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Synovial joints are complex structures that enable normal locomotion. Following injury,
they undergo a series of changes, including a prevalent inflammatory response. This
increases the risk for development of osteoarthritis (OA), the most common joint disorder.
In healthy joints, macrophages are the predominant immune cells. They regulate bone
turnover, constantly scavenge debris from the joint cavity and, together with synovial
fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-
hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals
for macrophage survival and functional imprinting: “a macrophage niche”. These intricate
cellular interactions are susceptible to perturbations like those induced by joint injury. With
this review, we explore how the concepts of local tissue niches apply to synovial joints. We
introduce the joint micro-anatomy and cellular players, and discuss their potential
interactions in healthy joints, with an emphasis on molecular cues underlying their
crosstalk and relevance to joint functionality. We then consider how these interactions
are perturbed by joint injury and how they may contribute to OA pathogenesis. We
conclude by discussing how understanding these changes might help identify novel
therapeutic avenues with the potential of restoring joint function and reducing post-
traumatic OA risk.

Keywords: osteoarthritis, monocyte - macrophage, inflammation, niche, native immune functions,
synovitis, immunomodulation
INTRODUCTION

Osteoarthritis (OA) is the most common joint disorder (1). Its prevalence is expected to increase
further (2) due to rising societal levels of ageing, obesity and injury, key risk factors for OA. While
the disease commonly affects knees, hips, hands and feet, OA of the knee accounts for more than
80% of the disease burden (1, 3). The knee is particularly susceptible to injury, with approximately
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40% of patients that suffer a traumatic knee injury developing so-
called “post-traumatic” (pt)OA, and surgical reconstruction and
restoration of joint biomechanics insufficient to prevent its
development (4). Treatment options for OA are very limited,
and there is a particular need for effective preventive and disease
modifying drugs (DMD). This is highlighted by clinical data
showing comparable disease burden at diagnosis but significantly
higher burden 6 months later in OA compared to rheumatoid
arthritis (RA) patients (5). Owing to this paucity of treatment
options and the high and rising prevalence, OA contributes
substantially to the global burden of disease. In a 2015 survey,
OA was identified as the second most prevalent cause for years
lived with disability (2), highlighting the impact OA has on both
individuals and society (2).

Although the name osteoarthritis implies an inherent
inflammatory process (6), it was historically believed that OA
had purely biomechanical causes (7). Indeed, OA was regarded a
disease of the elderly, inevitably caused by years of “wear and
tear”. Breaking with this previously held view, we now know that
OA development involves a complex active biological response
with local interaction between joint tissues and their resident
cells, and these with systemic mediators. This includes an
inflammatory response (8) that is accompanied by complex
metabolic changes, which contribute to cartilage degradation
and activation of bone remodeling (9). Although innate immune
cells, and monocytes and macrophages in particular have been
implicated (7, 10, 11), the exact nature of the inflammatory
response in OA, its underlying mechanisms and its relative
contribution to onset or progression of structural pathology
and symptoms remain incompletely resolved (12).

Much like OA etiology, our understanding of the complex
development and functional heterogeneity of macrophages and
monocytes as well as their interactions within local tissue “niches”
has dramatically changed in recent years. It is now firmly
established that the long-held paradigm of discrete, polarized
monocyte and macrophage act ivat ion states i s an
oversimplification of what in reality is a spectrum of cell states.
Likewise, it is now recognized that macrophages established from
fetal progenitors can persist in adult tissues, and that many
macrophages self-maintain independently of monocytes (13–16).
Lastly, we are beginning to appreciate that macrophages engage in
bidirectional crosstalk with other cell types within their local
niches, interactions that are of mutual benefit and implicate
macrophages as gatekeepers of tissue function (17, 18). While
much remains to be learned and confirmed, these concepts
developed in other organs and tissues appear to also apply to
macrophages in joints (19, 20). Indeed, macrophages found in the
healthy synovium are predominantly monocyte-independent, and
they protect and contribute to joint homeostasis in several ways,
including barrier formation, clearance of debris and even
lubrication (20). Under inflammatory conditions, such as may
occur with joint injury however, monocytes are recruited to the
affected joint and can differentiate into macrophages, which retain
a more inflammatory phenotype (21). These joint macrophage
populations thus not only differ in their origins, but also exert
distinct functions (22, 23).
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Modifying the developmental, functional and in situ
dynamics of joint macrophages and monocytes might therefore
represent an attractive avenue for novel therapeutic approaches
in OA. This may be particularly relevant in ptOA, where causal
initiation and subsequent temporal changes in monocytes,
macrophages and their activation with disease onset and
progression may be targeted. This review aims to explore this
notion, with a focus on the synovial rather than osseous joint
tissue niche. We will summarize experimental and clinical
studies on macrophages and monocytes in healthy and
diseased joints and interpret these in the context of current
paradigms of myeloid biology. Our emphasis in this review is on
joint injury and ptOA, as this represents the major OA
phenotype studied in pre-clinical research, and as noted above,
it has the most well demarcated disease stages and thus
potentially the broadest therapeutic opportunity. In doing so,
we hope to bridge persisting gaps between bench and bedside
and highlight research questions with the potential to pave the
way towards better treatment options for ptOA, but also other
OA phenotypes more broadly.
MACRO- AND MICROANATOMY
OF THE KNEE JOINT

