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serum lipids both in adults and
children: A meta-analysis
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Background and aims: Findings about the associations between

transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 and

nonalcoholic fatty liver disease have not been consistently replicated,

particularly in steatosis and fibrosis. The present study aimed to investigate

the associations between the rs58542926T allele and the spectrum of NAFLD

and its related metabolic phenotypes.

Methods: Systematic literature research was performed to analyse the

associations between rs58542926 and the spectrum of NAFLD and its related

metabolic phenotypes. A random effects meta-analysis with a dominant

genetic model was applied.

Results: Data from 123,800 individuals across 44 studies were included in the

current meta-analysis.rs58542926 T allele was associated with an increased

risk of NAFLD in both adults (OR=1.62; 95% CI: 1.40, 1.86) and children

(OR=2.87; 95% CI: 1.85, 4.46). Children had a stronger association with

NAFLD (P=0.01). rs58542926 T allele was also positively associated with

steatosis progression (mean difference=0.22; 95% CI: 0.05, 0.39) and fibrosis

stage (OR=1.50; 95% CI: 1.20, 1.88) in adults. The TM6SF2 rs58542926 T allele

was positively associated with ALT in both adults and children (both P<0.01) and

only with higher AST in adults (P<0.01). The rs58542926 T allele was negatively

associated with serum total cholesterol (TC), low-density lipoprotein (LDL), and

triglycerides (TGs) in both adults and children (all P<0.01).The serum level of TG

was much lower in adults than in children (P<0.01).

Conclusion: TM6SF2 rs58542926 is involved in the entire spectrum of NAFLD

and its related metabolic phenotype, and differences in serum lipid levels were

observed between adults and children.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is a complex

disease that is closely related to genetic susceptibility and

lifestyles. NAFLD has become the most common chronic liver

disease worldwide in both adults and children (1, 2). The global

prevalence of NAFLD is currently estimated to be 32.4% in

adults and 7.4% in children (1, 3). NAFLD consists of a broad

spectrum of liver diseases, including nonalcoholic fatty liver

(NAFL), nonalcoholic steatohepatitis (NASH), liver cirrhosis

and even hepatocellular carcinoma (HCC) (4). NAFLD is

considered a risk factor for cardiovascular diseases and type 2

diabetes due to dyslipidemia and hyperglycemia (5).

In recent years, molecular epidemiological studies have

suggested that gene variation plays an important role in the

occurrence and development of NAFLD. A prospective twin

study showed that the heritability of hepatic steatosis (based on

MRI-PDFF) was 0.52 and the heritability of hepatic fibrosis

(based on liver stiffness) was 0.5 (6). Identification and

understanding of its related genetic variants are important for

the treatment of hepatic steatosis and its advanced stages. With

the implementation of a genome-wide association study

(GWAS) on liver fat, more than twenty single nucleotide

polymorphisms (SNPs) have been involved in the pathogenesis

of NAFLD, for instance, rs738409 (C>G, pI148 M) of patatin-

like phospholipase-domain-containing 3 (PNPLA3) and

rs58542926 (C>T, pE167K) of transmembrane 6 superfamily

member 2 (TM6SF2) (7).

SNP rs58542926 triggers hepatic fat accumulation by

reducing very low-density-lipoprotein (VLDL)-mediated lipid

secretion and increases the risk of lipid accumulation in

hepatocytes and decreases the circulating lipids in serum (8).

However, the relationships between the TM6SF2 rs58542926

variant and predisposition to all spectra of NAFLD remain

controversial in the current literature (9). Liu et al. (10)

showed that the TM6SF2 rs58542926 variant could affect the

progression of fibrosis in European Caucasian NAFLD

participants, but Wong et al. (11) showed that the TM6SF2

rs58542926 variant did not cause liver fibrosis or cirrhosis in

Chinese NAFLD subjects.

