesis are positive factors for the enhanced proliferation and migration of GC cells [219].
These studies demonstrate that lncRNAs indirectly affect the STAT3 signaling pathway by targeting
their upstream mediators, such as miR-506 and IL-6. It is worth mentioning that the dual relationship
between lncRNAs and the STAT3 signaling pathways can lead to the increased malignant behavior of
GC cells, since they can increase their expression in a positive feedback loop [220,221]. Further studies
should focus on revealing more oncogene lncRNAs, and also onco-suppressor lncRNAs. Besides,
the genetic or pharmacological targeting of lncRNAs can pave the way to effective GC therapy (Table 5,
Figure 4).



Biology 2020, 9, 126 12 of 36

Biology 2020, 9, 126 16 of 44 

 

 
Figure 4. Long non-coding RNAs and their downstream targets in the regulation of the STAT3 
signaling pathway in GC cells. 

Table 5. lncRNAs as upstream modulators of STAT3 signaling pathway in GC cells. 

lncRNA Type of 
lncRNA 

Downstream 
Signaling Cell Line Effect on 

STAT3 Major Results Refs 

SNHG16 Oncogene 
MiR-135a/JAK2/S
TAT3 

Four GC cell lines (BGC823, 
MGC803, MKN45, SGC7901) 
and normal GC cell line 
GES-1 

Induction 

Promoting colony 
formation and the 
proliferation of cancer cells 
Inhibition of apoptosis 

[222] 

HOTAI
R 

Oncogene 
MiR-454-3p/STA
T3/cyclin D1 

AGS and SGC7901 cells Induction 

Knock-down of HOTAIR 
Sensitizing cancer cells to 
apoptosis 
Upregulation of 
miR-454-3p and the 
subsequent inhibition of 
the STAT3/cyclin D1 axis 

[216] 

PVT1 Oncogene STAT3/VEGF 
GES-1, SGC-7901, BGC-823, 
MNK-45, AGS, SUN-638, 
HGC-27 and HUVEC 

Induction 
Promoting angiogenesis 
and the growth of cancer 
cells  

[219] 

NEAT1 Oncogene MiR-506/STAT3 
BGC823, SGC-7901, AGS, 
MGC803, MKN28 cells, 
GES-1 and HEK-293T cells 

Induction 

Sponging miR-506 
Enhancing expression of 
STAT3 
Increasing the malignancy 
of cancer cells 

[220] 

GACAT
3 

Oncogene IL-6/STAT3 
Human GC cell lines 
HGC-27 and SGC-7901 

Induction 

Enhancing the 
proliferation of cancer cells 
in an inflammatory 
response behavior 

[221] 

HOXD-
AS1 

Oncogene JAK2/STAT3 
Human GC cell lines 
(SGC-7901, BGC-823, 
MGC803 and MKN-45) 

Induction 

Silencing of HOXD-AS1 is 
correlated with the 
downregulation of STAT3 
and growth inhibition 

[223] 

5.4. Other Molecular Signaling Pathways Regulate STAT3 

Figure 4. Long non-coding RNAs and their downstream targets in the regulation of the STAT3 signaling
pathway in GC cells.

Table 5. lncRNAs as upstream modulators of STAT3 signaling pathway in GC cells.

lncRNA Type of
lncRNA Downstream Signaling Cell Line Effect on STAT3 Major Results Refs

SNHG16 Oncogene MiR-135a/JAK2/STAT3
Four GC cell lines (BGC823,
MGC803, MKN45, SGC7901)
and normal GC cell line GES-1

Induction

Promoting colony
formation and the
proliferation of cancer cells
Inhibition of apoptosis

[222]

HOTAIR Oncogene MiR-454-3p/STAT3/cyclin D1 AGS and SGC7901 cells Induction

Knock-down of HOTAIR
Sensitizing cancer cells to
apoptosis
Upregulation of miR-454-3p
and the subsequent
inhibition of the
STAT3/cyclin D1 axis