Synovial joints provide critical motion segments that allow low
friction movement between rigid (osseous) skeletal components.
They enable diverse and essential bio-mechanical functions
ranging from fine movements of arms, hands and fingers
through to walking, running and jumping. The knee represents
an anatomically complex example of a joint (Figure 1) that
enables locomotion in a variety of terrains, while minimizing
muscular energy requirements and absorbing and redistributing
forces that originate from the contact between the walking
surface and the foot (24). Its main osseous components are the
femur, tibia and patella, that articulate in two locations: the
tibiofemoral and patellofemoral joints. The menisci, two C-
shaped fibro-cartilaginous structures, absorb and distribute
load between the femoral and tibial surfaces. Together with a
multitude of extra- and intra-articular ligaments and the fibrous
joint capsule, the menisci also provide stability in flexion/
extension and rotation, enabling the unique biomechanical
function of the knee (25). As in all joints, the osseous surfaces
in the knee are covered by hyaline cartilage, a sparsely cellular,
deformable connective tissue matrix with key components of
collagen type II and highly hydrated proteoglycans. Cartilage is
heterogenous and can be broadly divided into three zones based
on depth from the surface. These have distinct composition,
biomechanical properties and functions (26). Chondrocytes
make up about 2% of the articular cartilage volume (27) and
are responsible for the maintenance and repair of the cartilage
extracellular matrix. They are highly specialized cells derived
from mesenchymal stem cells that have limited potential for
replication in situ, but can react to a plethora of mechanical and
molecular stimuli (26). The knee also harbors several adipose
tissues. These are located intra-articularly and extra-synovially,
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and include the infrapatellar fat pad, which can be considered a
highly specialized compartment in the sublining interstitial tissue
[in humans known as Hoffa’s fat pad (28)]. Beyond filling the
space in the joint cavity and absorbing shock, adipose tissues also
secrete cytokines and adipokines (29, 30) and are therefore
potent immune-modulators. It is also believed that the
infrapatellar fat pad engages in intimate crosstalk with the
synovial membrane, a specialized connective tissue that lines
the inner surface of the joint capsule (31). The synovial
membrane consists of three layers: The intimal lining layer is
found closest to the joint cavity and consists mainly of
macrophages (“type A cells”) and fibroblasts (“type B cells”)
that show low degrees of cell division (31). Beneath this is the
vascularized subintimal layer, also referred to as sublining
interstitial tissue, and finally a fibrous stromal layer forming
Frontiers in Immunology | www.frontiersin.org 3
the joint capsule. The synovial membrane maintains joint
homeostasis by providing lubrication and nutrition to the
cartilage. It also forms a semi-permeable protective barrier that
controls the molecular traffic in and out of the joint (32) and
renders the synovial cavity relatively immune-privileged (20).
Because of its critical role in joint homeostasis, this review will
largely focus on monocyte and macrophage biology of the
synovial membrane, including its sublining interstitial layer.
A REVISED VIEW OF MONOCYTE AND
MACROPHAGE BIOLOGY

Many historically held views of monocyte andmacrophage biology
have been overhauled in recent times, including their phenotypic
FIGURE 1 | Overview of knee macro- and microanatomy. (Right) Sagittal cut through a human knee. The femur and tibia articulate in the tibiofemoral joint, with two
fibrocartilaginous menisci serving to provide rotational and anterior-posterior stability and load distribution. The patella is a hypomochlion (pivot point) for the
quadriceps tendon that articulates with the femur in the patellofemoral joint. The intra-articular components of the osseous structures are covered by cartilage,
enabling low-friction bearing. Joint function and stability are maintained by ligaments and the joint capsule. The inner surface of the joint capsule is lined with the
synovial membrane, which is accompanied by adipose tissues located intra-articularly and extra-synovially, including the infrapatellar fat pad. (Left, top) Microanatomy
of subchondral bone. The cellular components of bone include osteoblasts, osteoclasts and osteocytes that dynamically respond to changes in mechanical loading
and potentially communicate with the overlying cartilage via soluble signals. (Left, bottom) Microanatomy of the synovial membrane. The synovium comprises three
layers: the intimal lining layer which consists of macrophages and fibroblasts that together form a semi-permeable protective barrier; the vascularized subintimal or
sublining layer which contains interstitial macrophages and fibroblasts as well as adipocytes; and an outer fibrous stromal layer forming the joint capsule (not shown).
Created with BioRender.com and smart.servier.com.
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and functional heterogeneity, developmental dynamics as well as
their crosstalk and functional interdependence with other cell
types in the same tissue microenvironment.