In addition, serum concentrations of alanine aminotransferase

(ALT) and aspartate aminotransferase (AST) have been classically
02
regarded as markers of liver function damage with NAFLD

progression (12). A recent exome-wide association study of liver

fat content showed that the TM6SF2 rs58542926 variant was

associated with ALT in the Dallas Biobank and the Copenhagen

Study, but the relationship was not statistically significant in AST

(13). However, these results were not confirmed in genome-wide

association studies (GWASs) (14). However, some GWAS have

suggested that the TM6SF2 rs58542926 variant is closely

associated with serum lipid levels (15–17). However, the results

of these studies were conflicting and nonreplicated. In addition,

whether those associations were consistent between adults and

children is unknown.

Therefore, the present study aims to summarize all eligible

results to clarify whether the TM6SF2 rs58542926 variant

influences the development of NAFLD and related metabolic

phenotypes in both adults and children and to compare the

differences in the effect values of the variant between adults

and children.
Methods

Data sources and study selection

This meta-analysis followed the HuGENet and MOOSE

reporting guidelines.

A comprehensive search for literature was conducted in the

PubMed, EMBASE, Web of Science, The Cochrane Library and

CNKI databases. The specific search strategy was “rs58542926 or

E167K or Glu167Lys”. The search was completed on October 29,

2021. After removing duplicate literature, titles and abstracts

were independently screened for eligibility by 2 authors, with

inclusion/exclusion criteria applied to potentially eligible

full texts.
Inclusion and exclusion criteria of
the literature

The study protocol, including the search strategy and

inclusion and exclusion criteria, was registered on PROSPERO

Database of Systematic Reviews (CRD42021288163). Inclusion
frontiersin.org
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criteria: (1) genetic association studies on the TM6SF2

rs58542926 variant and NAFLD in human beings; (2) provide

genotype/allele frequency of rs58542926 polymorphisms in the

study population; (3) full text available in English or Chinese.

Exclusion criteria: (1) case reports, reviews, meta-analyses,

comments, and repeated published literature; (2) lack of

detailed genotyping data or relevant outcomes; (3) in vitro and

animal studies; (4) preprint and abstract publications; (5) studies

conducted in patients with infectious liver disease (HBV or

HCV infection).
Study selection and data extraction

Literature was initially selected based on title and abstract,

and we reviewed the full texts to select qualified articles based on

eligibility criteria. Study selection was performed by 2

independent reviewers. Any disagreement between the two

reviewers was discussed with and resolved by a third

investigator. Database searches identified 305 articles, of which

38 articles (10, 11, 13, 14, 18–50) met the inclusion criteria for

pooled meta-analyses. In addition, we added our own sample

results in the children part, which was named the

Comprehensive Prevention Project for Overweight and Obese

Adolescents (CPOOA) (51, 52) (Figure 1).
Frontiers in Endocrinology 03
Information extraction was performed by 2 independent

reviewers. , author’s name, publication year, country and

ethnicity of study subjects, total numbers of participants,

adults/children, NAFLD-related metabolic phenotypes

[including serum concentrations of total cholesterol (TC), TG,

low-density lipoprotein (LDL), high-density lipoprotein (HDL),

ALT and AST], steatosis and fibrosis were extracted from the

selected studies. In addition, the number of different genotypes

of TM6SF2 rs58542926 carriers and the results of the Hardy-

Weinberg equilibrium (HWE) test were recorded.
Statistical analyses

The Review Manager Version 5.4 was used to conduct

statistical analyses and forest plots. Due to the low frequency

of TT homozygous in TM6SF2 rs58542926, genetic association

analyses were performed with the dominant model.

NAFLD, hepatic steatosis and fibrosis stages were evaluated

as dichotomous variables (as Yes/No), and the effect size was

calculated as an odds ratio (OR) between groups. In addition, the

progression of steatosis and fibrosis (the degree of hepatic

steatosis, lobular inflammation and balloon degeneration) were

treated as continuous variables. Serum lipid levels (TC, TG, LDL,

HDL), ALT and AST were evaluated as continuous variables
FIGURE 1

Flowchart of study selection.
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individually. For continuous variables, effect sizes were

calculated as the mean differences (MD). All values of medians

and the interquartile range or total range were converted to the

mean and standard deviation.