[216]

PVT1 Oncogene STAT3/VEGF
GES-1, SGC-7901, BGC-823,
MNK-45, AGS, SUN-638,
HGC-27 and HUVEC

Induction
Promoting angiogenesis
and the growth of cancer
cells

[219]

NEAT1 Oncogene MiR-506/STAT3
BGC823, SGC-7901, AGS,
MGC803, MKN28 cells, GES-1
and HEK-293T cells

Induction

Sponging miR-506
Enhancing expression of
STAT3
Increasing the malignancy
of cancer cells

[220]

GACAT3 Oncogene IL-6/STAT3 Human GC cell lines HGC-27
and SGC-7901 Induction

Enhancing the proliferation
of cancer cells in an
inflammatory response
behavior

[221]

HOXD-AS1 Oncogene JAK2/STAT3
Human GC cell lines
(SGC-7901, BGC-823, MGC803
and MKN-45)

Induction

Silencing of HOXD-AS1 is
correlated with the
downregulation of STAT3
and growth inhibition

[223]

5.4. Other Molecular Signaling Pathways Regulate STAT3

In previous sections, we provided explanations about the role of upstream mediators, such as miRs
and lncRNAs, in the regulation of the STAT3 signaling pathway in GC cells. Besides, we demonstrated
that anti-tumor compounds are able to target the STAT3 signaling pathway in suppressing GC
proliferation and malignancy. In this section, we discuss the other molecular pathways capable of
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targeting the STAT3 signaling pathway in GC cells. The identification of these signaling pathways
and their upstream and downstream targets can pave the way to effective GC therapy. Sirtuins are a
family of histone deacetylases and their function relies on NAD+. This family consists of seven families
(SIRT1-7) and they are able to modulate different biological mechanisms, including cell metabolism,
cell division and aging [224]. Increasing evidence demonstrates that SIRT1 is a positive factor for
the progression and growth of GC cells. It has been reported that SIRT1 upregulation is correlated
with reduced survival and undesirable prognosis [225]. However, another study exhibits that SIRT1
suppresses GC growth and stimulates apoptosis and cell cycle arrest in GC cells [226]. In GC cells,
the STAT3 signaling pathway increases the invasion and migration of cancer cells via the stimulation
of MMP-13. It is held that SIRT1 downregulates STAT3 to inhibit MMP-19 expression, resulting in the
decreased invasion and malignancy of GC cells [227]. SIRT6 is another member of the SIRT family and
is capable of reducing the proliferation of GC cells. The previous study revealed that SIRT1 exerts an
inhibitory effect on the migration and metastasis of GC cells. It appears that SIRT6 negatively affects
the proliferation and growth of GC cells by the inhibition of the STAT3 signaling pathway and the
subsequent downregulation of cyclin D1 and Bcl-2 [228].

Stathmin (STMN) is a microtubule-regulating protein capable of the regulation of mitosis via
targeting the aggregation and depolymerization of spindles. The STMN is an oncogene factor that
undergoes upregulation in different tumors to ensure their proliferation and viability. Besides,
STMN can be considered as a potential factor for the diagnosis of cancer [229–231]. The relationship
between STMN and the STAT3 signaling pathway is of importance in GC cells. It has been reported
that STMN dually enhances the migration and growth of GC cells. The knock-down of STMN reduces
the expression of STAT3, resulting in cell cycle arrest and apoptosis in GC cells [232]. The uncontrolled
proliferation of cancer cells requires a vast source of energy. Increasing evidence demonstrates that
cancer cells enhance their glucose metabolism to meet their energy needs. This is known as the Warburg
effect [233,234]. The examination of molecular pathways reveals interesting pathways involved in the
Warburg effect of GC cells. PKM2 and c-Myc are considered as factors involved in the glycolysis of GC
cells. These factors provide the mild acidic pH of the tumor microenvironment and promote glucose
metabolism to provide for the proliferation of GC cells. STAT3 acts as an upstream mediator of c-Myc,
while mTOR is the upstream mediator of PKM2. More importantly, it seems that the STAT3/c-Myc and
mTOR/PKM2 signaling pathways have positive feedback and together they can lead to the enhanced
proliferation and energy metabolism of GC cells [235]. The downregulation of the aforementioned
signaling networks can result in the growth inhibition of GC cells.