Monocyte and Macrophage Development
It was previously believed that the key (if not sole) function of
monocytes was to produce macrophages, and that in turn, all
macrophages found in peripheral tissues originate exclusively
from monocytes (33). Elegant studies exploiting genetic fate
mapping have since shown that most tissue-resident
macrophages are in fact of fetal origin and self-maintain in
adult tissues independently of bone marrow (BM)-derived
monocytes (33). Indeed, macrophages colonize tissues
concomitantly with their development in what appears to be a
demand-driven way. They are generated from successive, but
overlapping waves of hematopoietic progenitors produced at
distinct anatomical sites (34). The majority of fetal macrophages
originate from erythro-myeloid progenitors (EMP) produced in
the extra-embryonic yolk sac (15, 16). EMP are fetal-restricted
progenitors that differentiate into macrophages either directly or
via fetal liver intermediates, but as an uncommitted entity do not
persist into adulthood.

This new paradigm of predominantly fetal origins of tissue
macrophages notwithstanding, monocytes can still complement
tissue phagocyte compartments on demand (33). While this
applies to some tissues at homeostasis (e.g. skin and gastro-
intestinal tract), it is particularly true and important in
inflammatory conditions. Importantly, in both scenarios,
monocytes themselves have a number of key effector
functions (35).

Monocytes differentiate from BM hematopoietic stem cells
(HSC) in a strictly hierarchical, tree-like maturation process (35).
They share a common progenitor with dendritic cells (DCs)
known as “monocyte-macrophage DC progenitor” (MDP) (36,
37), which gives rise to a monocyte-committed intermediate,
designated the “common monocyte progenitor” (cMoP) (38).
The downstream “transitional pre-monocytes” (TpMos) (38, 39)
are believed to be the final intermediate stage in monocyte
differentiation (39). They are capable of rapid proliferation and
express high levels of C-X-C motif chemokine Receptors (CXCR)
4, which anchors them to the BM. Based on differential expression
of Lymphocyte antigen 6C (Ly6C), CX3CR1 and C-Chemokine
Receptor type 2 (CCR2) in mice (40) or Cluster of Differentiation
(CD)14 and CD16 in humans (37), mature monocytes can be
broadly classified into classical (mice: Ly6Chigh CX3CR1low

CCR2high; humans: CD14high CD16-) and non-classical
monocytes (mice: Ly6Clow CX3CR1high CCR2low; humans:
CD14low CD16+) (35, 41–44). This binary classification is now
widely established (45) and has more recently been backed up by
extensive high-dimensional studies, the latter also revealing a
previously underappreciated heterogeneity (46). A third
monocyte population with an intermediate phenotype is
exclusive to humans (CD14+ CD16+) (35). Classical and non-
classical monocytes differ in a number of features, including their
relative abundance and the regulatory mechanisms governing their
retention in and egress from the BM (47). The mature monocyte
Frontiers in Immunology | www.frontiersin.org 4
compartment in the BM is vastly predominated by Ly6Chigh

monocytes, which downregulate CXCR4 (48, 49) and highly
express CCR2 (50, 51), collectively enabling their egress from the
BM. Ly6Clow monocytes, on the other hand, only express very low
levels of CCR2, and while still under investigation, Sphingosine-1-
Phosphate Receptor 5 (S1PR5) signaling has been implicated in
orchestrating their BM egress (52).

Once released into the blood stream, classical Ly6Chigh

monocytes have a relatively short half-life lasting for a mere 20-24
hours in mice (53–55), whereas their non-classical counterparts are
slightly longer-lived with a half-life of around 2 days in mice and 7
days in humans (53). The two populations are also developmentally
connected: lineage tracing indicating that Ly6Clow monocytes
originate from aging Ly6Chigh monocytes (41, 53), a gradual
conversion that is dependent on Nuclear Receptor subfamily 4
group A member 1 (NR4A1) signaling (56) and involves direct
cellular contact with endothelial cells and Notch signaling (57, 58).
Similar mechanisms appear to be at play in human monocytes (59,
60). At homeostasis, Ly6Clow monocytes do not normally
extravasate but instead patrol the luminal side of the endothelium
(61). They roll along the vascular endothelium, independent of the
direction of the blood flow, via CX3CR1, b2 integrin (58, 62) and
interactions between Lymphocyte Function-associated Antigen-1
(LFA-1) and IntraCellular Adhesion Molecule 1 (ICAM1) and
ICAM2 (58, 62). They have thus been considered the “tissue-
resident” macrophages of blood vessels. In non-homeostatic
conditions, Ly6Clow monocytes are thought to promote resolution
of inflammation, however, they can also contribute to
autoimmunity and chronic inflammatory diseases (58), as we will
discuss further below. Intriguingly, experiments using bleomycin-
induced lung fibrosis in mice identified an alternative pathway to
Ly6Clow monocytes, consisting of a separate progenitor referred to
as a “Segregated-nucleus-containing atypical Monocyte (SatM)”,
whose production depends on the transcription factor C/EBPb (63).
Whether this pathway is relevant to other pathologies remains to
be determined.