Both the fixed- and random-effects models were explored for

all outcome variables, and the random model was selected to

represent final results, since it would make the results tend to be

conservative with the test of Dersimonian Laird. The results were

reported with effect sizes and 95% confidence intervals (CIs).

P ≤0.05 was considered statistically significant. The fixation

index was calculated to compare the differences in TM6SF2

rs58542926 among different ethnicities and no differences was

found (53). Considering the possible heterogeneity between

adults and children, a subgroup analysis between children and

adults was conducted. An additional subgroup analysis was

performed for fibrosis stages (with fibrosis vs without fibrosis;

fibrosis stage 0-1 vs 2-4; fibrosis stage 0-2 vs 3-4), and those

analyses were only performed within individuals with NAFLD.

Heterogeneity between groups was described using the Q

statistic, tau2, and I2. In terms of forest plots, ORs were pooled

using the method of inverse variance.

Two reviewers independently assessed the risk of bias of

each study by applying the evaluation tool established by the

Agency for Healthcare Research and Quality (https://

effectivehealthcare.ahrq.gov/products/collections/cer-methods-

guide) (54). All studies were assessed based on their design,

either case−control or cross-sectional studies (Figure S1).

Finally, the risk of bias was divided into three levels: low, high

and unclear. The stabilities of pooled results were determined by

omitting one study each time and pooling the results of the

remaining studies. Funnel plots were constructed to test

publication biases.
Results

Characteristics of selected studies

In total, 44 original studies (36 in adults and 8 in children) and

123,800 individuals (5432 children) were included in the current

meta-analysis. Most of the studies were conducted in Europe (21

studies), 13 in Asia, 3 in North America and 2 in South America.

The main characteristics of the studies are shown in Table S1. The

summary of the results of the meta-analysis and the disparities

between adults and children with NAFLD as well as its related

metabolic phenotypes are presented in Table 1.
The rs58542926 T allele increased the
risk of NAFLD in both adults and children

Twenty studies (14 in adults and 6 in children) were eligible

to estimate the relationship between rs58542926 and NAFLD.
Frontiers in Endocrinology 04
Data from adults (15,901 individuals) found that the rs58542926

T allele was positively associated with NAFLD (OR=1.62; 95%

CI: 1.40, 1.86; P<0.01, Figure 2). Children (3544 individuals) had

a stronger association with NAFLD (OR=2.87; 95% CI: 1.85,

4.46; P<0.01). The effect value of children was statistically

significantly higher than that of adults (P=0.01).
The rs58542926 T allele increased the
risk of steatosis and fibrosis in adults

Seven studies (3,461 adults) were eligible for estimation of

the relationship between rs58542926 and steatosis. Steatosis

progression showed a positive association with the rs58542926

T allele in 6 studies (MD=0.22; 95% CI: 0.05, 0.39; P=0.01; Figure

S2). The presence of severe steatosis (stage S0-S1 versus stage S2-

S3) showed a positive association with the rs58542926 T allele in

4 studies (OR=1.52; 95% CI: 1.14, 2.02; P<0.01; Figure S3).

Nine studies (4928 adults) were eligible for an estimation of

the relationship between rs58542926 and fibrosis. A positive

association between fibrosis progression and the rs58542926 T

allele was detected in 4 studies (MD=0.32; 95% CI: 0.03, 0.61;

