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The major problem with ventilation distribution calculations using DIR and 4DCT is the motion artifacts in 4DCT. Quite often
not all phases would exhibit mushroom motion artifacts. If the ventilation series similarity is sufficiently robust, the ventilation
distribution can be calculated using only the artifact-free phases. This study investigated the ventilation similarity among the data
derived from different respiration phases. Fifteen lung cancer cases were analyzed. In each case, DIR was performed between the
end-expiration phase and all other phases. Ventilation distributions were then calculated using the deformation matrices. The
similarity was compared between the series ventilation distributions. The correlation between the majority phases was reasonably
good, with average SCC values between 0.28 and 0.70 for the original data and 0.30 and 0.75 after smoothing.The better correlation
between the neighboring phases, with average SCC values between 0.55 and 0.70 for the original data, revealed the nonlinear
property of the dynamic ventilation. DSC analysis showed the same trend. To reduce the errors if motion artifacts are present, the
phases without serious mushroom artifacts may be used. To minimize the effect of the nonlinearity in dynamic ventilation, the
calculation phase should be chosen as close to the end-inspiration as possible.

1. Introduction

Lung function is often characterized by perfusion and ventila-
tion. Clinically, the major imaging modalities for ventilation
are SPECT [1] andPET [2]. Recently, deriving lung ventilation
distribution from 4-dimensional Computed Tomography
(4DCT) using deformable image registration (DIR) has been
developed [3–5]. One of the advantages of this approach is
its higher spatial resolution compared to nuclear medicine
scans [6]. It has been shown that this technique agrees
reasonably well with other methods, such as SPECT, Xenon-
enhanced dynamic CT, and PET [7–10]. Although ventilation
distribution by Xenon-enhanced dynamic CT can achieve
similar resolution, because of the dynamic scanning, only
a part of the lung can be covered in a ventilation scan,

and the technique itself is more complicated compared to
4DCT [7, 10]. Since 4DCT is already widely used in thoracic
cancer radiotherapy treatment planning, in principle, using
the 4DCT/DIR technique, one could determine regions
of high lung ventilation in thoracic cancer patients and
attempt to spare them in radiotherapy treatment planning,
without the need for an additional imaging procedure [11].
Therefore, 4DCT-based ventilation assessment represents a
relatively simple and low cost way to further personalized
radiation therapy treatment planning. The ventilation calcu-
lation method using 4DCT is being clinically investigated in
lung disease detection [12], radiotherapy treatment planning
studies [11, 13], and assessment of radiotherapy response [14].

However, the 4DCT-DIR technique is susceptible to noise
and artifacts in the 4DCT data [15, 16]. The most common
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Figure 1: Mushroom artifacts can be seen at the diaphragm region in the right lung on 0% phase (panel (a), indicated by an arrow) but not
on others (panels (b) and (c)).

artifacts in a 4DCT are caused by organ motion. One of
the frequently seen artifacts is called a mushroom artifact
because of its shape [17]. The mushroom artifacts are caused
by the diaphragm truncation and duplication in some phases
of a 4DCT, due to the irregular diaphragmmotion during the
scan. When a 4DCT dataset is used in DIR, irregularities in
the deformation matrix would occur in the artifact region,
which would in turn cause errors in the derived ventilation
distribution.

A set of 4DCT data consists of a number of respiratory
phases, typically 10. By convention, phase 0% is the end-
inspiration phase while phase 50% is the end-expiration one.
Ventilation distribution is usually derived from the deforma-
tion matrix between phases 0% and 50%, which represent
the largest respiration difference. Even when mushroom
artifacts (Figure 1) are seen, they are not necessarily present
on every phase. One way to alleviate the mushroom artifact
problem is to train the patient to breath regularly and repeat
the scan. Another option, when rescanning is not possible,
is to use only the phases without mushroom artifacts to
perform the DIR and subsequent ventilation calculations.
Obviously this approach is only feasible if derived ventilation
distribution data are sufficiently robust with respect to the
choice of respiratory phases used for calculations. Thus the
goal of the current paper is to investigate stability of the
derived ventilation data when different phases are used in the
ventilation calculation.

Part of the results of this study was presented at The
International Congress on Clinical Trials in Oncoloty and
Hemato-Oncology, March 16-17, 2017, London, UK.

