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Transient receptor potential (TRP) channels are a superfamily of non-selective cation
channels that act as polymodal sensors in many tissues throughout mammalian
organisms. In the context of ion channels, they are unique for their broad diversity of
activation mechanisms and their cation selectivity. TRP channels are involved in a diverse
range of physiological processes including chemical sensing, nociception, and mediating
cytokine release. They also play an important role in the regulation of inflammation through
sensory function and the release of neuropeptides. In this review, we discuss the functional
contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1)
that are involved in the body’s immune responses, particularly in relation to inflammation.
We focus on these five TRP channels because, in addition to being expressed in many
somatic cell types, these channels are also expressed on peripheral ganglia and nerves that
innervate visceral organs and tissues throughout the body. Activation of these neural TRP
channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a
wide range of inflammatory actions. TRP channels act either through direct effects on cation
levels or through indirect modulation of intracellular pathways to trigger pro- or anti-
inflammatory mechanisms, depending on the inflammatory disease context. The
expression of TRP channels on both neural and immune cells has made them an
attractive drug target in diseases involving inflammation. Future work in this domain will
likely yield important new pathways and therapies for the treatment of a broad range of
disorders including colitis, dermatitis, sepsis, asthma, and pain.

Keywords: pain, itch, thermal sensing, nervous system, vagus nerve, cytokine
INTRODUCTION

Transient receptor potential (TRP) channels are polymodal calcium-permeable cation channels that
broadly act as cellular sensors. Mammalian TRP channels consist of 28 members and can be
grouped into six main families: TRP ankrin (TRPA), TRP canonical (TRPC), TRP melastatin
(TRPM), TRP mucolipins (TRPML), TRP polycystin (TRPP), and TRP vanilloid (TRPV). For the
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purposes of this review, we will focus on specific channels within
the TRPA, TRPM, and TRPV families that have documented
roles and mechanisms relevant to inflammation. There is already
an extensive body of literature covering the many different TRP
families, their protein structures, and their specific functions,
therefore, the goal of this review is to highlight a specific set of
TRP channels that are expressed in the peripheral nervous
system and have been linked to immune system responses.
These TRP channels, specifically TRPA1, TRPM3, TRPM8,
TRPV1, and TRPV4 are expressed on peripheral nerves and
neurons that communicate with the immune system and major
peripheral organs to regulate inflammatory responses (1–10)
(Figure 1).

We will focus on the broad role of these neural TRP
channels as well as their role on neurons and peripheral
nerves in mediating the crosstalk between the nervous
system and immune system, particularly in the context of
inflammation. The activation of TRP channels has an
increasingly recognized role in a wide range of inflammatory
disorders and therefore may be suitable as potential targets for
therapeutic intervention.
TRP CHANNEL FUNCTION AND
EXPRESSION

TRP “Vanilloid” Channels
The Transient Receptor Potential Vanilloid (TRPV) channel
subfamily consists of six members: TRPV1-V6, with TRPV1-4
classified as the thermo-TRPs that are activated by heat
in heterologous expression systems (11). TRPV proteins
contain seven hydrophobic domains with six spanning the
cellular membrane (S1–S6) and the seventh hydrophobic
domain, as well as the C- and N- termini, located within the
cell (12).
TRPV1
TRPV1 is a nonselective, calcium permeable, cation channel,
and the first member for the TRPV family of ion channels
discovered. Activated by a multitude of endogenous and
exogenous compounds, TRPV1 is the most extensively studied
of the TRPV channels (Figure 2) (1). Endogenous
endocannabinoids, anandamide (13), N-arachidonoyl-dopamine
(14), as well as endogenous lipoxygenase products,
12-(S)-hydroperoxyeicosatetraenoic acid, and leukotriene B4
(15), serve as ligands to TRPV1. Exogenous chemicals such as
resiniferatoxin, olvanil, and most prominently, capsaicin, the main
irritant found in hot chili peppers (16), also effectively activate
TRPV1. In addition to these substances, temperatures greater than
Abbreviations: AITC, allyl isothiocyanate; CFA, complete Freund’s adjuvant;
CGRP, calcitonin gene-related peptide; IBD, inflammatory bowel disease; IL-6,
interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; NKA, neurokinin A; ROS,
reactive oxygen species; SP, substance P; TNF, tumor necrosis factor.

Frontiers in Immunology | www.frontiersin.org 2
43°C and acidic conditions with a pH lower than 6.0, can induce
TRPV1 activation leading to a burning sensation and pain
(17–19).

The initial discovery of TRPV1 was through the sequencing of
genes expressed in dorsal root ganglion neurons (DRG) (16).
Subsequently, it has been reported that the majority of DRG
neurons express TRPV1 (2). In addition to DRGs, TRPV1 is
highly expressed in nodose ganglia (NG) and trigeminal ganglia
(TG), specifically on unmyelinated C- and thinly myelinated Ad-
type sensory nerve fibers (20). In the central nervous system
(CNS), TRPV1 is expressed on dopaminergic neurons of the
substantia nigra, hippocampal pyramidal neurons, hypothalamic
neurons, locus coeruleus neurons, and the cerebral cortex (21).
TRPV1 is also found to be expressed on a variety of non-
neuronal cell types, including immune cells such as T
lymphocytes (22), macrophages (23), and dendritic cells (24).
Non-neural and non-immune cell expression of TRPV1 can be
found on keratinocytes (25), bladder urothelium (26), smooth
FIGURE 1 | TRP channel-expressing peripheral nerves innervate major
organs of the body and effect inflammation. Pre-clinical and clinical studies
have identified that the TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, and
TRPA1 are expressed on a variety of cell types, specifically sensory nerves
that innervate peripheral tissues throughout the body. Major sites of TRP
channel expression include the trigeminal nerve, vagus nerve, dorsal root
ganglia and associated spinal nerves. The trigeminal nerve is the fifth cranial
nerve innervating the face and sinus, with the cell bodies located in the
trigeminal ganglia. The vagus nerve is the tenth cranial nerve which innervates
many peripheral organs including the lungs and gastrointestinal tract. Spinal
nerves, with cell bodies located in the dorsal root ganglia (DRG), innervate
many tissues in the periphery including the skin, joints, and colon.
October 2020 | Volume 11 | Article 590261
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muscle (27), hepatocytes (28), pancreatic b-cells (29), and
endothelial cells (30).

TRPV4
TRPV4 is a nonselective, moderately calcium permeable,
cation channel. It has a homo-dimeric tetramer structure
with the TRPV family standard of six transmembrane
segments. The pore loop is between segments 5 and 6 and
both the C- and N-termini are located within the cytoplasm
(31). The channel contains six ankyrin repeats and the
phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can
bind to this site inhibiting the channel (32). Similar to TRPV1,
TRPV4 is expressed on a variety of cells such as neurons, leukocytes
(33), T cells (34), and macrophages (35). In the brain, neurons and
glial cells in the hippocampus, cortex, thalamus, cerebellum (36),
and hypothalamus (37) all express TRPV4. In the peripheral
nervous system, TRPV4 is extensively expressed on DRG, NG,
and TG neurons (38, 39) (Figure 1). DRG neurons containing this
channel are found innervating the spinal dorsal horn (40),
gastrointestinal tract (38), skin (41), and liver (42). TRPV4-
positive nerve fibers have been also found to innervate arrector
pili smooth muscle of the skin, sweat glands, intestines, and blood
vessels, and dura mater (39, 43).

