
International  Journal  of

Environmental Research

and Public Health

Review

Prediction Models for Public Health Containment Measures on
COVID-19 Using Artificial Intelligence and Machine Learning:
A Systematic Review

Anil Babu Payedimarri 1,* , Diego Concina 1, Luigi Portinale 2, Massimo Canonico 2, Deborah Seys 3 ,
Kris Vanhaecht 3,4 and Massimiliano Panella 1

����������
�������

Citation: Payedimarri, A.B.; Concina,

D.; Portinale, L.; Canonico, M.; Seys,

D.; Vanhaecht, K.; Panella, M.

Prediction Models for Public Health

Containment Measures on COVID-19

Using Artificial Intelligence and

Machine Learning: A Systematic

Review. Int. J. Environ. Res. Public

Health 2021, 18, 4499. https://

doi.org/10.3390/ijerph18094499

Academic Editor: Samina Abidi

Received: 16 March 2021

Accepted: 22 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Translational Medicine (DIMET), Università del Piemonte Orientale, 28100 Novara, Italy;
diego.concina@uniupo.it (D.C.); massimiliano.panella@med.uniupo.it (M.P.)

2 Department of Science and Technological Innovation (DISIT) Università del Piemonte Orientale,
15121 Alessandria, Italy; luigi.portinale@uniupo.it (L.P.); massimo.canonico@uniupo.it (M.C.)

3 Leuven Institute for Healthcare Policy, Department of Public Health and Primary Care, KU Leuven,
3000 Leuven, Belgium; deborah.seys@kuleuven.be (D.S.); kris.vanhaecht@kuleuven.be (K.V.)

4 Department of Quality Management, University Hospitals Leuven, University of Leuven,
3000 Leuven, Belgium

* Correspondence: anil.payedimarri@uniupo.it

Abstract: Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in
different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the
evaluation and/or implementation of public health interventions aimed to flatten the epidemiological
curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when
applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed
that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also
showed positive impact, whereas social distancing should be considered to be effective only in
combination with other interventions including the closure of schools and commercial activities and
the limitation of public transportation. Our findings also showed that all the interventions should be
initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we
concluded that AI and ML could be of help for policy makers to define the strategies for containing
the COVID-19 pandemic.

Keywords: artificial intelligence; machine learning; COVID-19; public health interventions; predic-
tion models; epidemic; pandemic; severe acute respiratory syndrome coronavirus-2

1. Introduction

During the last five years, the use of Artificial Intelligence (AI) and Machine Learning
(ML) rapidly increased its applications in various areas of medicine [1,2]. In particular,
during the SARS-CoV-2 outbreak, AI and ML were shown to be effective in improving
diagnostic and prognostic processes of COVID-19, although there were limitations due to
potential biases relating to the quality of reporting [3]. AI and ML were also applied to
public health issues related to COVID-19. This included the identification of clinical and
social factors associated with the risk of COVID-19 infections and deaths [4–6], the devel-
opment of spatial risk maps [5], the prediction of the trends and peak of the epidemic [7,8],
and finally, the development of vaccination strategies [9]. For optimizing protection and
preventing the spread of COVID-19, several activities need to be implemented, such as the
identification of suspicious events, large-scale screening, tracking, associations with experi-
mental treatments, pneumonia screening, data and knowledge collection and integration
using the Internet of Intelligent Things (IIoT), resource distribution, robotics for medical
quarantine, forecasts, and modeling and simulation [10,11].
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In the actual phase of the epidemic, governments are using public health measures
such as lockdown, social distancing, and school closures, etc., to contain the spread of the
virus. The effectiveness of such strategies is mainly based on theoretical assumptions [12].
Moreover, epidemiological models such as Susceptible–Exposed–Infectious–Recovery
(SEIR), stochastic transmission models, etc., that have traditionally been used to study and
predict dynamics and possible contagion scenarios [13–15] also had limited application to
public health interventions for the COVID-19 pandemic.