P=0.03; Figure S4). Data from 8 studies found that the

rs58542926 T allele was associated with fibrosis stages

(OR=1.50; 95% CI: 1.20, 1.88; P<0.01; Figure 3). Given the

disparities between different fibrosis stages, subgroup

comparisons (with fibrosis vs without fibrosis; fibrosis stage 0-

1 vs 2-4; fibrosis stage 0-2 vs 3-4) were also conducted. No

significant difference was observed among fibrosis stages

(OR=1.07; 95% CI: 0.63, 1.82; P=0.80; Figure 3). However, the

rs58542926 T allele had positive associations with severe

(OR=1.46; 95% CI: 1.07, 1.99; P=0.02; Figure 3) and advanced

fibrosis (OR=2.04; 95% CI: 1.36, 3.05; P<0.01; Figure 3). In the

sensitivity analysis conducted with omission of nonliver biopsy

studies, consistent results were observed.
The rs58542926 T allele was associated
with increased ALT in both adults
and children

Associations for plasma levels of ALT and AST were

extracted from 19 studies (15 in adults and 4 in children) and

15 studies (13 in adults and 2 in children), respectively. ALT and

AST were significantly associated with rs58542926 in adults

(MD=3.34; 95% CI: 1.67, 5.00; P<0.01; Figure S5; MD=1.91; 95%

CI: 0.59, 3.23; P<0.01; Figure S6). In children, a positive

relationship was observed for the rs58542926 T allele and ALT

(MD=3.93; 95% CI: 1.71, 6.16; P<0.01; Figure S5). No

relationship was observed for the variant and AST in children

(MD=2.90; 95% CI: -1.58, 7.37; P=0.20; Figure S6). The

differences in effect sizes between children and adults were not

statistically significant for ALT or AST (both P>0.05).
frontiersin.org
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The rs58542926 T allele was negatively
associated with TC, TG, and LDL in both
adults and children

Twenty-one studies (16 in adults and 5 in children) were

eligible for estimation of the relationship between rs58542926 and

serum lipid levels. Negative relationships were observed for the

rs58542926 T allele and TC (MD=-10.01; 95% CI: -12.46, -7.56;

P<0.01; MD=-10.85; 95% CI: -14.64, -7.05; P<0.01; Figure S7), TG

(MD=-14.36; 95% CI: -18.71, -10.02; P<0.01; MD=-6.55; 95% CI:

-10.00, -3.11, P<0.01; Figure 4), and LDL (MD=-2.04; 95% CI: -2.63,

-1.44; P<0.01; MD=-8.77; 95% CI: -11.25, -6.30; P<0.01; Figure S8)

in pooled analyses in both adults and children. Data from 19 studies

(15 in adults and 4 in children) found that rs58542926 was not
Frontiers in Endocrinology 05
associated with HDL in adults and children (MD=0.66; 95% CI:

0.00, 1.32; P=0.05; MD=-0.81; 95% CI: -2.16, 0.53, P=0.24; Figure

S9). In addition, the serum levels of LDL and HDL were much

lower in children than in adults (both P<0.05), and the serum level

of TG was much lower in adults (P<0.01), but the difference was not

statistically significant for TC (P=0.72).
Stability and publication biases of the
present study

In the stability analysis of omitting one study each time and

pooling the results of the remaining studies, the trend of

associations was not strongly altered, indicating that the
TABLE 1 Summary of results from meta-analysis for adults and children.

Outcome Analysis Subpopulation Number of
studies

Heterogeneity Effect summary Adults vs Chil-
dren*

I2 PQ Estimate PZ P

NAFLD
diagnosis

Control vs. NAFLD Adult 14 0.37 0.07 1.62 (1.40, 1.86) † <0.01

Child 6 0.59 0.03 2.87 (1.85, 4.46) † <0.01 0.01

Steatosis Severe (stage S0-S1 vs. stage S2-
S3)

Adult 4 0.34 0.21 1.52 (1.14, 2.02) † <0.01 N/A

Steatosis progression Adult 55 0.8 <0.01 0.22 (0.05, 0.39) ‡ 0.01 N/A

Fibrosis Occurs (stage F0 vs. stage F1-
F4)

Adult 2 0 0.95 1.07 (0.63, 1.82) † 0.80 N/A

Severe (stage F0-F1 vs. stage F2-
F4)

Adult 5 0.58 0.05 1.46 (1.07, 1.99) † 0.02 N/A

Advanced (stage F0-F2 vs. stage
F3-F4)