TRP “Melastatin” Channels
The transient receptor potential melastatin (TRPM) subfamily
has been regarded as the most diverse group of TRP channels,
comprised of eight nonselective cation channels: TRPM1, TRPM2,
Frontiers in Immunology | www.frontiersin.org 3
TRPM3, TRMP4, TRPM5, TRPM6/7, and TRPM8 (3). These
channels were first identified as the protein that decreases in
expression in highly metastatic melanoma cell lines (44).
Structurally akin to those of voltage-gated channels, all TRPM
channels possess six transmembrane domains, a TRP helix, and a
cytoplasmic N- and C-terminal (45, 46). The widely expressed
family of TRPV channels has been discovered to contribute
toward a variety of physiological functions from sensing
oxidative stress, temperature changes, and cell swelling. While
several of these channels play a crucial role in the nervous system
(e.g., neuroinflammation), TRPM3 and TRPM8 are the most
prominent channels among sensory nerves, particularly in the
skin, sinuses, lungs, and the gastrointestinal tract (7, 47–52)
(Figure 1).

TRPM3
First discovered through residual heat sensitivity testing in
TRPV1 KO mice, the transient receptor potential melastatin-
3 (TRPM3) is a non-selective calcium cation channel that has
been recently observed to play a crucial role in noxious heat
detection (45, 47, 48). TRPM3 is widely expressed in both
neuronal and non-neuronal tissue, such as in brain and spinal
tissues, retinal (53), pituitary, kidney, and testes (49). Through
in situ hybridization and RT-qPCR of TRPM3 mRNA, studies
have shown abundant expression in both TG and DRG sensory
neurons (Figure 1) (54). A large majority of TRPM3-expressing
neurons are also responsive to capsaicin, demonstrating that it
is often co-expressed with TRPV1. The functional detection of
FIGURE 2 | TRP channel actions contributing to neurogenic inflammation. TRPA1, TRPV1, and TRPV4 channels gate cations following activation by their respective
chemical agonists, temperature changes, or mechanical stimulation. Intracellular calcium levels increase and lead to the release of neuropeptides such as calcitonin
gene-related peptide (CGRP), substance P (SP), or neurokinin A (NKA). Nerve action potentials trigger the sensation of pain or itch. For TRPM3, heat changes and
pregnenolone sulfate activate the channel to gate cations, leading to CGRP release. Conversely, TRPM8 activation inhibits CGRP release while increasing levels of
interleukin-10 (IL-10) and decreasing levels of tumor necrosis factor (TNF). Action potentials generated following TRPM3/8 channel activation lead to changes in
thermal sensitivity. AITC, allyl isothiocyanate; GDNF, glial cell line-derived neurotrophic factor; NGF, nerve growth factor; PAR2, protease-activated receptor 2; ROS,
reactive oxidative species.
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TRPM3 has been identified using calcium imaging through
chemical activation on DRG cells (45).

TRPM8
TRPM8 is a nonselective, calcium-permeable cation channel.
Among the thermal-sensing TRP channels, the TRPM8 channel
is notable for detecting cold temperatures (8–26°C) and
contributing to the cooling sensation by chemicals such as
menthol and icilin (Figure 2). TRPM8 has been found to be
expressed on C- and Ad- sensory nerve fibers, as well as DRG
and TG neurons (48). In the CNS, expression of TRPM8 has
been found on hypothalamic and hindbrain nuclei responsible
for autonomic thermoregulation (55). In addition to neuronal
cell types, TRPM8 is also expressed on macrophages and
pulmonary epithelial cells. Activation of TRPM8 on
macrophages has been shown to induce an anti-inflammatory
response with the increased release of interleukin 10 (IL-10) and
decreased release of tumor necrosis factor (TNF). In contrast,
activation of TRPM8 on pulmonary epithelial cells increases the
expression of pro-inflammatory cytokines such as TNF and
interleukin 1 (IL-1) (50).

TRP “Ankyrin” Channels
Transient receptor potential ankyrin 1 (TRPA1) is the only
member of the TRPA family. TRPA1 is a polymodal cation
channel that is made up of approximately 1,100 amino acids,
with roughly 80% of its molecular mass located in the large
intracellular domain (56) and a 14 ankyrin repeat in its structure
(50, 57). When first described, TRPA1 was reported to sense cold
temperatures (<17°); however, it has since been found to
additionally sense heat, a common function of TRPV1 and
TRPM3 as mentioned above (58–61). Some evidence indicates
that the role of TRPA1 as a bidirectional thermo-sensor is due to
different channel conformations, and that its heat sensing
properties are dependent on its redox state and ligands (60).
Along with its role as a thermo-sensor, TRPA1 also responds to
mechanical stimuli via membrane stress, in a redox state
dependent manner (62, 63).TRPA1 is predominantly expressed
on myelinated Ad- and unmyelinated C-fibers of peripheral
nerves. Protein expression is found on both cell bodies of
DRG, NG, and TG neurons, as well as on the axons of spinal
nerves, the vagus nerve, and trigeminal nerve (Figure 1) (4, 64).
Although not extensively studied, some TRPA1 expression has
also been found in regions of the brain such as the
somatosensory cortex, and cerebellum (65, 66). Additionally,
TRPA1 channels can be found on non-neuronal cell types.
TRPA1 was first cloned in fibroblasts (67) and has since been
found to be expressed on T-cells, macrophages, endothelial cells,
epithelial cells, and smooth muscle cells (50, 68–71). Along with
its role as a thermo- and mechanosensory, TRPA1 is activated by
a wide variety of chemical stimuli such as cinnamaldehyde, allyl
isothiocyanate (AITC), allicin, hydrogen peroxide, oxygen (O2),
n i t r o x y l (HNO) , me th y l g l y o x a l , a nd endo t o x i n
(lipopolysaccharide; LPS) (Figure 2) (4, 72–75). Many of these
activators have been found to also play a role in modulating
inflammatory responses.
Frontiers in Immunology | www.frontiersin.org 4
NEURAL TRP CHANNELS IN THE
CONTEXT OF INFLAMMATION

TRPV1
TRPV1 has been found to be have a key role in inflammation,
being linked to both pro- and anti- inflammatory mechanisms.
Noxious heat, which can cause cell damage and even death, is a
mediator of TRPV1 activation inducing hyperalgesia or pain
(Figure 2). Increased thermal sensitivity of the TRPV1 channel is
mediated by bradykinin and nerve growth factor (NGF) via the
hydrolysis of intracellular phosphatidylinositol 4,5-bisphosphate
(PIP2) (76). After retrograde transport of NGF in peripheral
nerves thermal hypersensitivity is maintained via changes in
TRPV1 expression through the activation of p38, a regulator of
pro-inflammatory cytokines TNF, IL-1b, and cyclooxygenase-2
(77). Glial cell line-derived neurotrophic factor (GDNF) family
members have also been shown to activate TRPV1 on DRGs,
leading to increased thermal hyperalgesia (78). Additionally,
protein kinase A (PKA) increases TRPV1’s sensitivity to heat
and capsaicin through phosphorylation of TRPV1 on Ser-502
(79, 80). PKA can reduce a desensitized state of TRPV1 through
the phosphorylation of Thr-370 and Ser-116, (81). In rats in
order for TRPV1 to respond to capsaicin Calmodulin-kinase II
must be phosphorylated on Ser-502 and Thr-704 (80). Similarly,
protein kinase C (PKC), sensitizes TRPV1 when phosphorylated.
This occurs when inflammatory mediators prostaglandin E2 and
prostaglandin I2 signal through the prostaglandin EP1 and
prostacyclin receptors in a PKC dependent manner (82).
Adenosine triphosphate (ATP), released from damaged cells
after trauma, also activates and sensitizes these channels
through P2Y receptors. In such instances, the threshold
temperature for TRPV1 was decreased enough to activate the
channel under normal physiological conditions (82, 83). It has
been demonstrated that some inflammatory mediators,
including TNF, NGF and ATP, promote the recruitment of
TRPV1 to the surface of the cell, while other mediators, such
as bradykinin and GDNFs, act by decreasing the activation
threshold of the channel without affecting expression density
(84, 85). Furthermore, additional inflammatory mediators
released by macrophages and neutrophils such as reactive
nitrogen species (RNS) and reactive oxygen species (ROS) can
directly activate TRPV1 on afferent vagus neurons (86). During
inflammation, acidic conditions can also be produced within the
affected tissue activating TRPV1, leading to TRPV1 sensitization
and pain (87, 88).