We think that AI and ML could be a good opportunity to address such issues and to
help policy makers in strengthening the selection of the most appropriate public health
measures against COVID-19 [10,16,17]. Therefore, we decided to conduct a systematic
review to evaluate the effectiveness of AI and ML to guide the implementation of public
health interventions aimed to contain the SARS-CoV-2 pandemic.

2. Materials and Methods
2.1. Search Strategy

We searched Nursing Reference Center Plus, CHINAHL, Scopus, PubMed and Living
Evidence [18] (contains studies continuously updated on COVID-19 that are published on
PubMed and Embase through Ovid, bioRxiv, and medRxiv and is continuously updated)
on 1 February 2020. The search strings are shown in the online Table S1. All studies
were considered, irrespective of their languages or publication status (preprint; updates of
preprints are included and reassessed after publication in journals).

2.2. Inclusion Criteria

We included all the studies that used AI and/or ML to develop or validate a public
health intervention and their possible outcomes. Titles, abstracts, and full texts of articles
were screened for eligibility in duplicate by independent reviewers (A.B.P., D.C., D.S.) and
discrepancies were resolved through discussion (M.P., K.V.).

2.3. Data Extraction

Two reviewers (A.B.P., D.C.) independently extracted data from all the included
articles by using a predefined data extraction form which contained the following variables:
title, setting, type of model (new or existing), typology of data, outbreak phase, outcome,
intervention type, intervention description and results of the study. Any discrepancies in
the data extraction were discussed between reviewers, and the conflicts were resolved by
M.P. and K.V. We adapted the PRISMA statement (preferred reporting items for systematic
reviews and meta-analyses) for the articles’ selection [19]. A qualitative synthesis was
performed for the included studies.

2.4. Definition of the Interventions

A quarantine is the isolation of the population exposed to COVID-19. A full lockdown
is the containment strategy able to minimize contact between individuals. This includes
shutting down the government departments, firms, schools, social and leisure facilities,
and transportation services, keeping only essential services open, such as health, safety,
and basic utilities [20]. A partial lockdown is the mitigation of lockdown according to
the spatial (area) risk of the spread of the disease; in this approach, the different intensity
of lockdown restrictions in one area is continuously adapted according to the change of
parameters of the risk of diffusion of the disease (low, moderate, and high) [21]. Social
distancing is the maintenance of 2 m of space between individuals and others outside one’s
household (this includes avoiding groups, large gatherings) [20].

3. Results

We found and retrieved 3041 articles. After the removal of 14 duplicate records,
3027 articles were retained for screening. After the screening, 2943 records were excluded,
and 84 full-text articles were assessed for eligibility. After the assessment, 76 full-text
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articles were excluded, and eight studies met the inclusion criteria and were included in
the qualitative synthesis (Figure 1).
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Table 1. Types of models and typology of data, and their setting in the included studies.

Title Author Setting Outcome Model
Development

Model
Characteristic

Typology of
Data

On the Spread of
Coronavirus Infection.
A Mechanistic Model
to Rate Strategies for
Disease Management.

Shiyan Wang United
States

Control of the
epidemic

spread, reduce
spike.

New Mechanistic Empirical

No Place Like Home:
Cross-National Data
Analysis of the Efficacy
of Social Distancing
During the COVID-19
Pandemic.

Dursun Delen 26 countries

Control of the
epidemic

spread, reduce
spike.

Existing

Susceptible–
infected–
recovered

(SIR)

Empirical

Predicting the
COVID-19 positive
cases in India with
concern to Lockdown
by using Mathematical
and Machine Learning
based models.

Ajit Kumar
Pasayat India

Control of the
epidemic

spread, reduce
spike.

Existing
Exponential

Growth, Linear
Regression

Simulation

Preparedness and
Mitigation by
projecting the risk
against COVID-19
transmission using
Machine Learning
Techniques.

Akshay
Kumar India Risk of hotspot

formation. New

Technique for
Order of

Preference by
Similarity to

Ideal Solution
(TOPSIS)

Simulation

Quantifying the effect
of quarantine control in
COVID-19 infectious
spread using machine
learning.

Raj Dandekar
Wuhan,

Italy, South
Korea, USA

Control of the
epidemic
spread.