Unlike their non-classical counterparts, Ly6Chigh monocytes do
traffic into peripheral tissues even at steady state (64). In tissues
that (partially) rely on homeostatic renewal from the BM, such as
the skin and gastro-intestinal tract (65, 66), the majority of
recruited Ly6Chigh monocytes gradually differentiate into
macrophages, a process phenotypically characterized as a
“monocyte waterfall” (67). These macrophages are functionally
imprinted in response to local cues that superpose tissue-specific
identity onto a transcriptional core lineage program (68, 69).
Provided monocytes encounter a homeostatic environment and
are allowed sufficient time in the tissue, monocyte-derived
macrophages are phenotypically, transcriptomically and
epigenetically indistinguishable from pre-existing tissue-resident
macrophages (70, 71). However, this is not the case following
inflammation or other insults resulting in perturbed homeostasis,
which might have important functional implications. Indeed,
different and sometimes even opposing roles have been reported
for developmentally distinct macrophages in conditions like cancer
(72–74) and stroke (75), and this might also be the case in joint
pathology, as we will discuss below.
November 2021 | Volume 12 | Article 763702

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Haubruck et al. Macrophage Niches in Osteoarthritis
Monocyte Effector Functions
In addition to representing an “on-demand” source for
macrophages, monocytes also have important effector
functions in their own right. Indeed, a fraction of classical
monocytes recruited at steady state maintains their monocytic
phenotype with minimal transcriptional changes (76). In the
parenchyma of non-lymphoid organs like the skin, lung, and
heart (43, 66), they contribute to immune surveillance. During
sterile inflammatory responses, as would occur following closed
traumatic knee injury, Ly6Chigh and Ly6Clow monocytes are
recruited in a highly orchestrated manner facilitated by
differential chemokine release. Under such conditions, Ly6Clow

monocytes have primarily been attributed beneficial, anti-
inflammatory roles. In the ischemic heart and kidney for
example, deficiency in Ly6Clow monocytes results in higher
inflammatory levels and impaired restoration of organ function
(77–79). In line with this, Ly6Clow monocytes predominantly
produce anti-inflammatory mediators like Interleukin (IL)-10
(80, 81) as well as Vascular Endothelial Growth Factor (VEGF)
and other pro-angiogenic factors (82), as observed during spinal
cord injury and myocardial infarction (82), respectively.

Somewhat contradictory evidence exists regarding the role of
Ly6Chigh monocytes. Historically, these classical monocytes have
been recognized as potent pro-inflammatory effector cells.
Indeed, CCR2 knockout mice, which are largely deficient in
classical monocytes in the periphery, show decreased levels of IL-
1b and Tumor Necrosis Factor (TNF)-a and an increase in the
anti-inflammatory cytokines IL-4, IL-5 and IL-13 at the site of
inflammation during cerebral ischemia (83). Ly6Chigh monocytes
also show high levels of reactive oxygen species, TNF-a and IL-6
(84) in the context of liver ischemia reperfusion injury (84). In
line with this pro-inflammatory phenotype, Ly6Chigh monocytes
mediate tissue damage in the ischemic liver as well as the heart
following myocardial infarction, and contribute to progression of
atherosclerosis (84–87). At the same time however, Ly6Chigh

monocytes have also been implicated in regression of
atherosclerosis (88), although this may be attributable to anti-
inflammatory effects of monocyte-derived macrophages, rather
than a true monocyte effector function. Nonetheless, these
findings collectively suggest that instead of being globally pro-
and anti-inflammatory, classical and non-classical monocytes
differentially shape the local inflammatory response via the
tailored production of cytokines and other cellular mediators.
Although similarities exist between tissues and insults, their exact
trafficking patterns and effector functions appear to be context-
dependent, and therefore need to be delineated specifically in the
homeostatic, injured and OA joint.
Tissue Adaptation and Activation of
Monocytes and Macrophages
Monocytes and macrophages dynamically respond to a variety of
cues in their microenvironment, which shape their local tissue
adaptation and activation state. Consequently, although they share
a lineage-defining core transcriptomic signature, macrophages in
different tissues are transcriptionally, phenotypically and
functionally very diverse (70, 71, 89). The core macrophage
Frontiers in Immunology | www.frontiersin.org 5
program is initiated in committed fetal progenitors or BM-
derived monocytes and driven by lineage-determining
transcription factors (68–71).