TRPV1 expression and functionality on neurons is significantly
altered depending on the inflammatory condition (Table 1). For
example, mice injected with cerulean to induce acute pancreatic
inflammation, display an increase in TRPV1 excitability and
mRNA expression on NG and DRG neurons (126). Cerulean
also leads to leukotriene B4 production by acinar pancreas cells,
activating TRPV1 on sensory afferents (89). Treatment with
capsazepine, a TRPV1 antagonist, was capable of reducing
myeloperoxidase activity and histological severity of acute
pancreatitis (127). These findings were further corroborated
utilizing intraperitoneal injection of AMG 9810, another TRPV1
October 2020 | Volume 11 | Article 590261

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Silverman et al. Neural TRP Channels and Inflammation
antagonist, resulting in diminished pain behaviors in mice (126).
Similarly, in a the trinitrobenzene sulfonic acid pre-clinical model
of chronic pancreatitis TRPV1 mRNA and protein expression is
increased, as is capsaicin-induced activation. This model also
induces an increase in the proportion of capsaicin sensitive
pancreas-specific DRG neurons, as well as the over expression of
NGF, artemin, and GDNF (90, 128). The increased expression of
NGF and the GDNF artemin may thus activate TRPV1 on
intrapancreatic nerves resulting in the release of substance P
(SP) and the maintenance of the disease state (129).

In the airways, enhancement of the coughing reflex in humans
is associated with an augmented expression of TRPV1 channels on
sensory nerves (91, 130). Inhalation of capsaicin has been linked to
an increased cough sensitivity in patients with both asthma and
chronic obstructive pulmonary disease (COPD; Table 1) (24, 131,
132). Similarly, TRPV1 expression and capsaicin sensitivity was
increased in myelinated pulmonary afferents in the rat model of
ovalbumin-induced airway inflammation (92). Due to the
implication of TRPV1 in the initiation of cough, TRPV1
antagonists have been utilized as a treatment to effectively block
this reflex (133–135). It has been proposed that TRPV1 activation
Frontiers in Immunology | www.frontiersin.org 5
on C-type fibers releases SP and calcitonin gene-related peptide
(CGRP) neuropeptides to induce neurogenic inflammation and
airway smooth muscle contraction, thus activating retinoic acid
receptors (RARs) to elicit a cough response (136). In models of
bacterial lung infections and pneumonia ablation, of TRPV1-
positive nerves increase survival, cytokine induction, and
bacterial clearance of Staphylococcus aureus pneumonia from
the lungs. TRPV1-positive fibers of the vagus nerve in this
model release CGRP inducing immunosuppression (137). In
contrast, TRPV1 is protective in the LPS-induced model of lung
injury. Depletion of TRPV1 causes increased disease severity, with
elevated inflammation and bronchial hypersensitivity. When
activated during a LPS-induced model of lung injury TRPV1-
positive neurons release somatostatin (SST), which acts to
diminish neurogenic inflammation (93). Treatment with TRPV1
agonists have additionally been beneficial in treating the
ovalbumin-induced allergic airway inflammation. It is believed
that SST and CGRP release decrease neutrophil influx and
cytokine release (94).

In patients with inflammatory bowel disease (IBD), TRPV1
immunoreactivity is greatly increased in the colonic nerve fibers
TABLE 1 | Pro- and anti-inflammatory TRP channel functions in inflammatory conditions.

TRP
Channel

Conditions Pro-/Anti-
Inflammatory

Functionality References

TRPV1 Pancreatitis Pro- Increases histological damage and release of SP, triggering nociception (89–90)
Pulmonary
inflammation

Pro-/Anti- CGRP and SP release induces bronchial constriction and elicits coughing reflex/Activation
decreases allergic airway inflammation

(24, 91–92)

Lung Injury Anti- Somatostatin is released to diminish neurogenic inflammation and appears to reduce bronchial
hypersensitivity

(93, 94)

Atopic Dermatitis Pro- Contributes to itching sensation and dermatitis clinical severity (95–96)
Arthritis Pro- Upregulation of pro-inflammatory cytokine release, knee joint swelling, and thermal

hyperalgesia
(97)

Sepsis Anti- Upregulates anti-inflammatory IL-10 and attenuation of pro-inflammatory CGRP, TNF, and IL-6 (98–100)
Carditis/Ischemic Injury Anti- SP release which increases IL-10 and reduces TNF levels, ROS, and neutrophil infiltration (101)

TRPV4 Colitis/IBD Pro- Release of CGRP and SP in hypotonic and irritant conditions and contributes to mechanical
hyperalgesia

(102–103)

Itch Pro- Mediates pruritus through cutaneous application of agonists and serotonin and histamine-
dependent itch in sunburn and chronic itch

(104–105)

Sepsis Pro- Inhibition of channel significantly decreased systemic cytokines and maintained endothelial cell
function

(9, 106)

TRPM3 Thermal Hyperalgesia Pro- Produces and augments TRPV1/TRPA1 heat-induced nociception in inflamed tissues and
mediates CGRP release

(8, 47–49, 54)

TRPM8 Colitis Anti- Suppression of pro-inflammatory cytokine release in colitis model and diminishes TRPV1-
mediated CGRP release

(7, 52, 107)

Chronic Neuropathic
Pain

Pro-/Anti- Reduction of thermal and mechanical hyperalgesia, enhances cold hypersensitivity (5, 108, 109)

Asthma Pro- Increased pro-inflammatory IL-6 and IL-8 release in bronchial tissue (110–111)

TRPA1 Headache/migraine Pro- Increased vasodilation and release of CGRP and SP producing migraine like behaviors (112–113)
Allergic Contact
Dermatitis

Pro- CGRP and SP release produces thermal or mechanical hypersensitivity and activation via co-
localized G-protein coupled receptors

(4, 114–115)

Acute Lung Injury Pro- Releases of pro-inflammatory neuropeptides (CGRP, SP, NKA), ROS, and triggers a cough
reflex

(4, 64, 72, 116)

Asthma Pro- Agonist stimulation can induce asthma, increasing bradykinin and ROS (86, 117–119)
Colitis/IBD Pro-/Anti- AITC administration induced pro-inflammatory IBD conditions/Diminishes histological damage

through CGRP release, decreases pro-inflammatory cytokines and oxidative stress
(3, 4, 120–121)

Arthritis Pro- Increases cold and mechanical hypersensitivity in CFA-induced arthritic models, antagonists
reduces cartilage, edema, and SP release in paw

(122–123)

Sepsis/Endotoxemia Anti- Attenuates disease severity through modulating release of cytokines IL-1b and IL-6 in mice and
decreases serum TNF

(124–125)
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(138). In a mouse model of IBD, dextran sulfate sodium (DSS)-
consuming mice displayed an increase in pelvic afferent activity in
response to capsaicin compared to normal mice (139). In gastro-
esophageal reflux disease, patients have displayed increased
TRPV1 fiber expression in their inflamed esophagus (140).

Similarly, in the skin, an increase in TRPV1 sensitivity and
expression of TRPV1 is found in atopic dermatitis (Table 1; AD)
(95). Phospholipase A2 and 12-Lipoxygenase activation of
TRPV1 on histamine-sensitive C nerve fibers have been shown
to lead to itching sensation (141). Interleukin 31 (IL-31), an
inflammatory cytokine, also induces TRPV1-dependent itch, as
cutaneous neurons and DRG neurons co-express the IL-31
receptor and TRPV1. TRPV1 deficient mice also display
significantly reduced itching in the presence of IL-31 (96).
Furthermore, PAC-14028, a potent TRPV1 antagonist, accelerates
skin barrier recovery from tape-stripping-induced damage on
hairless mice, as well as in both the Dermatophagoides farinae
and oxazolone-induced dermatitis models. In addition to the
accelerated function, PAC-14028 alleviates IgE increase, mast cell
degranulation, scratching behavior, and dermatitis clinical
severity (95).