New Neural network
augmented Empirical

COVID-19 Epidemic in
Switzerland: Growth
Prediction and
Containment Strategy
Using Artificial
Intelligence and Big
Data.

Marcello
Marini Switzerland

Outbreak
prediction

evolution of
spread, rate of

recovery.

Existing

Agent-based
simulation
framework,

EnerPol

Simulation

Impacts of Social and
Economic Factors on
the Transmission of
Coronavirus Disease
2019 (COVID-19) in
China.

Yun Qiuy China
Reduce the

transmission
rate.

Existing Empirical Empirical

Beware of
asymptomatic
transmission: Study on
2019-nCoV prevention
and control measures
based on extended
SEIR model.

Peng Shao China
Control of the

epidemic
spread.

Existing

Susceptible–
Exposed–

Infectious–
Recovered

(SEIR)

Simulation

Five studies used existing models. Two studies used a susceptible–infected–recovered
(SIR) model to evaluate the spread of the epidemic. The first one performed a cross-national
data analysis (26 countries) to evaluate the efficacy of social distancing interventions
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and analyzed the transmission rates of the disease over the course of 5 weeks [22]. The
second one built a SEIRD model (MATLAB R2017a) based on the movement of people
across regions, revealing the effects of three public health measures on the control of the
epidemic [23].

Pasayat et al. combined mathematical (Exponential Growth) and ML (Linear Regres-
sion) models to predict the rates of COVID-19 cases in India with concern to lockdown
intervention [24]. Marini et al. used EnerPol, a holistic agent-based model, to predict the
growth of the epidemic according to containment strategy in Switzerland [25]. Qiu et al.
adapted an empirical model that examined the role of various socioeconomic mediating fac-
tors, including public health measures encouraging social distancing in local communities,
in reducing COVID-19 transmission [26].

Three studies used new models. Wang et al. proposed a new mechanistic model
describing the transmission of COVID-19 in the United States [27]. Kumar et al. proposed
a prospective methodology using TOPSIS (Technique for Order of Preference by Similarity
to Ideal Solution). This consisted of the multi-criteria decision-making technique able to
measure the spatial footprint of COVID-19 and to predict the epidemic spread analysis of
the risk in a region at the beginning of the outbreak [21]. Dandekar et al. used mixed first-
principles epidemiological equations and data-driven neural network models to interpret
and extrapolate from publicly available data the effect of quarantine interventions to control
the epidemic in all the stages of the outbreak [28].

About the outcomes, as it has been shown in Table 1, four models estimated the
probability that a SARS-COV-2 outbreak could be controlled [22–24,28]. In the study
performed by Wang et al., the outcomes included the reduction in the epidemic spike and
the probability to avoid the second wave of the infection [27]. The other studies adopted
outcomes such as forecasting the risk of new hotspot formation [21], the prediction of the
outbreak evolution and the rate of recovery [25], and the reduction in the transmission
rate [26].

In Table 2, the effectiveness of the interventions (single and multiple interventions) is
described. In fact, interventions such as a stringent quarantine and a massive lockdown
significantly reduced the transmission rate of COVID-19 and avoided more than 1.4 million
infections and 56,000 deaths in China [26]. Another study showed that a partial lockdown
had a strong impact on eventual infection fraction (x~(adjusted-R2 = 0.59, p = 2 × 10−6))
and concluded that the lockdown should be implemented before the peak infection [27].
The models that used empirical data showed that quarantine was effective in controlling
the epidemic spread also as a part of single and multiple interventions in all the stages of
the outbreak [26–28].

Table 2. Effectiveness of the interventions.

Author Outbreak Phase Intervention Type Description of
Intervention Results

Shiyan
Wang

All the stages of
the epidemic Multiple

(i.) Stay at home order.
(ii.) Easing social
distancing measures.
(iii.) Mandatory quarantine
for travelers.
(iv.) Non-essential business
closure.
(v.) Gathering ban.
(vi.) School closure.
(vii.) Restaurant limits.