Acquisition of tissue-specific identity and function is
subsequently orchestrated by additional transcription factors in
response to signals present in the local microenvironment (69).
In the spleen, for example, heme from senescent red blood cells
induces expression of the transcription factor SPI-C, which in
turn activates a transcriptional program inducing differentiation
of red pulp macrophages (90). Experimental data from adoptive
transfer experiments demonstrate that exposure to different
environments partially, though not fully, rewires the tissue-
specific identity of macrophages, indicating a limited degree of
plasticity even under such non-physiological conditions (70, 91).

At the same time, the activation state of terminally differentiated
macrophages can vary as a function of microenvironmental signals,
in particular cytokines. Historically, it has been thought that
macrophages polarize into either classically activated, pro-
inflammatory (“M1”) or alternatively activated, anti-
inflammatory (“M2”) (92, 93) subtypes in response to cytokines
associated respectively with type I or type II immunity (94, 95).
However, it is now abundantly clear that this strict dichotomy is a
drastic oversimplification of real-life in vivo physiology. Rather,
these opposing polarization states represent extremes (94, 95) of a
much wider and more fluid spectrum of activation states (96, 97).
Understanding the different activation states of macrophages and
monocytes in OA and the signals that drive them will be
paramount in delineating their respective contribution to disease
pathogenesis. Since circulating monocytes represent a modifiable
source, they – and their relationship with macrophages found in
the joints – are of particular translational relevance.

Macrophage Niches
The intricate developmental dynamics between monocytes and
macrophages and their adaptation to tissue-derived signals
illustrate that these cell types actively engage with each other
and their immediate environment or “niche”. Research into such
niches represents a current focus in the field of myeloid cell
biology. The niche concept postulates that macrophages are not
only functionally imprinted by tissue-specific cues, but that their
niches also provide them with a physical scaffold for anchoring
and survival factors (17, 18). In turn, macrophages support
appropriate functioning of their cellular partners. They thus
form mutually beneficial cellular circuits (18) with their niches.
In line with this, organ function is heavily impaired in mice
lacking numerous tissue-resident macrophages owing to genetic
deficiency in Colony Stimulating Factor (CSF)1, a keymacrophage
survival signal, or its receptor (98–100). Niches consist of
macrophages and other, often non-hematopoietic stromal cell
types, as well as the extracellular matrix surrounding them, and
they can also “call” monocytes for replenishment. In the liver, for
example, hepatocytes, endothelial and stellate cells together
provide numerous signals to resident Kupffer cells and incoming
monocytes, including CSF1, IL-34, CCL2 and Notch ligands (101),
whereas in the red pulp of the spleen, macrophages depend on
CSF1 produced by fibroblasts (102). In return, macrophages help
facilitate tissue-specific functions and homeostasis. Beyond their
November 2021 | Volume 12 | Article 763702
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role in immune surveillance and protective immunity,
macrophages have been implicated in diverse physiological
processes ranging from haemoglobin recycling, intestinal
motility, surfactant degradation in the lung, to cardiac
conduction (64, 102–109). The circuits underlying some of these
less-traditional macrophage effects are starting to be deciphered.
For example, macrophages located in the interstitial space of the
testis produce cholesterol, which stimulates steroidogenesis in
Leydig cells (110–112).

Whilst their cellular partners, signaling circuitry and
functions remain incompletely understood, it is highly
conceivable that distinct macrophage niches also exist in the
joint. In the following, we will thus discuss how the current
concepts of monocyte and macrophage biology in other tissues
and organs reviewed above, apply to synovial joints, with
particular emphasis on molecular and cellular mechanisms
bearing potential for translational exploitation in OA. By
interpreting the dynamics between these pleiotropic cell types
and their functions within their potential joint-associated niches,
we aim to provide an integrative view of their contribution to
joint health and disease.
MONOCYTES AND MACROPHAGES IN
JOINT HOMEOSTASIS

Bone and Adipose Tissue
The bone-resident macrophages are known as osteoclasts,
peculiar large and multinucleated cells whose primary function
is bone resorption. They are essential for skeleton remodeling
and maintenance of the hematopoietic environment in the BM.
Consequently, defects in osteoclasts cause osteopetrosis and
hematopoietic failure, while their overactivation leads to
osteoporosis. Osteoclasts allow for homeostatic bone turnover
in joint-associated subchondral bone in response to loading.
Osteoclasts first colonize the ossification centers of developing
bones in the fetus from EMP, where they form long-lived
syncytia that are maintained throughout life by low-grade
fusion with incoming monocytes (113, 114). Adding to this
complexity, elegant recent intra-vital imaging has shown that
osteoclasts do not necessarily undergo apoptosis following
activation and bone resorption, but instead, can fission into
daughter cells termed “osteomorphs” (115). These can be
recycled by fusion with osteoclasts but remain transcriptionally
distinct from both osteoclasts and other macrophages.