In arthritis, inhibition of TRPV1 has identified it as a
potential target for therapeutic interventions. In the complete
Freund’s adjuvant (CFA) pre-clinical model of arthritis,
capsaicin depletion of TRPV1-positive cells, reduces arthritis
severity and depletes neuropeptide levels. The depletion of these
cells occurs due to a significant increase in intracellular calcium.
TRPV1 responds to this influx by desensitizing itself to
capsaicin activation, preventing cytotoxic amounts of calcium
ions from entering the cell (142). In TRPV1 knockout (KO)
mice, swelling of the knee joint and hyperpermeability were
reduced. When TNF is directly injected into the knee joint,
TRPV1 KO mice have decreased thermal hyperalgesia and joint
swelling (97). Additionally, CFA induced arthritis causes a
significant increase in TRPV1 expression on the overall
proportion of unmyelinated nerves innervating the paw and
on DRG neurons (143, 144).

In systemic inflammatory diseases such as sepsis, TRPV1 has
an inconsistent role (Table 1) (20, 145). In a rat model of
endotoxin induced sepsis, pretreatment with capsaicin increases
anti-inflammatory cytokine IL-10 levels, and attenuation of
CGRP, TNF, and interleukin 6 (IL-6) cytokines (98). In
agreement with these findings blocking TRPV1 with capsazepine
increases LPS induced hypotension, and mortality rates (146).
TRPV1 KO mice further corroborate this, exhibiting elevated
hypotension, hypothermia, cytokine levels, organ dysfunction,
and mortality in mice with endotoxemia and polymicrobial
sepsis via cecal ligation puncture (CLP) (99, 147). These studies
suggest that TRPV1’s anti-inflammatory role in sepsis, is in
modulating nitric oxide (NO), ROS, and TNF (99, 145).
However, a contradictory study has also shown that in the same
CLP model of sepsis blocking TRPV1 activity with capsazepine
attenuates systemic inflammation, multiple organ damage, and
mortality (100). The inconsistency in these studies may be a result
of capsazepine’s dual ability to antagonize TRPV1 and agonize
TRPA1 at similar concentrations, leading to a profound
Frontiers in Immunology | www.frontiersin.org 6
desensitization of not only TRPA1 but the nociceptive
neuron (148).

TRPV1-positive sensory nerves innervating the heart have a
beneficial role in cardiac inflammation. Genetic depletion of
TRPV1 results in excessive inflammation, left ventricular
remodeling, and deteriorated cardiac function after
myocardial infarction in mice (149). Administration of a
TRPV1 antagonist elevates myocardial damage in isolated
wild-type hearts, suggesting that TRPV1 may have a
protective effect in ischemia-reperfusion injury, with links to
the release of SP (129). In ischemia-reperfusion injury CGRP
and SP increase the release of anti-inflammatory IL-10,
and reduce TNF level, lowering ROS and neutrophil
infiltration (150).

The role of TRPV1 in inflammation is complex, with a
dependence on disease and tissue-specific actions. Many
preclinical studies utilize total body TRPV1 KO mice to
elucidate its role in inflammation. However, given the sizable
contrast in these findings, further study into the role of TRPV1 in
mediating inflammation would benefit from selective
knockdown or optogenetic manipulations in different cell
types. It is posited that TRPV1 on sensory neurons plays a
pro-nociceptive role in acute tissue injury, but an antinociceptive
role in chronic conditions (20). Cell type-specific, particularly
neuronal, TRPV1modulation may prove useful in combating the
extensive list of inflammatory diseases.

Despite the need for more comprehensive studies on
understanding TRPV1 as a potential therapy, TRPA1 been
regarded as a therapeutic target for pain and inflammation
since the mid-20th century (101). Clinically, desensitization of
TRPV1-expressing sensory nerves using high doses of capsaicin
has been utilized as a treatment for patients with disorders such
as psoriasis, osteoarthritis, cutaneous allergic reactions, pruritus,
and peripheral neuropathy (151–153). Though capsaicin has
demonstrated clinical benefits, in the 1990s there was a shift
away from desensitization due to a common side effect, an
intense burning sensation (154) with a prolonged effective
duration (155). TRPV1 competitive antagonists, due to their
reversible nature and lack of burning, then began to receive
attention as potential anti-inflammatory and analgesic therapies.

Clinical trials of such agents have demonstrated varied results
based on the disorder in question. TRPV1 antagonists have failed
to show benefits in chronic cough and related disorders, such as
COPD (156–158). Furthermore, these antagonists demonstrated
no significant benefits for patients with seasonal allergic rhinitis
(159). On the other hand, TRPV1 antagonists have recently
demonstrated efficacy in molar extraction pain (160), mild‐to‐
moderate AD (161), pain/stiffness in knee osteoarthritis (162,
163), and gastroesophageal reflux disease pain (164). Recently
completed trials of these compounds examine their usage in
patients with rosacea (NCT02583009), seborrheic dermatitis
(NCT02749383), and skin pruritus (NCT02565134).
Interestingly, many clinical trials utilizing TRPV1 antagonists
reported that enrolled patients became hyperthermic after
administration (19, 164–166), even to the point of trial
termination (167). This significant side effect, related to
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thermal sensitivity, has stalled clinical studies of TRPV1
antagonists (168, 169).

TRPV4
Similar to other TRP channels, different inflammatory molecules
can affect the expression and signaling of TRPV4. Inflammatory
cytokines such as IL-1b and interleukin 17 (IL-17) increase
TRPV4 mRNA levels in DRG neurons (170) and NGF
increases TRPV4 expression in the urothelium (171). Ischemia
increases expression in astrocytes (172), while TNF, high-fat and
high-alcohol diet (HFA) induce chronic pancreatitis leading to
TRPV4 expression in pancreatic stellate cells (173). In patients
with active colitis (Table 1), tissue samples indicate significant
TRPV4 expression on nerve fibers innervating the outer layers of
the colon (38). In addition, the inflammatory skin conditions
papulopustular rosacea and phymatous rosacea facial, as well as
COPD exhibit increased TRPV4 expression in the skin and
lungs, respectively (174, 175).

The role of TRPV4 in inflammation has been extensively
linked to the Protease-activated Receptor 2 (Figure 2; PAR2).
PAR2 agonists activate and sensitize TRPV4 in DRG neurons.
During intraplanar injection of PAR2 agonist mechanical
hyperalgesia and increased pain sensitivity to TRPV4 agonists
4aPDD and hypotonic solutions is induced. 4aPDD and
hypotonic solutions additionally stimulate the release of CGRP
and SP, with increased sensitivity by the application of PAR2
agonists. Depletion of TRPV4 ablates this PAR2 agonist-induced
mechanical hyperalgesia and sensitization (102). Such TRPV4-
dependent sensitization is apparent in DRG neurons innervating
the mouse colon (176). In addition, PAR2 activation can induce
sustained activation of TRPV4 through the production of
endogenous agonists, which are believed to increase the
duration of PAR2’s proinflammatory effects. This was
confirmed using a PAR2-induced paw edema model. When
TRPV4 is genetically deleted, paw edema is significantly
reduced (103).