The study suggested that
non-essential business closure,
a gathering ban and school
closure could have a strong
impact on eventual infection
fraction—if the interventions
were implemented before the
peak infection rate.
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Table 2. Cont.

Author Outbreak Phase Intervention Type Description of
Intervention Results

Dursun
Delen

All the stages of
the epidemic Single Social Distancing.

Social distancing policies could
help in slowing the spread of
COVID-19 (approximately 47%
of the variation in the disease
transmission rates) as well as
in flattening the epidemic
curve.

Ajit Kumar
Pasayat

All the stages of
the epidemic Single

(i.) Lockdown is not
continuing strictly after
May 18th, 2020.
(ii.) Lockdown continues.

Partial lockdown could play a
positive role in preventing the
spread of the disease.

Akshay
Kumar

Beginning of the
epidemic Single

Adaption of lockdown
measures according to the
risk (low, moderate, and
high) of new hot spots.

The study suggested to:
(i) Release all constraints
except mass gatherings and
travel out of district in low-risk
areas.
(ii) Release partial constraints,
i.e., (i) + markets with essential
commodities in moderate-risk
areas.
(iii) Seal the districts with
essential commodities at
doorsteps in high-risk areas.

Raj Dandekar All the stages of
the epidemic Single Quarantine and

isolation.

Strong correlation between
strengthening of the
quarantine, actions taken by
governments, and a decrease
in effective reproductive
number (Rt).

Marcello
Marini

Beginning of the
epidemic Multiple

(i.) Closure of schools.
(ii.) Closure of activities.
(iii.) Limitation of public
transport.
(iv.) Social distancing.

The study estimated that, in
the absence of interventions,
42.7% of the Swiss population
would have been infected.

Yun Qiuy Beginning of the
epidemic Multiple

(i.) Stringent quarantine.
(ii.) Massive lockdown.
(iii.) Other public health
measures.

The interventions significantly
reduced the transmission rate
of COVID-19. The study also
demonstrated that the actual
population flow from the
outbreak source poses a higher
risk to the destination than
geographic proximity and
similarity in economic
conditions.

Peng Shao Beginning of the
epidemic Multiple

(i.) Quarantine of infected
people.
(ii.) Reduction in
movement of people.

The measures could help in
controlling the spread of the
epidemic.

Social distancing policies that were implemented in 26 countries showed a reduction
in disease transmission rates (47% variation) and were effective in flattening the curve [22].

The models that used AI and ML to simulate the effectiveness of intervention showed
similar results. A mathematical and ML modeling study that simulated an intervention
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with lockdown measures concluded that the lockdown with certain restrictions might help
in preventing the spread of the epidemic [24].

A model that simulated multiple interventions such as the closure of schools and
activities, the limitation of public transport and the adoption of social distancing showed
that without such interventions, 42.7% of the Swiss population would have been infected
by 25 April 2020 compared with the observed 1% infection rate over the period [25].

A different approach was adopted by Kumar et al. and evaluated the effectiveness
of lockdown according to the level of diffusion of the virus. In low-risk areas, the study
showed that releasing all constraints except mass gatherings and traveling out of the
district should be effective. In moderate-risk areas, releasing partial constraints except
mass gatherings and travel out of the district and markets with essential commodities
should be effective. In high-risk areas, lockdown should be increased, sealing the districts
with essential commodities at doorsteps in order to be effective [21].

The adoption of quarantine of the people with infectious status (I-status) and reducing
their movement could be effective in controlling the spread of the epidemic. This study
also recommended that if medical resources are available, the exposed status (E-status)
individuals or potential E-status individuals should be included in the scope of isolation
and treatment. Moreover, the government should promptly release information on the
epidemic situation and information on the areas and vehicles used by the infected people
to further encourage those who have been in contact with individuals (I-status or E-status)
to go to nearby hospitals for immediate inspection [23].