2. Materials and Methods

2.1. PatientData. Fifteen lung cancer patients’ 4DCTdatasets
were used in this study following a protocol approved
by the institutional review board. No dataset used in the
study had pronounced mushroom artifacts, to streamline
the ventilation similarity comparison between the different
phases. No other inclusion/exclusion criteria were applied.

The case shown in Figure 1 was also analyzed as an example
of a mushroom artifact being present, to demonstrate the
practicality of the method. Each 4DCT dataset consisted of
10 respiratory phases, with axial image pixel size of about 1 ×
1mm2 and 3mm slice thickness.

2.2. Deformable Image Registration. Based on a previous DIR
selection study [18], the Diffeomorphic Morphons (DM)
method [19] was used to register the end-expiration phase to
all others in each 4DCT dataset.

2.3. Ventilation. The geometric, or Δ𝑉, method was used.
It directly calculates the local volume change using the
deformation matrix resulting from the DIR [3]. In the defor-
mation matrix, a 3-dimensional (3D) displacement vector
is recorded for each voxel between the two registered 3D
image sets.The local volume change is calculated based on the
neighboring voxel displacements. Ventilation for each voxel is
then calculated as

𝑃 =
Δ𝑉

𝑉ex
, (1)

where Δ𝑉 is the volume change between the involved respi-
ration phases and 𝑉ex is the initial volume at expiration [20].

Each ventilation distribution calculation involves two
respiration phases. The full ventilation is calculated using the
end-inspiration (0%) and the end-expiration (50%) phases,
which is denoted here as 𝑉0%

50%, and is considered a standard.
In this study, ventilation distributions using other phases
were calculated and compared to this standard. To streamline
comparisons, the base phase was always the end-expiration
one (50%). A ventilation distribution calculated using an
arbitrary phase 𝑥 and the end-expiration phase can be further
denoted as 𝑉𝑥

50%, where 𝑥 = 10%, 20%, 30%, and so forth. A
series of ventilation distribution data in a respiration cycle
can also be considered a dynamic ventilation dataset.

Errors in DIR caused by the image artifacts and noise will
be reflected in the calculated ventilation distributions [16].
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Figure 2: Coronal view of ventilation distributions for a typical case: (a) 𝑉40%
50% , (b) 𝑉30%

50% , (c) 𝑉20%
50% , and (d) 𝑉0%

50% full ventilation. The color bar
scale in the figure applies to all panels.

To reduce their influence, the calculated ventilation datasets
were smoothed with a 9 × 9 × 9mm3 (or 9 × 9 × 3 voxels)
average filter [10].

2.4. Correlation and Similarity. The voxel-wise nonparamet-
ric Spearman correlation coefficients (SCC) between the
ventilation datasets, 𝑉0%

50% and 𝑉𝑥
50%, 𝑥 = 10%, 20%, 30%, . . .,

and also between neighboring phases,𝑉𝑥−10%
50% and𝑉𝑥

50%, were
calculated.

Dice similarity coefficient (DSC) [21], defined as

DSC (𝐴, 𝐵) = 2 × |𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

, (2)

where 𝐴 and 𝐵 are the two involved volumes, was applied
for the upper/lower 10%, 20%, 30% 40%, and 50% ventilation
regions between pairs of ventilation datasets, including the
original and smoothed data.

3. Results

Figure 2 demonstrates a typical case of ventilation distri-
bution calculated using deformable image registration and
4DCT. Four distributions are shown: 𝑉40%

50% , which is cal-
culated using the phase closest to end-expiration (50%)
phase, 𝑉30%

50% , 𝑉20%
50% , and 𝑉0%

50%, which corresponds to the full
ventilation distribution.