The role of TRPV4 in inflammation has not only been linked
to PAR2, but to histamine and serotonin as well. Colonic DRG
neurons pretreated with histamine and serotonin increased
TRPV4 agonist 4a-Phorbol 12,13-didecanoate (4aPDD)
induced neural firing via PKC, phospholipase C-beta, mitogen-
activated protein kinase kinase, and PLA2-dependent pathways.
By blocking TRPV4 using siRNA, visceral hypersensitivity
induced by histamine or serotonin is significantly reduced,
indicating a histamine- or serotonin-mediated response
dependent upon TRPV4 in sensory neurons (177). Both
serotonin and histamine have also been associated with the
induction and exacerbation of pruritus’ or itch responses.
When administering serotonin intradermally, inhibition of
TRPV4 through genetic deletion or pharmacologic block,
reduced itch behavior significantly in comparison to control
mice (104). This work has led to the idea that serotonin-evoked
pruritus could be mediated by TRPV4 expressed on DRG
neurons. In response to acute administration of histamine, no
significant differences were found in itch behavior when TRPV4
is inhibited. However, in a chronic setting, histaminergic
pruritogens induced itching behaviors were decreased when
Frontiers in Immunology | www.frontiersin.org 7
TRPV4 is blocked, specifically on keratinocytes. This may
indicate TRPV4 has a different role in modulating an itch
reflex based on the cell type it is expressed on (178).
Additionally, TRPV4 has a direct link to itch via agonist
application. Subcutaneous injection of GSK1016790A, a
TRPV4 agonist for example, induces itching behavior in mice
(179). Interestingly, in sunburn, in which itch is a common
symptom, TRPV4 expression and proalgesic mediator
endothelin-1 are enhanced in both humans and mice. Following
sunburn, keratinocyte-specific TRPV4 KOs have decreased IL-6
release, with a decrease in the number of recruited neutrophils and
macrophages (105). The mechanism for this release has been
shown to involve TRPV4-mediated ATP production, stimulation
of the P2Y11 receptor, and results in the release of IL-6 and
interleukin 8 (IL-8) through the p38 mitogen-activated protein
kinases-nuclear factor-kB signaling pathway (180).

In models of sepsis, inhibition of TRPV4 through genetic
deletion or pharmacological block has been shown to be
protective. In both LPS and CLP models of sepsis inhibition of
TRPV4 significantly decreased systemic cytokines, maintained
endothelial cell function, and reduced mortality in mice (9).
However, there has been contrasting reports on the role of
TRPV4 in sepsis, other studies have shown that inhibition has
no significant effect on sepsis pathology (106). This inconsistency
was found to be due to the antagonist dosage used. That is,
excessively low or excessively high doses of TRPV4 agonists
cannot effectively treat sepsis. It is hypothesized that a balance in
TRPV4 activation is necessary for optimal improvement in sepsis
severity (181).

TRPM3
TRPM3 is primarily linked to the induction of thermal
hyperalgesia, a common tissue-level responses to inflammation.
Endogenous TRPM3 agonists, such as the neurosteroid
pregnenolone sulfate (PS) lowers the thermal response
threshold of TRPM3, allowing activation at temperatures as
low as 37°C (Figure 2) (47). In inflamed regions, this heat
sensitization induces a thermal hyperalgesia commonly seen in
inflammation. Injection of CFA is commonly used in models of
peripheral inflammation and arthritis, in which thermal
hyperalgesia often occurs. The role of TRPM3 role in thermal
hyperalgesia has been demonstrated through behavioral studies
utilizing TRPM3 KO mice. TRPM3 KO mice exhibit increased
latency of withdrawal response to a heat test (47). Pretreatment
with primidone, an established TRPM3 inhibitor, produces similar
responses to the TRPM3 KO studies by preventing CFA-induced
heat sensitization (116). Furthermore, TRPM3-deleted mice do
not develop thermal hyperalgesia during inflammation,
strengthening the channel’s link to inflammatory pain signaling
in response to heat (47).

Interestingly, a recent study investigating the CFA-induced
model of peripheral inflammation through hind paw injection,
revealed that inflammation significantly upregulated TRPM3
mRNA independent of temperature sensing TRP channels,
TRPA1 and TRPV1, in DRG neurons innervating the inflamed
tissue (8). Additionally, in this model, it has been demonstrated
that TRPM3 can augment the responses of both TRPV1 and
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TRPA1 (8). When isosakuranetin, a TRPM3 specific agonist, is
applied to inflamed cutaneous tissue there is a simultaneous
reduction in TRPM3 agonist responsiveness as well as a
diminished responsiveness to capsaicin and mustard oil, both
well-defined TRPV1- and TRPA1-agonists (8). This identifies a
potential new role for TRPM3 in inflammation, with the
upregulation of TRPM3 playing a key role in thermal
hypersensitization (Table 1) of DRG neurons co-expressing
TRPV1 and TRPA1. Together this is strong evidence that
TRPM3 functions primarily as a heat-induced pain sensor in
inflammatory conditions.

Viewing TRPM3 as a potential target for inflammation-
associated thermal hyperalgesia, certain plant metabolite
flavonoids, such as naringenin, ononetin, isosakuranetin, and
FDA approved drugs, such as anticonvulsant primidone, may be
viable therapeutic options. Thus far, these molecules have shown
promise in blocking heat-dependent and PS-induced outward
calcium currents within in vitro DRG neurons (116, 182). In
behavioral experiments, flavanones, and primidone attenuated
TRPM3 activation through PS-intraplantar injection by inducing
increasingly latent responses to noxious heat (116, 182).

Endogenous regulation of TRPM3 is largely influenced by
phosphoinositides (PIPs), such as phosphatidylinositol 4,5-
bisphosphate (PIP2) and less abundant phosphatidylinositol
(3,4,5)-trisphosphate (PIP3). Whole-cell, patch-clamp recordings
demonstrated that decreasing PIP2 concentrations inhibited
TRPM3 activity and can be restored through ATP-dependent re-
synthesis of phosphoinositides. The restoration process can be
attributed to the synthesis of PIPs, in which the increased surge
of cytosolic ATP stimulates kinase activity to synthesize PIPs which
stimulate TRPM3 (183). Points of negative TRPM3 regulation
through depleting PIP concentrations have been observed to
occur through phosphatases, notably PIP 5-phosphatases.
Antagonists of TRPM3 downregulate the inflammatory channel
through the three major Gs, Gq, and Gi/o-coupled G protein-
coupled receptors (GPCR), such as Gq-coupled M1 muscarinic, Gi/
o-coupled opioid (m) gamma-aminobutyric acid B, and Gs-coupled
adenosine A2B receptors, have shown direct interaction of the Gbg
subunits with TRPM3 (184). Activation of these receptors with their
agonists oxoremorine-M, DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-
enkephalin), baclofen, and adenosine, respectively, strongly
inhibited TRPM3 PS-evoked calcium response on DRG neurons
(183, 185). However, it is important to note that the current studies
observing the molecular regulation of TRPM3 measure channel
activity primarily through PS stimulation, and the implications of
these mechanisms modulating TRPM3 thermosensitivity requires
additional investigation.

TRPM8
The key functionalities of TRPM8 in sensing both innocuous and
noxious cold (8–26°C) have been shown to play a major
physiological role in inflammation, thermoregulation, itch, and
migraines (Table 1). Numerous studies examining the role of
TRPM8 in inflammatory conditions, such as chronic
neuropathic pain, noxious cold, and colitis, have demonstrated
an upregulation of TRPM8 expression (7, 50–52). One
Frontiers in Immunology | www.frontiersin.org 8
mechanism by which the upregulation of channel expression
affects inflammatory conditions is through mediating the release
of inflammatory cytokines. Prolonged cold stress (4°C) triggers
an increase in rodent hypothalamic TRPM8 expression and
corresponds to the decrease of pro-inflammatory cytokine TNF
(52). Evidence suggests cytokine regulation through TRPM8
occurs through its interactions with nuclear factor kappa-light
chain-enhancer of activated B cells (NFkB), the nuclear import
receptor controlling TNF levels. This mechanism could mediate
how TNF levels are decreased in response to cold-stress and
menthol (52). TRPM8 can also mediate inflammation through
crosstalk with other TRP channels. Numerous studies (6, 7, 186)
have exhibited how TRPM8 activation suppresses TRPV1-
mediated inflammatory neuropeptide, CGRP, release. TRPA1,
which also plays a role in the release of inflammatory neuropeptides
and pain hypersensitivity during inflammation, has also been
observed to become desensitized to exogenous irritant and agonist
AITC on sensory neurons that have been pre-treated with icilin.
This was confirmed in TRPA1 KO mice, in which icilin induced
neuronal activation of the splanchnic nerve is unchanged when
compared to wild type mice (107, 186). Thus, TRPM8may serve an
anti-inflammatory function to balance the pro-inflammatory
responses of TRPV1 and TRPA1, mediating chemosensory
deactivation and inflammatory neuropeptide release.