4. Discussion

Based on our findings, quarantine emerged as the most effective intervention to control
the spread of COVID-19 [23,26,28]. China implemented a combination of interventions
based on quarantine that also included the implementation of cordon sanitary measures
and traffic restrictions from 23 January 2020 to 16 February 2020. Before the implementation,
the Rt was above 3.0. After the application of the quarantine, on 6 February 2020 the Rt
decreased to below 1.0, and on 1 March 2020 the Rt decreased to less than 0.3 [29]. The
data of 190 countries worldwide that implemented the quarantine measures (from 23
January 2020 to 13 April 2020) showed how they were associated with a reduction in Rt
when compared with countries that did not adopt this measure (Rt = −11.40%, 95% CI
(−9.07–−13.66%)) [30].

AI and ML were also applied in the use of lockdown [26]. The results of eleven
European countries that implemented a lockdown between 3 February 2020 and 4 May 2020
showed a reduction in Rt below 1 and a large effect on reducing transmission [31]. A recent
study that ranked the effectiveness of worldwide COVID-19 public health interventions that
were implemented in 79 territories showed that curfews, cancellations of small gatherings
and closures of schools, shop and restaurants were among the effective public health
policies [32]. All these results were consistent with the outputs of the quarantine and
lockdown-based AI and ML models [23,26–28].

AI and ML also simulated the adoption of continuously redefining the modification
of lockdown measures according to the spatial (area) risk of the spread of the disease in
one area (low, moderate, and high) [21]. This intervention was mainly used by Western
European countries. Additionally, India implemented the same approach during lockdown
phase 3 (from 4 May 2020 to 17 May 2020). After the application of this measure, the
Rt decreased from 2.78 to 1.38. In brief, even though this approach reduced the spread
of COVID-19 epidemic progression, it was unable to halt and eventually eradicate the
COVID-19 epidemic [33].

Social distancing was the last strategy that was evaluated with AI and ML. AI and ML
suggested that social distancing could be effective only in combination with the closure of
schools/commercial activities and the limitation of public transportation [25]. Additionally,
from real life data the application of social distancing as a single intervention was not very
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successful because case resurgence was likely to occur once it was removed and it did not
help to reduce the excess mortality [34,35].

The models used in our study are quite diverse and a few considerations about their
characteristics are worthwhile. The main models considered are the following: SIR/SEIR
(Susceptible–Exposed–Infected–Recovered), Linear Regression, TOPSIS, Neural Networks,
Agent-based Simulation.

These models are from very different families of methods, ranging from differential
equation models (SIR/SEIR), to statistical machine learning models (linear regression and
neural nets), geometric models (TOPSIS), and, finally, simulation models (agent-based
simulation). A direct comparison is then hard, and the choice of one method with respect
to another one may depend upon several factors, such as the kind of collected data, the
availability of analytical tools, and the contextual situation under which the model can
actually be applied. For instance, the SIR family of models, as any model in system theory
(i.e., differential equations), assumes that the modeled system abstracts to some specific
behavior. In particular, in standard SIR, a homogeneous mixing of the infected I and
susceptible S populations is assumed, meaning that a person’s contacts are randomly
distributed among all others in the population. However, in real situations, the mixing in a
population is heterogeneous and contacts are usually not random; for example, people of
different ages may have very different kinds of relationships.

Machine learning models do not assume such a kind of abstract behavior, since
they try to predict specific patterns of prediction from data; in other words, they tend to
learn the abstract behavior of the system from observations, and they use what has been
learnt to make predictions. However, in this case specific modeling assumptions are also
present. Standard linear regression is a model with very high bias, since it assumes a linear
relationship between observed data and the target; however, the bias can be reduced by
adjusting the model to polynomial regression with the introduction of additional non-
linear (quadratic, cubic, etc.) parameters. It is well-known that this bias reduction will
increase the variance of the model, leading to the problem of overfitting (the inability
of the model to generalize to unobserved data, while being really accurate on observed
data). Regularization techniques (lasso or L2 regularization) can be adopted to reduce
overfitting [36]. Neural networks are more general, since the non-linearity can be captured
in the activation functions of the artificial neurons (usually sigmoid functions such as
logistic or hyperbolic tangent, as well as Rectified Linear Unit widely adopted in deep
neural net modes), and overfitting can be mitigated by both suitable architectural choices
as well as regularization. However, the choice of the right set of hyper-parameters of the
net (number of neurons, number of hidden layers, activation functions) and of the learning
algorithm (learning rate, momentum, parameter initialization) may have a great impact on
the final model’s performance and must be made by intensive cross-validation procedures.