Figure 3 shows the average SCC values for the ventilation
distributions comparison between the full respiration 𝑉0%

50%
and other phases 𝑉𝑥

50%, 𝑥 = 10%, 20%, 30%, . . . in the
dynamic ventilation datasets. All SCC comparisons were
statistically similar (𝑝 < 0.0001). Note how the similarity was
high when the second phase was close to the end-inspiration
phase (𝑉10%

50% , 𝑉90%
50% ) and decreased for the phases closer to

end-expiration (base) phase. The average SCC value for the
original datasets was 0.68 ± 0.10 between 𝑉0%

50% and 𝑉10%
50% ,

while it was 0.74 ± 0.09 after smoothing. For all the phases,
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Figure 3: Average SCC value versus ventilation phase. Each SCC
value represents the correlation between the full ventilation (𝑉0%

50%)
and another phase𝑉𝑥

50% (ventilation calculated based on the 𝑥 phase
and 50% phase). The horizontal values represent 𝑥 in 𝑉𝑥

50%.
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Figure 4: Average SCC values for neighboring phases. Each SCC
value in this figure represents the correlation between ventilation
distributions calculated based on the 𝑥 phase 𝑉𝑥

50% and the previous
phase 𝑉𝑥−10%

50% . For example, SCC for 30% means the correlation
between 𝑉30%

50% and 𝑉20%
50% .

the average SCC values were between 0.28 and 0.70 for the
original datasets and between 0.30 and 0.75 after smoothing.

Figure 4 shows the average SCC values for the neighbor-
ing phases in the dynamic ventilation datasets. Each data
point represents the SCC between the corresponding phase
𝑉𝑥
50% and the previous phase 𝑉𝑥−10%

50% . For example, data point
at 20% is the SCC between phases 𝑉20%

50% and 𝑉10%
50% . There are

two special data points that need further explanation. The
point at 0% is the SCC between 𝑉0%

50% and 𝑉90%
50% ; the point

at 60% is the correlation between 𝑉60%
50% and 𝑉40%

50% . There is
no data point at 50% because it is the base phase. Compared
to the plot of the SCC values between full ventilation 𝑉0%

50%
and other phases 𝑉𝑥

50%, 𝑥 = 10%, 20%, 30%, . . . (Figure 3,
redrawn in Figure 4 for comparison), the SCC values for the
neighboring phases were flat.The average SCC values ranged
between 0.55 and 0.70 for the original datasets and between
0.60 and 0.75 after smoothing.

Figure 5 shows the DSC results. Similar to the SCC
results, the similarity of ventilation calculated with various
phases versus the full ventilation was getting worse as the
phase moved farther away from full inspiration, while the
similarity between the neighboring phases was nearly flat.

The DSC values of other ventilation regions, including
<10%, <20%, >80%, >90%, and so forth, were also calculated
(data not presented). The DSC versus phase trends for all the
ventilation regions were similar to that shown in Figure 5.

For the case with mushroom artifacts in the end-
expiration (0%) phase shown in Figure 1, the SCC values of
𝑉0%
50%–𝑉

10%
50% and 𝑉0%

50%–𝑉
90%
50% were 0.58 and 0.61, respectively,

lower than the average values 0.68 and 0.69 (Figure 6). On
the other hand, the SCC value of 𝑉10%

50% –𝑉20%
50% was 0.85, sub-

stantially higher than the corresponding average SCC value
for all cases (0.66), indicating that the mushroom artifacts in
the 0% phase introduced significant registration errors which
caused low SCC of𝑉0%

50%–𝑉
𝑥

50%, 𝑥 = 10%, 20%, 30%, . . .. Using
phases without mushroom artifacts can improve accuracy,
resulting in higher similarity between calculations using
different phases. Smoothed data (not presented) showed the
same trend.

4. Discussion

The correlation and similarity comparison used in this
study are only useful for relative ventilation distribution
comparisons and not for absolute ventilation (or magnitude
of the ventilation) differences. The magnitude of ventilation
is certainly different between 𝑉0%

50% and 𝑉𝑥
50%, where 𝑥 ̸= 0%.

SCC compares the voxel-wise order of ventilation magnitude
and DSC compares relative ventilation volumes between
ventilation datasets, bothwith nothing to dowith the absolute
magnitude difference between the datasets. Clinically, the
parameter of interest is the relative ventilation distribution;
that is why different imagingmodalities can be applied for the
same purpose althoughwhat ismeasured in different imaging
modality is different.