In preclinical murine models of colitis, TRPM8 appears to
regulate inflammation through direct mediation of inflammatory
cytokines. Significant upregulation of TRPM8 expression was
observed in both chemically induced colitis within mice
(trinitrobenzene sulfonic acid; TNBS– and DSS-treatment) and
non-inflamed colonic tissue from Crohn’s disease patients (7).
Macroscopically, the simultaneous treatment of TRPM8 agonist
icilin with TNBS and DSS appeared to substantially diminish
colitis-associated histological damage in comparison to TNBS
and DSS treatment alone (7). Profiling the effects of icilin on the
cytokine distribution revealed a significant reduction in pro-
inflammatory cytokines and chemokines, chemokine (C-
X_motif) ligand 1, IL-6, monocyte chemoattracted protein-1,
IL-1a, macrophage inflammatory protein-1a, macrophage
inflammatory protein-1b, and interleukin 12 p40, which likely
contributed to attenuated histological damage (7, 187). In
mediating CGRP release of other TRP channels, TRPM8
modulation appears to also play a pro-nociceptive role in
colonic mechanosensitivity alongside TRPA1 and TRPV4.
Pharmacological blockage using AMTB and genetic KOs of the
channel produced significant inhibition of distension-induced
CGRP release at high pressure (150 mmHg), whereas TRPA1
and TRPV4 inhibition produced a significant attenuation at a
lower pressure (90 mmHg) (63). This suggests that TRPM8
works in concert alongside TRPA1 and TRPV4 in controlling
CGRP-mediated, colonic mechanosensitivity, however, signals
pain at extreme noxious distension levels. The aforementioned
crosstalk with TRPV1 appears to be potentially relevant in
TRPM8’s regulation of colitis. Capsaicin activation of TRPV1
is known to significantly elevate CGRP levels within the colon,
however, prior activation of TRPM8 has been shown to attenuate
this response (7). Additionally, icilin treatment and menthol
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enemas both attenuate TRPV1-mediated release of CGRP in
both healthy colonic tissue stimulated with capsaicin and
inflammation-induced release (7, 187).

In neuropathic injury models, there has been evidence that
TRPM8 plays a role in decreasing mechanical allodynia and
thermal hypersensitivity while simultaneously enhancing cold
sensitivity. Behavioral experiments generally demonstrate how
neuropathic injury models, such as chronic constriction injury
(CCI) of the sciatic nerve or spinal nerve ligation (SNL),
contributes to cold hypersensitivity post-treatment (5, 108,
109). An original study posited that cold allodynia after nerve
injury occurred independently of TRPM8 activity, as the decrease
in TRPM8 mRNA levels post-CCI surgery did not correlate with
sustained levels of cold hypersensitivity (108); however, more
recent experiments have all noted a positive correlation in
elevated TRPM8 expression and cold hypersensitivity. Elevated
TRPM8 expression in these studies were detected through western
blot and mRNA analysis (5, 108, 109). These discrepancies could
be attributed to a lack of functional TRPM8 measurements,
mRNA levels do not necessarily represent TRPM8 protein or
functional expression. TRPM8 has also been suggested to
modulate the reflex sensitization to thermal and mechanical
stimuli in nerve injury. Injection or topical application of
menthol can trigger nociceptive pain in neuropathically injured
rodents but is also known to attenuate thermal hyperalgesia and
mechanical allodynia (5). Intrathecal injection of TRPM8
antagonist AMTB produces the opposite effect in CCI rodents,
causing an increase in thermal hypersensitivity and a decrease in
cold sensitivity (109). As a therapeutic measure, TRPM8 activation
or inhibition to produce a satisfactory analgesic response is case-
dependent on the type of temperature-induced nociception. It has
been proposed that low concentrations of menthol may be
appropriate to produce sufficient analgesic responses without
evoking pain (108).

As with many TRP channels, TRPM8 does not have only anti-
inflammatory properties but pro-inflammatory properties as
well. For example, asthmatic patients have an upregulation of
TRPM8 expression in bronchial epithelial cells and sputum (110,
188). Unlike the analgesic effects produced in colitis or nerve
injury, TRPM8 function in the lungs triggers bronchial
inflammation through prolonged cold air inhalation. These
responses can be replicated in models of pulmonary cold
exposure and menthol treatment, causing a significant increase
in IL-6, IL-8, and interleukin 25/thymic stromal lymphopoietin
receptor (TSLP) mRNA expression (110, 111).

Notable advances in the inclusion of TRPM8 as a potential
therapeutic target have been made recently through both chemical
antagonists and molecular inhibition through GPCRs. GPCRs
known to mediate TRPM8 functionality (e.g., bradykinin and
histamine receptors) have been noted to do so through two
mechanisms. Continuous activation of phospholipase C by G-a-q
depletes PIP2 concentrations in the membrane, which leads to the
inhibition of TRPM8-mediated currents (189, 190). The agonistic
effect of PIP2 on TRPM8 has been seen through the restoration of
TRPM8 in PIP2-depleted membranes through the addition of an
aqueous PIP2 analog and activation through high concentrations of
Frontiers in Immunology | www.frontiersin.org 9
PIP2 at warm temperatures 37°C (190). Conclusions are drawn
from the inhibition of TRPM8 through PIP2 depletion may likely
serve as a method of desensitization/adaptation to continuous
cold stimuli in the environment (190). Direct interactions with
the G-a-q subunit are an additional mechanism responsible
for TRPM8 thermosensitivity in peripheral sensory neurons
(191). G-a-q KOs, lowered the TRPM8 potentiation threshold to
higher temperatures and increased TRPM8-dependent firing
rates in cold conditions, without interfering with PIP2
hydrolysis, indicating the direct inhibitory activity of the G-a-
subunit (191, 192). Additional chimeric experiments of G-a-q
revealed effector binding sites directly on TRPM8 affirming the
direct inhibitory activity for TRPM8 activation (191, 192).

Certain inflammatory mediators can serve as inhibitors of
TRPM8 due to their G-a-q-linked GPCRs. Inflammatory
mediators possessing Gaq-linked receptors, such as
bradykinin and histamine, have shown to inhibit TRPM8-
mediated responses to cold temperatures and enhance heat
responses on cold-sensitive peripheral fibers. Notably, this
response occurred alongside the inhibition of numerous
downstream effector prote ins , inc luding PKC and
phospholipase C, suggesting the independent inhibition of
TRPM8 by activated G-a-q (192). This response was not seen
in G-a-q KOs, demonstrating G-a-q as a crucial step in gating
TRPM8. Additionally, the presence of activated G-a-q
desensitizes TRPM8 to positive regulator PIP2, creating a
synergistic mechanism to enhance TRPM8 inhibition via
PIP2 depletion (193). Depending on the inflammatory
context, certain conditions that mediate the release of G-a-q-
linked inflammatory chemicals possess the ability to counter
regulate the anti-inflammatory functions of TRPM8. Thus,
we note that multiple mechanisms exist to regulate
TRPM8 activity, however, conditions that trigger G-a-q
activity may result in reduced TRPM8-dependent anti-
inflammatory responses.