Geometric models such as TOPSIS more directly address a decision-making process
and are quite interesting in a setting like the one discussed in the present paper, i.e., the
evaluation of specific countermeasures to contain the spread of COVID-19. In particular,
TOPSIS belongs to the class of Multiple Attribute Decision Making (MADM) approaches,
where some courses of action are chosen in the presence of multiple, usually conflicting,
features. An interesting observation is that similar approaches have also been investigated
in the Machine Learning community with the use of Probabilistic Graphical Models, such
as Decision Networks or Influence Diagrams [37], but with the possibility of learning
both the structural relationship among the attributes and their quantification in terms of
uncertainty (probability) and utility.

Finally, agent-based simulation is a completely different alternative, where no specific
modeling is assumed, but the results are obtained by looking at the interactions among the
involved agents. The crucial point is to determine the right set of simulation parameters,
such as the number of agents, the rate of interaction, the probability of infection given by
contacts, etc.
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In summary, all the approaches investigated in the different studies have their motiva-
tions, as well as their strengths and limitations, and no one can be, in general, considered
better or worse than another one. However, the finding suggesting that quarantine is
a good and efficient strategy for containing COVID-19 is an important result which is
strengthened by the convergence of such different models.

5. Limitations of the Study

Our study has limitations too. First, we did not have the possibility to use the risk
of bias assessment tool, since no validated bias checklist is available. A few studies that
are included in our review are still in the preprint stage [4,21,23–25,27,28,34]. We draw
conclusions from a few studies (n = 8). Additionally, some studies analyzed interventions
in one single country. Therefore, we cannot conclude that they can also be efficient in
other countries [21,23–27]. It was also difficult to distinguish the consequences of a single
policy measure from those of other policy interventions. Although there were a variety
of mathematical methods for unravelling relationships in structural components, none of
them were ideal. Lastly, all the studies were performed at the beginning of the pandemic
before the emergence of COVID-19 variants and before the introduction of the vaccines.
This could be a major limitation to the actual use of our findings because the new COVID-19
variants could have different transmission patterns and the national vaccination program
will substantially change the effects of interventions over time [38].

6. Conclusions

Despite the possible limitations, the outputs of AI and ML were generally consistent
with the results obtained by most of the public health interventions that have been used
to reduce the spread of COVID-19 worldwide. Our study findings showed that AI and
ML could have been useful to help policy makers to better define the best strategies for
containing the COVID-19 pandemic since the end of the first wave. As a matter of fact,
at least half the articles (four of the seven for which dates could be clearly identified)
were published in April 2021 or later—with the last two being “published” in May and
June 2021, respectively. In particular, quarantine clearly emerged as the best strategy for
containing COVID-19. On the contrary, a strict quarantine was rarely adopted worldwide.
Additionally, according to AI and ML outputs, total, early and time extensive nationwide
lockdown should have been adopted to stop the second wave because of the effectiveness
in reducing the Rt and the transmission of the disease. On the contrary, such a measure was
rarely adopted fully and often has been continuously mitigated according to the variations
in the local risk of the spread of the disease. In fact, even though this strategy could not
stop the pandemic, it was probably more acceptable because it did not drastically affect the
people’s degree of freedom due to the pandemic [39]. Social distancing should have been
considered effective only with a combination of interventions, but again it was also widely
adopted as a single intervention. We believe that this happened because most of the public
interventions for preventing the second wave were implemented based mainly on their
mechanistic or biological plausibility. On the contrary, they could have taken advantage
of the use of AI and ML outputs. Even though the time lag between when the decisions
needed to be made and these data appeared to be ready to be used makes our finding more
effective as a summative evaluation than as a process evaluation, we still think that, in the
near future, Al and ML should play a significant role in public health policy making.
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