The poor similarity between the standard calculation
(𝑉0%
50%) and those based on the ones close to end-expiration

phase is likely due to the ventilation distribution being non-
linear with respect to phase, or the ventilation change rate for
the same location being not consistent between the phases. As
a result, ventilation distributions differ somewhat depending
on the respiration phase used. This is supported by the data
shown in Figures 4 and 5.The ventilation distributions based
on neighboring phases were closely correlated to each other
while the accumulated ventilation gradually diverged from
the initial one, 𝑉0%

50%, consistent with ventilation distribution
slowly shifting with phase. Both the overall SCC values
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Figure 5: Dice similarity coefficient (DSC) data: (a) the average DSC versus phase for the lower 30%, upper 70%, and 50% ventilation volumes
and (b) the average DSC for the 50% ventilation volume between neighboring phases. The solid line curve in (b) is redrawing of the DSC
versus phase for the 50% volume as a reference.
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Figure 6: SCC comparison between a case withmushroom artifacts
and the average values. All SCC values for the artifacts case with
𝑉0%
50% involved were lower than the corresponding average values.

Note: 0% and 10% data in the figure correspond to SCC between
𝑉90%
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50% .

and subvolumes’ DSC values showed the same trends. The
subvolumes’ DSC analysis demonstrated that all ventilation
levels, from 10% through 90% (only partial results were
presented in Results), had the similar nonlinearity property.

Based on Figures 4 and 5, the ventilation correla-
tion/similarity between the 60% and 40% phases was the
lowest, with the largest standard deviation.The reason for this
is that patients tend to hold their breath at end-expiration for

a short time, which makes the 60% phase very close to 50%
(end-expiration phase), and the small difference between
the two phases may cause relatively large image registration
errors which in turn affect the ventilation distribution. The
other reasons for reduced similaritymay be noise andmotion
artifacts in the 4DCT data, which can havemore pronounced
effect on the registration between the neighboring phases. As
a consequence, the correlation between 𝑉60%

50% and 𝑉40%
50% was

the lowest with the largest standard deviation. To avoid the
effect of motion artifacts in ventilation calculations, if there
were artifacts present in the phases close to end-inspiration,
one should use the 30% or 40% instead of the 60% or
70% phases. Slightly better correlation of 𝑉40%

50% –𝑉0%
50% than

𝑉60%
50% –𝑉0%

50% and of 𝑉30%
50% –𝑉0%

50% than 𝑉70%
50% –𝑉0%

50% can be also
observed in Figure 3.

Smoothing of the ventilation distributions makes the
correlation better in general, although occasionally, especially
for the low correlation phases, smoothing may make the
correlation worse. The reason for this phenomenon is most
likely that smoothing can reduce the errors induced by image
noise but not by other factors, for example, nonlinear change
in ventilation. This can explain why, in Figures 3 and 5, the
smoothing does not show any improvement in correlation
between 𝑉0%

50%–𝑉
40%
50% and 𝑉60%

50% –𝑉70%
50% .

The results presented in Figure 6 demonstrate that the
mushroom artifacts certainly affect the ventilation calcu-
lation, and using the artifact-free phases indeed improves
the ventilation accuracy, as demonstrated by the enhanced
similarity between different phases. Thus using the phases
without mushroom artifacts, especially when close to end-
inspiration, is conducive to getting more accurate ventilation
distributions. However, the limitation of this study was
that no clinically accepted ground truth was applied in the
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comparisons. The accuracy was determined only based on
the series similarity of the 4DCT derived ventilation data.
Further investigation is still needed to confirm the accuracy
that resulted in this study.

This study attempts to improve ventilation calculations
when obvious motion artifacts are present in 4DCT images.
However the best approach would be to reduce or eliminate
those artifacts in the first place. Amplitude-based binning,
as opposed to the traditional phase-based binning, could
reduce, but not completely eliminate, motion artifacts in
4DCT [22, 23].Therefore the approach described in this study
is useful regardless of the binning technique.

5. Conclusions

Motion artifacts are inevitably present in realistic 4DCT
datasets. To reduce errors in the ventilation distributions
caused by these artifacts, the respiratory phases that do not
show serious mushroom artifacts should be used, as the
correlation between the ventilation distributions obtained
with different phases is reasonably good. To minimize the
effect of the nonlinearity in dynamic ventilation, when the
mushroom artifacts preclude the use of the end-inspiration
phase, the phase used in the calculation should be as close to
the end-inspiration as possible.
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