RNF6 is a member of the E3 ligase family and its role in cancer has been explored. This oncogene
factor is able to promote the growth and viability of cancer cells via the upregulation of pro-survival
factors, such as Bcl-xl and Mcl-1 [236]. The clinical trials have also confirmed the role of RNF6 in the
malignancy of cancer cells. It has been shown that RNF6 overexpression can mediate the metastasis
and migration of colorectal cancer cells [237]. So, recognizing the downstream targets of RNF6 is of
importance in cancer therapy. There is a dual relationship between RNF6 and the STAT3 signaling
pathway in GC cells. RNF6 induces the STAT3 signaling pathway to upregulate the expression of
pro-survival factors, such as XIAP and Mcl-1, resulting in an increase in the growth and survival of GC
cells [238]. The signaling networks not only ensure the survival and proliferation of GC cells, but they
can also trigger the resistance of GC cells to chemotherapy. Sphingosine-1-phosphate receptor (S1PR1)
is a member of the G protein-coupled receptor family that is able to promote the malignant behavior of
cancer cells. Onco-suppressor factors, such as miR-125b-1-3p, downregulate the expression of S1PR1
to suppress the migration and invasion of cancer cells and induce apoptosis [239]. It is held that the
overexpression of S1PR1 is associated with chemoresistance [240]. The relationship between S1PR1
and STAT3 mediates the resistance of GC cells to chemotherapy. The inhibition of the S1PR1/STAT3
axis is correlated with the sensitization of GC cells to chemotherapy [241]. There is evidence that the
inhibition of two signaling pathways is absolutely efficient in suppressing the chemoresistance of GC
cells. Y-box binding protein-1 (YB-1) is capable of mediating the chemoresistance of cancer cells [242].
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On the other hand, increasing evidence has demonstrated that the STAT3 signaling pathway is involved
in chemoresistance [243]. In GC cells, the inhibition of STAT3 and YB-1 can suppress the resistance
of cancer cells to chemotherapy. Although there is no dual relationship between STAT3 and YB-1,
it has been reported that their simultaneous inhibition can result in synergistic effects in sensitizing GC
cells to chemotherapy [244]. It is worth mentioning that, in addition to chemoresistance, the STAT3
signaling pathway may trigger the immune evasion of cancer cells. The PD-1/PD-L1 axis undergoes
overexpression in malignant tumors and it can be regulated by different factors, such as miRs, lncRNAs,
transcription factors and so on [245–248]. The enhanced expression of PD-1 provides the conditions for
the resistance of cancer cells to chemotherapy and is correlated with undesirable prognosis [249–251].
It is said that GC mesenchymal stem cells are able to elevate levels of IL-8. IL-8 functions as an upstream
mediator and upregulates the expression of STAT3. The STAT3 signaling pathway induces c-Myc to
activate the PD-1/PD-L1 axis, leading to immunosuppression and the increased malignant behavior of
GC cells [252].