Adult 3 0 0.77 2.04 (1.36, 3.05) † <0.01 N/A

Fibrosis progression Adult 4 0.8 0.002 0.32 (0.03, 0.61) ‡ 0.03 N/A

Aminotransferase ALT Adult 15 0.90 <0.01 3.34 (1.67, 5.00) ‡ <0.01

Child 4 0.13 0.33 3.93 (1.71, 6.16) ‡ <0.01 0.68

AST Adult 13 0.86 <0.001 1.91 (0.59, 3.23) ‡ <0.01

Child 2 0.44 0.18 2.90 (-1.58, 7.37) ‡ 0.2 0.68

Serum lipids TC Adult 14 0.42 0.03 -10.01 (-12.46,
-7.56) ‡

<0.01

Child 5 0.38 0.17 -10.85 (-14.64,
-7.05) ‡

<0.01 0.72

TG Adult 16 0.76 <0.01 -14.36 (-18.71,
-10.02) ‡

<0.01

Child 5 0 0.90 -6.55 (-10.00,
-3.11) ‡

<0.01 <0.01

LDL Adult 13 0 0.54 -2.04 (-2.63, -1.44)
‡

<0.01

Child 4 0 0.41 -8.77 (-11.25,
-6.30) ‡

<0.01 <0.01

HDL Adult 15 0.60 <0.001 0.66 (0.00, 1.32) ‡ 0.05

Child 4 0.19 0.29 -0.81 (-2.16, 0.53) ‡ 0.24 0.05
*: Differences between adults and children were detected with Chi square test.
† OR, 95% CI; ‡ Mean difference, 95% CI.
Meta-analyses were performed using random effects with subgroup analysis for adult and child populations. The results using a dominant model of inheritance (CC vs. CT + TT) are shown
for all outcomes. PZ <0.05, significant. Meta-analyses were performed using random effects with the DerSimonian−Laird method for estimation of tau2; NAFLD, nonalcoholic fatty liver
disease; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TC, total cholesterol; TG, triglyceride; LDL, low-density lipoprotein; HDL, high-density lipoprotein; OR, odds
ratio; CI, confidence interval.12; NA, Not Available.
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FIGURE 2

rs58542926 T allele was associated with a higher odds ratio of NAFLD. Data from 19,445 individuals (15,901 adults, 3544 children) with CT, MRI
or FibroScan. rs58542926 T allele was positively associated with NAFLD in both adults and children (using a dominant model of inheritance).
Meta-analysis was performed using random effects with the DerSimonian−Laird method for estimation of tau2; NAFLD, nonalcoholic fatty liver
disease; CI, confidence interval; SE, standard error.
FIGURE 3

rs58542926 T allele was associated with a higher odds ratio with fibrosis stages. Data from 4928 individuals with liver biopsy. The rs58542926 T
allele was positively associated with severe and advanced fibrosis stages (using a dominant model of inheritance). Meta-analysis was performed
using random effects with the DerSimonian−Laird method for estimation of tau2; CI, confidence interval; SE, standard error.
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results of the pooled meta-analysis were stable. Potential

publication bias was assessed by funnel plots in the present

meta-analysis. The funnel plots were generally symmetrical,

indicating that the results are unlikely to be severely affected

by publication bias (Figure S10, S11).
Discussion

Main results

In this meta-analysis, we confirmed the TM6SF2 rs58542926

T allele as a risk factor for the susceptibility and development of

NAFLD and its related metabolic phenotypes in adults and

children. Nonetheless, the rs58542926 T allele was a protective

factor for serum lipid levels. In the present study, it is

noteworthy that carrying the T allele is associated with a

higher risk of NAFLD in children than in adults. Compared

with adults, the rs58542926 T allele had a stronger effect size in

pediatric NAFLD. Previous studies have shown that compared

with adults, children with NAFLD may progress more rapidly

and are more likely to develop fibrosis and end-stage liver

disease in early adulthood (55). In addition, NAFLD will also

increase the risk of multiple complications, such as

hypertension, metabolic syndrome and diabetes (55, 56).
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TM6SF2 was first reported in 2000 (9), and it contains 10

transmembrane domains. It is mainly expressed in the small

intestine and liver, which are associated with lipid metabolism.