As in many other tissues, adipose tissue-resident macrophages
are developmentally and functionally heterogeneous. In the
healthy adipose tissue of lean mice and likely humans (116,
117), monocyte-derived macrophages co-exist with long lived,
fetal yolk sac EMP-derived macrophages and regulate appropriate
development of adipose tissues and lipid storage during
homeostasis (116, 118). Of note, it is currently unclear whether
the macrophage compartments within joint-specific adipose
tissues, such as the infra-patellar fat pad, are developmentally
and functionally equivalent to those in more commonly studied
adipose depots, such as the subcutaneous or inguinal fat.
Frontiers in Immunology | www.frontiersin.org 6
The infrapatellar fat is highly vascularized and innervated, and
thus more reminiscent of visceral than subcutaneous fat
(Reviewed in Urban and Little 2018) (30). It is also interesting
to note that although generally considered a type of white adipose
tissue, the infrapatellar fat may not always behave like other
adipose tissues, for example in conditions of obesity. Although
the infrapatellar fat pad increases in volume, vascularization and
adipocyte size in response to obesity like other adipose tissues, it
may be more protected from obesity-induced inflammation (119–
121). This suggests that infrapatellar fat may show features of both
white and brown adipose tissue in response to obesity, and distinct
responses to other white adipose deposits have also been observed
in OA (122). In end-stage knee OA patients the infrapatellar fat
pad had significantly less macrophages, toll-like receptor 4
expression and fibrosis compared with other peri-synovial
adipose tissue. In these same patients both adipose tissues had
increases in adipocyte size and haematopoietic and M2
macrophage cell infiltration correlated with body mass index.
This complex interplay between systemic and local joint factors
related to post-traumatic OA, and how these affect and are affected
by infrapatellar fat pad macrophage polarization, has been
demonstrated in mouse models (123). The infrapatellar fat has
been implicated as a major player in sustaining and perpetuating
inflammation in OA (29). While macrophage deregulation has
been associated with pathological changes in other adipose depots,
those in the infrapatellar fat can contribute directly or indirectly to
OA pathogenesis and future research is needed to better
characterize which macrophage features it shares with other
adipose tissues and which are unique.

Synovial Membrane and Interstitial
Connective Tissue
At homeostasis, macrophages are virtually the only immune cells
in the synovial membrane (124, 125), and whilst the underlying
interstitial connective tissue does harbor other lineages like mast
cells and lymphocytes, macrophages predominate by far (126).
Importantly, both the steady state synovial membrane and
interstitium are largely devoid of monocytes. Healthy synovial
tissue contains three populations of macrophages that are
dynamically interconnected: lining macrophages gradually turn
over from proliferating MHCII+ macrophages found in the sub-
lining connective tissue, which also generate a second population
of interstitial macrophages characterized by expression of
Hypoxia-Induced Mitogenic Factor (Resistin-like alpha;
RELMa) (22). The exact sources from which synovial
macrophages are originally established during development
remain to be determined with appropriate additional fate
mapping systems. However, chimeras and parabiosis have now
firmly established that all three populations receive minimal if
any monocyte input in the adult steady state (22).