TMEM119 is a member of the transmembrane proteins with important functions in cancer cells.
TMEM119 provides the unfavorable prognosis of a patient with prostate cancer [253]. As a consequence,
targeting TMEM119 is a potential strategy in overcoming cancer [254]. A same story occurs in GC
cells. It is held that TMEM119 enhances the invasion and metastasis of GC cells via the upregulation
of the STAT3 signaling pathway [255]. The inhibition of TMEM119 paves the way to GC treatment.
It seems that STAT3 can trigger EMT in GC cells. However, upstream mediators are able to affect the
STAT3/EMT axis. Nuclear factor I/B (NFIB) participates in normal somatic development and recent
studies have revealed its role in cancer progression and development [256,257]. NFIB is able to induce
Akt phosphorylation. Subsequently, an increase occurs in the expression of STAT3, resulting in the
activation of EMT by enhancing vimentin levels and decreasing E-cadherin levels [258]. A same
phenomenon occurs during inflammation. Increasing evidence shows that chronic inflammation can
remarkably promote the progression and malignancy of cancer cells [259,260]. IL-23 is one of the
pro-inflammatory cytokines and it has been reported that IL-23 induces the EMT mechanism through
STAT3 upregulation to ensure the migration and metastasis of GC cells [261].

The tumor microenvironment (TME) is a complicated structure, consisting of different cells that
have been included in the ECM [262]. Fibroblasts, endothelial cells, pericytes, immune cells and
inflammatory cells are the main components of the TME. The bidirectional communication among these
cells plays a significant role in cancer progression and malignancy [263]. Cancer-associated macrophages
(CAMs) are M2 phenotype macrophages and an increase in their number is associated with poor
prognosis in different cancers, particularly GC [264–267]. The CAMs are able to secrete IL-10 that in turn
activates the c-Met signaling pathway. The c-Met acts as an upstream mediator of STAT3, resulting in the
enhanced proliferation and invasion of GC cells [268]. Tumor-associated macrophages (TAMs) are one of
the most important and abundant components of the TME. These macrophages have tumor-promoting
effects (M2 phenotype macrophage) and are CD68-marked [269–272]. The TAMs enhance the levels of
pro-inflammatory cytokines, including IL-6 and IL-8, to activate the STAT3 signaling pathway, leading to
the metastasis and progression of GC cells [273]. Experiments also demonstrate that pro-inflammatory
cytokines in the TME can provide the conditions for the differentiation of macrophages into the
M2 phenotype that exerts a stimulatory effect on the proliferation and progression of cancer cells.
IL-6 enhances levels of M2 macrophages with a high expression of IL-10 and TGF-β. It is held that the
effect of IL-6 on macrophage differentiation is mediated through STAT3 upregulation. This axis leads to
a remarkable increase in the progression and malignancy of GC cells [274]. More importantly, the TME
can trigger the resistance of cancer cells to chemotherapy and immunotherapy. This has resulted in
considerable attention to role of the TME in cancer malignancy [275–277]. Cancer-associated fibroblasts
(CAFs) are another key member of the TME that can induce the metastasis, growth and malignancy
of cancer cells [278]. In GC cells, CAFs secrete IL-11 that in turn activates the JAK/STAT3 signaling
pathway. This leads to an increase in expression of anti-apoptotic factor Bcl-2 to mediate the resistance
of GC cells to chemotherapy [279].
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Taking everything into account, studies are in agreement with the fact that different signaling
pathways can function as upstream mediators in the induction of STAT3 in GC cells. The identification
of these pathways and further targeting can pave the way to effective GC therapy [280–284]. Besides,
we demonstrated that different components of the TME are able to secrete inflammatory cytokines to
activate STAT3, ensuring the metastasis and invasion of GC cells (Table 6).

Table 6. Molecular pathways targeting STAT3 in GC cells.

Signaling Network Cell Line Effect on STAT3 Results Refs

CXCR4/JAK2/STAT3/VEGF Human SGC-7901 and MKN45 cells Induction
Induction of VEGF by CXCR4
Subsequent activation of JAK2/STAT3
Enhancing the migration and proliferation of cancer cells

[285]

NOX4/JAK2/STAT3/EMT
Six human GC cell lines (MKN-45,
SGC-7901, MGC-803, BGC-823, MKN-28
and AGS)

Induction
Induction of JAK2/STAT3 by NOX4
Stimulation of EMT
Promoting invasion

[286]