Multiple efforts toward the identification of selective TRPM8
antagonists for treating inflammation, chronic pain, and cold-
hypersensitivity have led to potential candidates but none have
reached clinical settings. Various molecular candidates
(arylglycine derivative, benzothiophene-derived phosphonate
esters, benzimidazole variants) have been identified to strongly
inhibit TRPM8-mediated currents in in vitro calcium flux assays,
as well as suppress in vivo icilin-induced “wet-dog shaking”
behavior in a dose-dependent manner (194–196). Among these
small molecule inhibitors, studies relating to the benzimidazole
derivatives generated greater than 80% inhibition in neuropathic
CCI models for cold allodynia in a dose-dependent manner (195,
196). Another noted side effect related to the application of these
antagonists is the lowering of core body temperature. Menthol
and icilin treatment naturally raise the core body temperature,
and certain antagonists have been shown to cause hypothermia
by counteracting TRPM8 activation (197, 198). Overall, current
drug candidates have been demonstrated to be potent inhibitors
of TRPM8 activity through basic in vitro and in vivo assays, with
potential therapeutic implications in inflammation induced cold-
induced nociception and allodynia.
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TRPA1
TRPA1 has been shown to have a prominent role in inflammation,
both through its expression which can be modulated by
inflammatory mediators, and as a regulator of inflammatory
signaling. TNF, a well-defined pro-inflammatory cytokine,
upregulates the trafficking of TRPA1 to the cell membrane,
increasing its membrane expression in peripheral nerves (85).
Additionally, when exposing neuronal and epithelial cell lines to
viruses such as rhinovirus, respiratory syncytial virus, and measles,
both TRPA1 protein and mRNA expression are upregulated (199,
200). Interestingly, neutralizing IL-6 and IL-8 in viral cocultures
with neurons blocks the upregulation of TRPA1, indicating that
both IL-6 and IL-8may also play a direct role in increasing TRPA1
expression. In the cerulean-induced pancreatic inflammation
model, TRPA1 expression is upregulated on pancreatic sensory
nerves (201). Similarly, TRPA1 expression is increased in CFA and
nerve injury models of inflammation (202). In many of these
models, the upregulation and activation of TRPA1 is accompanied
by the release of the generally pro-inflammatory neuropeptides,
CGRP, SP, and neurokinin A (NKA) (57, 203). Activation of
TRPA1 on TG nerves via environmental irritants contributes to
this release of SP and CGRP along with increased meningeal
vasodilation, which are implicated in migraine pathophysiology
(112, 204). Many TRPA1 agonists that are linked to the release of
SP and CGRP have also been shown to induce migraine or
headache behaviors (113, 205). Interestingly, TRPA1 agonists
have not only demonstrated pro–inflammatory properties, but
anti-inflammatory as well depending on location and
disease context.

Many TRPA1 agonists have been shown to induce a local
inflammatory response when topically applied to skin. AITC, the
molecule responsible for the pungent taste of mustard,
horseradish, and wasabi, for example induces the release of
CGRP and SP, causing thermal and mechanical hypersensitivity,
also known as an increased pain sensitivity, associated with
inflammation (4). Cinnamaldehyde, the molecule that gives
cinnamon its flavor and odor, also induces acute skin
inflammation when applied topically. Mice receiving topical
cinnamaldehyde exhibit edema formation and dermal leukocyte
infiltration (206). Additionally, many contact dermatitis reactions
are TRPA1 mediated. Xylene and toluene are common solvents
that can induces a significant inflammatory response of edema and
pain when exposed to skin. However, when the skin of TRPA1
deficient mice were exposed to xylene or toluene, the
inflammatory response was ablated, and when wild-type mice
were treated with a TRPA1 antagonist orally (HC-030031) the
inflammation of the skin was significant reduced (207).

As previously mentioned, itch is a common symptom of skin
irritation and dermal inflammation associated with different
conditions, such as allergic contact dermatitis (Table 1; ACD),
AD, and psoriasis. Itch warns against harmful environmental
irritant, and the urge to scratch is an evolutionary mechanism to
remove irritants from the affected area, characterized by swelling
and infiltration of immune cells such as lymphocytes (114). In
histamine-independent itch, it has been found that itch related
GPCRs activate TRPA1 to initiate a local inflammatory response.
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These itch GPCRs (G protein-coupled bile acid receptor 1, TSLP,
MAS-related G protein coupled member A3, and MAS-related G
protein coupled member C11) co-localize with TRPA1 on
cutaneous sensory nerves (115, 208). In ACD, a major obstacle
is histamine-independent inflammation. ACD is a common
inflammatory skin condition caused by hypersensitivity to
allergens (114, 209). In both acute and chronic models of
murine contact dermatitis, symptoms of ACD were significantly
decreased with both pharmacological inhibition as well as genetic
ablation of TRPA1. When inhibiting TRPA1, it was found that
local levels of proinflammatory cytokines interleukin 4, IL-6, and
chemokine (c-x-c motif) ligand 2 were decreased along with
dermatitis scores, edema, swelling, and T cell infiltration (209).
In psoriasis ROS and RNS play a critical role in its pathology
inducing oxidative and nitrosative stress activating TRPA1
channels on sensory nerves innervating the skin, causing the
release of SP and CGRP. In a preclinical model of psoriasis,
TRPA1 antagonists significantly inhibited itching, however it Is
important to note that long term treatment with a TRPA1
antagonist or TRPA1 deletion is actually associated in increased
psoriasis skin phenotype (210).The differences in long term vs.
short term treatment may be linked to TRPA1 on other cell types,
as additional studies have shown a role for TRPA1 on immune
cells (71, 210–212).

Similar to its role in dermal inflammation, TRPA1 plays a key
role in pulmonary inflammation. TRPA1 is expressed on afferent
vagus neurons, specifically located on Ad-, and C-fibers, which
densely innervate the lungs. Noxious irritants in the air such as
heavy metals, general anesthetics, cigarette smoke, and tear gas
have been shown to activate TRPA1. Once activated, these
TRPA1-positive neurons locally release of CGRP, SP, and NKA
to induce inflammation, bronchoconstriction, vasodilation, and
infiltration of immune cells (4, 64, 72). In addition, pulmonary
TRPA1 stimulation can induce airway reflex responses such as
coughing (117). Experimentally, multiple exogenous TRPA1
agonists have been used in animal and human models of cough
such as, citric acid, cinnamaldehyde, and AITC. These responses
are dose dependent and significantly reduced with the inhalation
of TRPA1 antagonist HC-030031 (117, 213, 214). Endogenous
TRPA1 agonists are also known induce cough, which occurs in
response to tissue inflammation in conjunction with diseases such
as asthma.