Despite their developmental interdependence, the distinct
populations of synovial macrophages are phenotypically and
functionally highly specialized. In addition to being a source of
other synovial macrophages, MHCII+ sub-lining macrophages
are particularly well-equipped for antigen presentation, while the
RELMa+ population shows a regulatory phenotype and
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abundantly expresses scavenger receptors like CD206 and
CD163 (22). Lining macrophages protect joint functionality
and the immune privilege of the joint space through a
multitude of mechanisms: they act as sentinels for molecular
and cellular changes in the joint cavity (124) and facilitate
clearance of cartilage and bone debris, highly immunogenic
and hence dangerous signals that are constantly shed into the
synovial fluid due to mechanical shear stress. In both mice and
humans, lining macrophages express high levels of scavenger
receptors, in particular Triggering Receptor Expressed on
Myeloid Cells 2 (TREM2) and CD163 and are highly
phagocytic and anti-inflammatory (22, 124, 127–129). Lining
macrophages also actively participate in production of
extracellular matrix (ECM) components and synovial fluid
(22). Finally, sophisticated genetic and imaging approaches
recently revealed that reminiscent of epithelial cells, lining
macrophages form tight junctions with one another and
thereby constitute a structural and immunological barrier (22).
This barrier limits immune cell trafficking across the synovial
membrane and thereby protects the avascular cavity from
systemic threats. Conversely, it shelters the synovial connective
tissue from immunogenic stimuli present in the joint space.
Collectively, these features make synovial macrophages key
regulators of joint homeostasis.
Potential Macrophage Niches and Signals
in Healthy Joints
The exact cellular interactions and molecular signals comprising
macrophage niches in healthy joint tissues remain to be
deciphered with state-of-the-art approaches, however,
fibroblasts are likely key players. This is the case for the spleen
and peritoneal cavity (102, 130) and may also be particularly true
for the synovial lining, where in the absence of a basement
membrane they are in intimate contact with lining macrophages.
Synovial fibroblasts and macrophages have been characterized
individually in great detail over the last several years (22, 131,
132), and their potential interplay has been discussed in excellent
recent reviews (133–135). Fibroblasts are ideally suited to
provide anchorage to macrophages, and they are also a
recognized source of key macrophage survival factors, such as
CSF1 (Figure 2). Synovial lining macrophages are lacking in
CSF1-deficient osteopetrotic (“op/op”) mice (99) demonstrating
their CSF1-dependence, at least during development.
Intriguingly, systemic administration of CSF1 does not restore
synovial macrophages, whereas transgenic overexpression of the
full-length transmembrane protein does, suggesting they depend
on the membrane-bound isoform of the growth factor and thus,
local sources (99, 136). Whilst synovial lining macrophages
express the receptor for CSF1 receptor (CSF1R) at steady state
(22), it is currently unclear whether they also rely on CSF1 for
their homeostatic maintenance and turnover.

Fibroblasts could also act to bring macrophages in proximity of
tissue-specific cues that imprint their functional identity, although
this process may be orchestrated by additional stromal cell types in
the joint, such as adipocytes, endothelial cells and chondrocytes.
Such complexity is seen in the liver, where incoming monocytes
Frontiers in Immunology | www.frontiersin.org 7
are functionally imprinted by a triad of hepatocytes, endothelial
cells and stellate cells (101). Joint tissues are constantly exposed to
shear stress and tensile forces that dynamically change with
variations in joint loading. Mechanical stimuli are amongst the
candidate cues that could play a particularly important role in
instructing the specific identity of macrophages in joint tissues.
Macrophages are in principle capable of sensing mechanical
forces. Human BM-derived macrophages for example respond
to substrates with different stiffness with changes in their shape,
migration and proliferation (137). Mechanotransduction can also
directly modulate their inflammatory cytokine production (138,
139). This latter effect is dependent on the NLRP3 (NOD-, LRR-
and pyrin domain containing 3) inflammasome and can also
involve signaling through TRPV1 and 4 (Transient receptor
potential vanilloid-type 1 and 4) cation channels, which have
been implicated in ptOA pathophysiology in mice (140–142).
Transduction of mechanical signals through TRPV4 has also been
implicated in the formation of multinucleated giant cells,
inflammatory and destructive multinucleated macrophages
(143). In addition to mechanical stress, normal ECM turnover
products represent candidate signals that could imprint joint
macrophage identities. Indeed, synovial lining macrophages
appear to be highly phagocytic and constantly scavenge cartilage
debris from the joint cavity (144–146). Joint biomechanics are
altered during OA pathogenesis, and joint-tissue ECM
degradation products more prevalent than at homeostasis, thus
these pathways likely also impact macrophage identities and
functions in arthritic joints.
MONOCYTE AND MACROPHAGE
FUNCTIONS IN THE INJURED AND
OSTEO-ARTHRITIC JOINT

Macrophage Functions in ptOA
Pathogenesis
In addition to self-maintained lining and interstitial sub-lining
macrophages already present at steady state, the arthritic synovium
contains inflammatory monocyte-derivedmacrophages (147, 148).
Similar changes also occur in other tissues within the joint (e.g.
subchondral bone), regional (e.g. lymph node) and in remote
tissues (e.g. spleen, peripheral blood). The necessity to delineate the
specific roles of these distinct macrophage populations is
highlighted by discrepant findings on the consequences of
macrophage depletion depending on the experimental approach.
Although the precise contribution of the various populations
remains to be shown, systemic depletion of macrophages in
mice in which apoptosis is induced in cells expressing CSF1R
exacerbates experimental ptOA, whereas local clodronate
liposome-mediate depletion within the joint is beneficial (149).