DC-SIGNR
Human GC cell lines, SGC-7901, MGC-803,
BGC-823 and AGS, and the control gastric
epithelial cell line GES-1

Induction Ensuring the growth and viability of cancer cells by the
induction of the JAK2/STAT3 pathway [287]

HOXA11 GC cell lines (KATO III, NCI-N87, SNU-16,
AGS and SNU-16) and HEK 293T Induction Promoting the stemness and migration of cancer cells by

the stimulation of STAT3 [288]

TFF1/STAT3 AGS cells Induction Enhancing the proliferation and migration of cancer cells [67]

DARPP-32/IGF-1R/STAT3 AGS cells Induction Promoting proliferation and invasion [289]

BMX-ARHGAP/STAT3
Four human GC cell lines (SNU-5, MNK-45,
AGS and SGC7901) and the normal gastric
epithelial cell line (GES-1)

Induction Maintaining the carcinogenesis ability of GC stem cells [279]

CXCL16/STAT3/Ror1 MKN45, MKN45-Luc and KATOIII cells Induction Increasing progression and malignancy [290]

Complement
C3/JAK2/STAT3

Human SGC-7901 and MGC-803 cells,
normal gastric epithelial cells (GES-1) Induction Poor prognosis and enhanced proliferation of cancer

cells [291]

BTF3/JAK2/STAT3/EMT

Human gastric epithelial cell line GES-1
and human GC cell lines, including AGS,
HGC-27, MKN-28, MGC-803 and SGC-7901
cells

Induction
Induction of JAK2/STAT3 by BTF3
Stimulation of EMT
Enhancing the proliferation and migration of cancer cells

[292]

IGF1/IGF1R/STAT3/IFITM2 GC cell lines Induction Enhancing the growth and metastasis of cancer cells [293]

IL-6/JAK2/STAT3 GC cell lines SNU-1, MKN45, SGC7901 and
MKN28 Induction Secretion of IL-6 by CAMs

Stimulation of JAK2/STAT3 by IL-6 [294]

TNF-α/IL-6/STAT3 SGC7901 cells Induction Induction of EMT
Ensuring the metastasis of cancer cells [295]

Succinate/STAT3/VEGF

Human gastric mucosal epithelial cell line
GES-1 and human GC cell lines AGS
(low-differentiated human gastric
adenocarcinoma), NCI-N87
(well-differentiated human carcinoma),
BGC-823 (low-differentiated human gastric
adenocarcinoma) and SGC-7901
(moderate-differentiated human gastric
adenocarcinoma)

Induction
Induction of VEGF by succinate via STAT3
overexpression
Increasing viability and invasion of cancer cells

[296]

Cyclophilin
B/STAT3/miR-520d-5p GC cell lines Induction

There is feedback consisting of the downregulation of
miR-520d-5p and upregulation of cyclophilin B and
STAT3, leading to the enhanced growth of cancer cells

[297]

CMTM3/STAT3/Twist1/EMT Human GC cell line SGC-7901 Inhibition Downregulation of STAT3 by CMTM3
Suppressing metastasis [298]

HCCR/STAT3
Human GC cell lines AGS, MKN-45,
BGC823, MGC803, HGC27, SGC7901,
NCI-N87

Induction Triggering chemoresistance [299]

GRIM19/STAT3

Immortalized normal gastric epithelial cell
line GES-1, human embryonic kidney
HEK-293 cells, human GC SGC-7901 and
BGC-823 cell lines

Inhibition Suppressing STAT3
Induction of apoptosis [300]

ROS/IL-6/STAT3 AGS cells Induction
Enhanced generation of ROS by H. pylori
Stimulation of IL-6/STAT3
Enhanced proliferation and invasion of cancer cells

[301]

IL-6/STAT3/VEGF GC cell lines including SGC-7901, MGC,
MKN-28 and AGS Induction Promoting invasion and angiogenesis

Induction of STAT3 and subsequent activation of VEGF [302]