In asthmatic patients, the airway is hyperreactive and can
cause bronchoconstriction. Many TRPA1 agonists listed above
can induce asthma, such as cigarette smoke and the leading cause
of occupational asthma, toluene diisocyanate is a strong TRPA1
stimulant. Endogenous activators of TRPA1 have also been
shown to induce asthma. Asthmatic lungs exhibit increases in
bradykinin, 4-hydroxynonenal and ROS, which are all TRPA1
agonists. This increase in ROS in turn leads to elevated oxidative
stress (86, 117, 215–217). In murine and rat, ovalbumin-induced
models of asthma, a decrease in late asthma response symptoms
is seen post TRPA1 antagonist treatment (118). In TRPA1-
deleted mice, airway infiltration of leukocytes is significantly
reduced, as are the levels proinflammatory cytokines interleukin
5, interleukin 13, and TNF (4, 118, 119, 217).
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Unlike its role in dermal and pulmonary inflammation,
TRPA1 has been found to have contradictory pro- and anti-
inflammatory roles in gastrointestinal inflammation. TRPA1
is widely expressed in the gut, with functional expression
found on neurons innervating the intestine and mucosal
endocrine cells. In patients with Crohn’s disease (CD) and
ulcerative colitis (UC), as well as preclinical models of IBD
TRPA1 expression is upregulated in colonic tissue (3). In
animal models of colitis, TRPA1 has an inconsistent role
inflammation. For example, genetic deletion of TRPA1 has
been found to both decrease and aggravate the disease (120,
212, 218), while blocking TRPA1 with an antagonist and
activating with an agonist can be protective (120, 218).
These contradictory occurrences may be due the opposing
inflammatory effects of GCRP and SP in the gut. Activation of
TRPA1 on afferent nerve fibers innervating the colon as well
as DRG and NG neurons induce the release both CGRP and
SP. However, in the gut the role of CGRP in inflammation is
reversed compared to other locations of inflammation. In
experimental models of colitis, it is widely accepted
that CGRP is protective and a lack of CGRP increases the
susceptibility to spontaneous colitis, as well as experimentally
induced colin damage. A local block of the receptor for CGRP,
calcitonin receptor-like receptor, also increases colitis severity
(4, 10, 121, 219). Different IBD models as well as the stage of
the disease could also be the source of these contradictions,
AITC induced IBD, indicates TRPA1 has having pro-
inflammatory properties, as does the TNBS induced model
of colitis (3, 10, 220, 221). The DSS-induced model of colitis
has also shown contrasting results, with TRPA1 genetic
deletion or treatment with antagonists increasing disease
severity in some cases, but alleviating disease severity in
others (212, 221). In addition, treatment with cannabiderol
and cannabidivarin, both non-psychotropic cannabinoids,
and TRPA1 agonists have shown anti-inflammatory effects,
decreasing disease severity in the dinitrobenzene sulfonic acid
model of IBD (3, 222, 223). Other TRPA1 agonists have also
found to be anti-inflammatory when used to treat intestinal
inflammation. Carvacrol and carvacryl acetate were used as
effective treatments of intestinal inflammation, decreasing levels
of pro-inflammatory cytokines, and oxidative stress. Blocking
carvacrol and carvacryl acetate treatment with a TRPA1
antagonist, reversed these beneficial effects (224, 225). Overall,
TRPA1 is an interesting target for treating gastrointestinal
inflammation, however, more studies are needed to fully
understand its role in this context.

In models of arthritis, TRPA1 has been linked both to joint
inflammation and hyperalgesia (Table 1). In many studies using
monoiodoacetate and CFA models of arthritis, genetic depletion
of TRPA1 or antagonist inhibition, have resulted in significant
reduction in cold and mechanical hypersensitivity (122, 123,
226–228). In arthritis-induced joint edema, erosion, and
inflammation, TRPA1 does not have a well-defined role, with
conflicting results reported. In some studies, TRPA1 was not
found to have a prominent role in knee joint swelling or paw
edema as genetically deleting TRPA1 and blocking with an
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antagonist had no effect on TNF and CFA induced joint
swelling (122). In contrast, other studies have also shown that
either genetic deletion or blocking of TRPA1 reduces changes in
cartilage, edema, and SP release in the paw (123, 227–229).
Although the extent of the TRPA1 channel contribution to
arthritis is not conclusive, the current evidence shows the
potential for further study to understand and potentially target
TRPA1 as an arthritis therapy.

Unlike the previous inflammatory disease models, with
localized regions of inflammation, models of systemic
inflammation have shown TRPA1 to be generally protective.
Treatment with TRPA1 agonists, cinnamaldehyde, AITC,
fentamate non-steroidal anti-inflammatory drugs, and
carnosol have al l been shown to be protect ive in
inflammation. In the CLP model of sepsis, blocking TRPA1
increases disease severity as well as the levels cytokines IL-1b
and IL-6 in mice (Table 1) (124). In an LPS induced model of
inflammation, oral administration of cinnamaldehyde
deceases NO, TNF, high mobility group box protein 1,
interleukin 18 and other inflammatory mediators in serum
and plasma (230, 231). Cinnamaldehyde can also attenuate
apoptosis and promote neuronal survival in DRGs due to
oxidative stress, by inhibiting NFkB and decreasing ROS
(232). Furthermore, direct activation of TRPA1 on the
cervical vagus nerve by the optopharmacological molecule
optovin reduces systemic inflammation induced by LPS by
significantly decreasing serum TNF (125). Interestingly, LPS
itself has recently been found to directly activate TRPA1
directly on sensory neurons, inducing a calcium influx, along
with vasodilation, pain, and the release of CGRP in a TRPA1
dependent manner (73).

Based on many of the preclinical discoveries previously
mentioned, TRPA1 has been increasingly identified as a
potential therapeutic target for pain and inflammation.
Between 2015 and 2019, twenty-eight patent applications were
filed for TRPA1 antagonists, many of which were aimed at
treating pain, airway respiratory diseases, and dermatological
disorders. Currently, to our knowledge, only five of the twenty-
eight patented molecules have gone on to clinical trials, with only
a few making it to phase II and none reaching phase III.
Translation of TRPA1 antagonists from pre-clinical to clinical
results remains challenging, some have shown strong activity in
humans with reduced or no antagonist activity in mice or rats.
Additionally, as TRPA1 is expressed in a wide variety of tissues
with varying roles in inflammation, this makes it difficult to
determine safety and efficacy without very targeted approaches
(233, 234). Current preclinical models lack tissue specificity for in
vivo modeling. Similar to TRPV1 preclinical studies, many
preclinical models utilize whole-body genetic deletion when
evaluating the role of TRPA1 in inflammation. Additional
studies looking into tissue-specific genetic modification and
activation would greatly benefit in identifying the potential role
of TRPA1 as a therapeutic target in inflammation. Despite these
challenges, TRPA1 remains a key target for treating inflammation
with the potential for more disease and tissue-specific
targeted therapies.
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CONCLUSIONS

The broad selectivity and polymodal nature of TRP channels
make them critically important in sensory transduction and
integration. Their presence on various immune cells (e.g.,
macrophages, T-cells) and wide distribution across sensory
nerves (Figure 1) suggests that they may be important
conduits for neural-immune crosstalk. Moreover, because their
activation often leads to the release of neuropeptides linked to
neurogenic inflammation (Figure 2), their expression on
peripheral nerve and on epithelial cells may be key factor in a
wide range of conditions and inflammatory disorders that we
have discussed in this review including sepsis, arthritis, asthma,
colitis, pain, and dermatitis (Table 1).

Interestingly, there is some discrepancy with the understanding
of TRP channels role in many of these inflammatory disorders.
Both role and specificity have been disputed which could be
influenced by multiple variables. First, in preclinical disease
models, the availability of multiple different models for an
individual disease adds to the variability of TRP channel
contributions in different disease contexts. Second, there is a
lack of appropriate genetic models for many of these diseases.
Given the broad range of tissue expression and polymodal
activation of TRP channels, utilizing whole-body genetic
deletion models often results in differing outcomes, when
compared to cell-type or tissue-specific genetic manipulations.
As observed with TRPV1 and TRPA1, the site of the inflammation
in addition to how widespread it is (local vs. systemic) influences
its pro- or anti-inflammatory function (Table 1). Cell and region-
specific KO models would greatly enhance our understanding of
how TRP channels modulate inflammation, which would
additionally allow for better targeted therapeutics. In addition, as
Frontiers in Immunology | www.frontiersin.org 12
TRP channels are activated by a wide range of agonists, both
exogenous and endogenous, it is important to understand how
inflammatory responses differ depending on disease states and
depending on the location within the body. An emerging area of
interest within TRP channel research is focused on how the
nervous system deciphers immune-related signals to initiate,
trigger, and modulate inflammation. TRP channels, including
those discussed in this review, play an important role in this
communication between the nervous and immune systems. As the
field advances to discover more about the mechanisms and roles of
TRPV, TRPM, and TRPA channels, it will be exciting to see if
targeted drug development based on a better mechanistic
understanding can provide therapies to treat the assortment of
conditions involving TRP channels.
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