Kozlitina et al. (13) showed that TM6SF2 is an endoplasmic

reticulum membrane protein and that the TM6SF2 rs58542926

variant (C>T) encodes a glutamate to lysine at amino acid 167

(E167K). TM6SF2 is involved in the VLDL-TG secretion

pathway (inactivation of TM6SF2, a gene defective in fatty

liver disease, impairs lipidation but not secretion of VLDL)

(57). The E167K variant leads to misfolding and increases the

degradation of TM6SF2 in hepatocytes and induces an increase

in liver TG content and a decrease in circulating lipids (13, 58).

Our results showed that rs58542926 was related to steatosis

progression, severe steatosis, fibrosis stages and fibrosis

progression in adults. However, there was no statistically

significant difference in the fibrosis stages. Only two studies

investigated the occurrence of fibrosis with a relatively small

sample size, which was inadequate to reveal the real association.

In previous studies, the relationship of TM6SF2 rs58542926 with

liver fibrosis has been controversial. The discrepancy between

these results may be related to the different methods of hepatic

steatosis and liver fibrosis examinations used in the studies, such

as ultrasound (26, 34, 59), magnetic resonance imaging (25, 40),

and liver biopsy (10, 22, 29), among others. Research has shown

that the sensitivity of ultrasound decreases when the liver fat is
FIGURE 4

rs58542926 T allele associated with lower TG. Data from 106,643 individuals (102,770 adults, 3873 children). rs58542926 T allele was positively
associated with TG in both adults and children (using a dominant model of inheritance), where data represent SD change in TG (mg/dl) per T-
allele. Meta-analysis was performed using random effects with the DerSimonian−Laird method for estimation of tau2; TG, triglyceride; CI,
confidence interval; SE, standard error.
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less than 30% (60). In the present study, the meta-analyses of

steatosis and fibrosis analyses only included studies which used

the biopsy to avoid measurement bias.

AST and ALT are biomarkers of liver injury. ALT is mainly

distributed in the cytoplasm of hepatocytes, and the increase in

ALT reflects damage to the hepatocyte membrane and is the

most sensitive biomarker (61). The present study only found

that the adult T allele carriers had higher AST. NAFLD is a

chronic progressive disease, and the degree of liver injury is

relatively low in children. A significant increase in AST often

occurs in patients with more severe hepatocyte destruction.

Therefore, it seems reasonable that there was no relationship

between AST and rs58542926 in children. Intriguingly, the

genetically engineered transgenic mouse model showed that

alternation of ALT or AST was not detected in the liver

t r ansgen i c A lb-TM6SF2 mice (ove rexpre s s ion o f

humanTM6SF2) or in the tm6sf2 knockout mice (62).

Therefore, the correlation between TM6SF2 rs58542926 and

ALT and AST in present study may be mainly attributed to

the chronic liver injury caused by rs58542926 indirectly. At

present, the gold standard for the diagnosis of NAFLD is liver

biopsy, but it is expensive and invasive. The common screening

method for pediatric NAFLD is ALT with or without liver

ultrasonography (63–65). As an effective and reversible disease

for early intervention, there are still some disputes about the

sensitivity of screening children with NAFLD using ALT as a

biomarker. However, studies have confirmed the reliability of

using serum ALT to screen overweight children for NAFLD in

primary health care (66). Our meta-analysis further confirmed

the association between TM6SF2 rs58542926 and ALT.

This is in line with the recommendations of the American

Academy of Pediatrics on NAFLD screening for children over

10 years of age with overweight or obesity risk factors (67) and

may provide a reference for the early detection of NAFLD

in children.