IL-17/STAT3/VEGF Human GC (AGS) cells and other cells
SGC7901, MKN 45 and BGC823 Induction

Enhancing growth
Induction of angiogenesis
Activation of STAT3/VEGF

[303]

6. STAT3 as an Oncogene Factor in Gastric Cancer

In previous sections, it was revealed that lncRNAs, miRs and other molecular pathways are
able to regulate the STAT3 signaling pathway in GC cells. Besides, we described how anti-tumor
compounds are able to modulate STAT3. In this section, we demonstrate that STAT3 can function as
an upstream mediator to affect other molecular pathways, leading to the malignant behavior of GC
cells [304,305]. DNA methylation and histone modification are hallmarks of carcinogenesis and they
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are able to influence the transcription output of the genome [306,307]. It is held that the presence of
p-H3S10 and/or H3S28ph in the promoter regions can accelerate histone modification [308]. In GC
cells, the STAT3 signaling pathway stimulates epigenetic kinase mitogen- and stress-activated protein
kinase 1 (MSK1) to induce H3S10 phosphorylation, resulting in an increase in the tumorigenesis
of GC cells [309]. A recently recorded study shows that the STAT3 signaling pathway can cause
the poor differentiation of GC cells and is correlated with their metastasis into distant tissues [310].
Interestingly, downstream targets of the STAT3 signaling pathway can be considered as biomarkers for
the early detection of GC. STAT3 is able to inhibit SPG20 expression via hypermethylation and the
downregulation of this factor is a potential biomarker for GC detection [311]. It is worth mentioning
that polymorphisms in STAT3 are correlated with GC tumorigenesis. It appears that the existence of a
minor allele of STAT3 (rs1053023) is associated with a risk of GC development [312]. These studies
demonstrate that not only downstreams of STAT3 can be used as biomarkers for GC detection, but also
own STAT3 is a potential biomarker in GC identification. The clinical studies are also in line with the
benefit of using STAT3 as a diagnostic factor. It has been reported that a positive feedback loop between
STAT3 and miR-200 can promote the progression of GC cells, and this feedback is of importance for the
diagnosis and prognosis of GC [313]. Overall, the overexpression of STAT3 provides the poor prognosis
of patients with GC and its expression undergoes upregulation at the point when the gastric mucosa
reaches the tumor stage [314,315]. In enhancing the growth and viability of GC cells, STAT3 targets cell
cycle proteins. STAT3 is able to induce cyclin D1 expression, resulting in an increase in the proliferation
and malignancy of GC cells [316].

CD163 is called a macrophage-associated antigen and is abundantly expressed in monocytes and
macrophages [317]. CD163 has physiological functions, such as iron metabolism and the endocytosis
of hemoglobin–haptoglobin complexes [318]. In spite of these vital functions in normal conditions,
increasing evidence demonstrates that CD163 may be involved in the emergence of different disorders,
particularly cancer [319–321]. STAT3 enhances the expression of CD163 on the components of the TME,
such as macrophages, to enhance the proliferation of GC cells [322]. Targeting CD163 can be considered
as a potential strategy in effective GC therapy. CD44 is another factor that can be targeted in GC cells by
the STAT3 signaling pathway. CD44 is a cell adhesion molecule and this trans-membrane glycoprotein
increases the proliferation and metastasis of cancer cells by binding to hyaluronic acid [323–325].
Accumulating data demonstrates that CD44 is a cell surface marker of cancer stem cells and is of
importance for the malignancy of GC cells [324–329]. CD44 undergoes upregulation by STAT3 in GC
cells and provides the undesirable prognosis of patients with GC [292].

Enhancer of zeste homologue 2 (EZH2) is a key member of the polycomb group genes and is
able to promote the malignancy of cancer cells via inhibiting the expression of a variety of tumor
suppressor genes (TSGs) [330]. EZH2 dually enhances the migration and proliferation of cancer cells,
and targeting this oncogene factor is a promising strategy in cancer therapy [331,332]. In GC cells,
STAT3 functions as an upstream mediator of EZH2. By the activation of EZH2, STAT3 elevates the
proliferation and metastasis of GC cells, and is correlated with poor prognosis [333]. In respect to
the oncogene role of STAT3 in GC, studies have focused on investigating the expression of STAT3 in
GC cells. It seems that the expression of STAT3 undergoes overexpression in gastric stromal tumors,
and this can be considered as a diagnostic and prognostic factor (Figure 5) [334–340].
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7. Conclusions and Remarks

The STAT3 signaling pathway is a well-known oncogene factor in different cancers, and its
involvement in the malignancy and growth of GC cells has been extensively investigated. The present
review focused on revealing the downstream and upstream mediators of STAT3 in GC cells to pave
the way to understanding the oncogene pathways in this malignant tumor. Oncogene miRs and
lncRNAs induce the STAT3 pathway, while onco-suppressor ones inhibit the STAT3 signaling pathway.
We devoted a section to examining the relationship between anti-tumor compounds and the STAT3
signaling pathway in GC cells. It was revealed that anti-tumor agents are able to suppress STAT3,
resulting in a decrease in the proliferation and invasion of GC cells. One of the interesting points about
the STAT3 signaling pathway is that inflammatory factors can act as upstream mediators of STAT3.
This relationship is of importance in the tumor microenvironment, since present cells are able to secrete
interleukins that in turn activate the STAT3 signaling pathway, leading to the elevated progression and
malignancy of GC cells. Finally, we demonstrated that STAT3 can be considered as a diagnostic and
prognostic factor in GC. Although studies have extensively examined the molecular pathways involved
in the STAT3 regulation in GC, and how anti-tumor compounds can be beneficial in suppressing STAT3
in GC therapy, there are a number of drawbacks that should be considered in further studies. Small
interfering RNA (siRNA) has been applied in the inhibition of STAT3 and improving the prognosis
of GC [341]. However, the off-targeting of siRNA, and also its degradation have limited its efficacy.
On the other hand, anti-tumor compounds and their ability in GC therapy should be improved,
since they have low bioavailability, and there are impediments to their entrance into cancer cells,
such as the blood–tumor barrier. Recently, nanoparticles have gained significant attention in cancer
therapy [342,343]. Using nanoparticles for the encapsulation of siRNA and anti-tumor compounds can
facilitate the way to effective GC therapy, as the efficacy of siRNA-loaded nanoparticles improves gene
silencing and the high cellular uptake of anti-tumor compounds is observed after nanoparticle delivery.
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Abbreviations

GC gastric cancer
H. pylori Helicobacter pylori
EBV Epstein–Barr virus
lncRNAs long non-coding RNAs
miR microRNA
EMT epithelial-to-mesenchymal transition
STAT signal transducer and activator of transcription
SH2 Src homology-2
TAD transcription activation domain
JAKs Janus kinases
SOCS suppressor of cytokine signaling
PIAS protein inhibitor of activated STAT
SLP-2 stomatin-like protein 2
CTM Chinese traditional medicine
VEGF vascular endothelial growth factor
MMPs matrix metalloproteinases
ECM extracellular matrix
ROS reactive oxygen species
ER endoplasmic reticulum
APG apigetrin
TXN troxerutin
DHA docosahexaenoid acid
PPAR-γ peroxisome proliferator-activated receptor gamma
SIRT sirtuin
STMN stathmin
S1PR1 sphingosine-1-phosphate receptor
YB-1 Y-box binding protein-1
NFIB nuclear factor I/B
TME tumor microenvironment
CAMs cancer-associated macrophages
TAMs tumor-associated macrophages
CAFs cancer-associated fibroblasts
MSK1 mitogen- and stress-activated protein kinase 1
EZH2 enhancer of zeste homolog 2
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