Based on the molecular function of TM6SF2, it is logical to

observe lower levels of TG, TC and LDL in serum among T allele

carriers. TM6SF2 transfers TG from cytoplasmic to VLDL

particles (57). Overexpression of TM6SF2 decreased the

number and size of lipid droplets. Overall, the trends of serum

lipid levels were consistent in both adults and children. In

addition, animal models showed that overexpression of human

TM6SF2 in mice could increase serum lipid levels, including TC,

LDL and TG (62, 68). When tm6sf2 was knocked down or

knocked out in mice, the circulating lipid level decreased as well

(62, 69). However, TM6SF2 rs58542926 was not associated with

HDL in the present study. The synthesis, assembly and transport

of HDL particles are different from those of lipoproteins carrying

LDL and TG (70). The associations between serum lipid levels

are consistent with the results of Pirola et al., who also did not

detect an association between HDL and rs58542926 (70). The

variant TM6SF2 rs58542926 could increase liver lipoprotein
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accumulation and reduce the concentration of serum lipids in

peripheral serum plasma (71). Therefore, the TM6SF2

rs58542926 T allele not only increases the risk of NAFLD but

also has a protective effect against cardiovascular disease (70).

Interestingly, in present study, the effect value differences

between TG and LDL in adults and children showed the

opposite trend: in TG, the effect value of adults was higher

than that in children, while in LDL, the effect value in children

was higher than that in adults. As the disease progresses in

adulthood, the transport function of lipid droplets was probably

further affected, so the TG serum levels in adults might have

been substantially reduced in comparison with those in children.

Endogenous TG in serum is mainly transported by VLDL. With

the transfer of TG from VLDL, the change in molecular

composition can turn VLDL into intermediate density

lipoprotein (IDL). When the cholesterol content in IDL is

higher than that in TG, IDL will become LDL. Therefore, the

effect value of LDL in children carrying the T allele seems higher

than that in adults. To be mentioned, children with NAFLD

included in the present analyses were mainly children with

overweight/obesity. This phenomenon alerts that even children

with overweight/obesity and favorable serum lipid levels are

still at risk for NAFLD. Ultrasonography and/or transient

elastography should be implemented with overweight or

obese children as recommended by the European Society

for Pediatric Gastroenterology, Hepatology, and Nutrition

(ESPGHAN) (65).
Strengths and limitations.

Previous meta-analyses conducted between TM6SF2

rs58542926 and NAFLD mainly focused on the sole

association between rs58542926 and susceptibility to NAFLD

or aminotransferase or serum lipid levels or the progression of

NAFLD or some phenotypes (12, 70, 72–74). To our knowledge,

the present study is the first meta-analysis that included both

children and adults to reveal the effects of rs58542926 on the

spectrum of NAFLD and its related metabolic phenotypes.

Furthermore, we dissected the effect size between adults

and children.

Nevertheless, some limitations need to be mentioned as well.

First, the meta-analysis results were based on unadjusted pooling

of previous findings due to the lack of raw data for eligible

studies. Second, for consistency in the summary of results, in

some studies, some values of medians and the interquartile range

or range were converted to the mean and SD, which could cause

error in the estimate. However, we used the improved estimation

methods of Wan et al. (75) and Luo et al. (76) to reduce bias as

much as possible. Third, there was no hierarchical adjustment

for different ethnic groups, but the fixation index did not show
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disparities in rs58542926 among different ethnic groups.

Therefore, the impact of ethnic differences would be weak.

Last, the disparities between adults and children might be

caused by the heterogeneities among different studies;

however, assessing the credibility of an apparent effect

modification is challenging (77).
Conclusions

TM6SF2 rs58542926 was associated with the incidence and

progression of NAFLD and its related metabolic phenotype in

both adults and children. The rs58542926 SNP had stronger

associations with NAFLD, TG and LDL in children than in

adults, which indicated that specific health education and liver

ultrasound screening should start in children who are

susceptible to NAFLD (e.g., children with obesity carrying

rs58542926 CT or TT and with favorable serum lipid levels).
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