In RA, the respective functions of the distinct macrophage
subsets have now been well explored, and macrophages
originating from recruited monocytes appear to have overall
disease-promoting functions (150, 151). Similarly, the majority
of studies on OA-affected joints have identified inflammatory,
monocyte-derived macrophages as the main culprit in
November 2021 | Volume 12 | Article 763702

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Haubruck et al. Macrophage Niches in Osteoarthritis
promoting and sustaining inflammation (124, 152). These cells
produce pro-inflammatory cytokines and release additional
signaling molecules associated with tissue-injury, which can
attract lymphocytes that further propagate inflammation.
However, exploiting these findings therapeutically is currently
hindered by a lack of detailed understanding of the exact
interplay between monocyte-derived macrophages and
different types of lymphocytes, and how these change in the
distinct stages of ptOA pathogenesis. Monocyte-derived
macrophages also participate in cartilage destruction via
production of IL-1b and TNF-a, which suppress synthesis of
the ECM components aggrecan and collagen by chondrocytes
and upregulate expression of catabolic enzymes like ADAMTS-4
and MMP-13 (153–155). Soluble matrix degradation products in
turn can activate resident synovial macrophages via Toll-Like
Receptors (TLRs) and other pattern-recognition receptors (156).
As this example illustrates, different macrophage populations in
the joint can be functionally interlinked.
Frontiers in Immunology | www.frontiersin.org 8
Another effector by which macrophages might contribute to
ptOA pathogenesis is B cell Activating Factor (BAFF), a member
of the TNF superfamily. BAFF is a crucial B cell survival factor,
but also exerts co-stimulatory effects on T cell activation via
upregulation of B-cell lymphoma 2 (BCL-2) (157). Furthermore,
BAFF promotes T-helper-cell (Th)1 and suppresses Th2
responses (158), and drives Th17 differentiation via Il-6
signaling (87, 158–161). BAFF levels are elevated in serum and
synovial fluid from RA patients (162), and BAFF appears to have
a pathogenic role in RA (163, 164). During established RA, BAFF
promotes pro-inflammatory polarization of CD4+ T cells, DC
maturation as well as proliferation of inflammatory fibroblasts
(163). In the inflamed joint, macrophages (165) are the main
source of BAFF, although it is unclear if these are monocyte-
derived or resident macrophages, or both. This compelling
evidence led to the development of BAFF antagonists as
DMDs for RA, which are currently being tested in early phase
clinical trials (163). Whether BAFF production is also a
FIGURE 2 | Putative macrophage niches in the healthy joint. (Top) Synovial lining: macrophages are connected via tight junctions and are in close contact with
fibroblasts. Fibroblasts may provide CSF1 and anchorage to macrophages, which may be imprinted by exposure to ECM degradation products. Movement-induced
cyclic stretch may inhibit NLRP3 inflammasome activation. (Bottom, left) Osteoblasts lining the bone surface synthesize bone matrix in response to soluble mediators
released by osteocytes that sense changes in mechanical loading and bone deformation. Osteoclasts resorb bone and thereby regulate balanced homeostatic bone
turnover (“modelling”) in response to anchorage and soluble signals from osteocytes and osteoblasts. (Bottom, right) In the synovial sub-lining, self-maintained
interstitial macrophages may regulate adipose tissue metabolism and act as a reservoir to replenish synovial lining macrophages. Created with BioRender.com and
smart.servier.com.
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mechanism by which macrophages contribute to pathogenesis of
OA has not been determined but elevated BAFF levels have been
detected in OA synovial fluid (166).

Unlike their monocyte-derived counterparts, and some
controversy notwithstanding, self-maintained resident synovial
macrophages have largely been attributed protective roles in
arthritis. The barrier generated by synovial lining macrophages is
disrupted in both RA patients and experimental RA (22). In
mice, this occurs rapidly upon induction of serum transfer-
mediated arthritis, and thus constitutes an early event in
disease development. In this model, barrier breakdown occurs
following phagocytosis of immune complexes containing auto-
antibodies, which activate lining macrophages and induce
structural joint pathologic changes. Consequently, depletion of
lining macrophages or specific disruption of their tight junctions
worsens experimental RA. In turn, drug-mediated stabilization
of tight junctions protects mice from RA (22), a finding that is
translationally promising. Whilst the role of synovial lining
macrophages has not yet been addressed specifically in OA
pathogenesis, it is worthwhile noting that targeting lining
macrophages or tight junctions not only exacerbates RA but
may also result in spontaneous inflammation in the joint cavity
in otherwise healthy animals (20, 22). With respect to ptOA, one
could thus envision a scenario in which following injury,
mechanical disruption of the synovial lining macrophage
barrier enables rapid influx of inflammatory cells and hence,
transition to the inflammatory phase of OA pathogenesis. Unlike
in RA however, this barrier breach might be transient in nature,
since the barrier appears more intact in patients with established
OA compared to RA (22). This might be due to differences
between immune complex-mediated and mechanical barrier-
breakdown and could contribute to the, often considerable, lag
phase between joint injury and ptOA onset.
Monocyte Functions in Joint Pathogenesis
Monocytes are critical players in OA pathogenesis, both as effector
cells and a source of additionalmacrophages. As described earlier, it
is widely accepted that Ly6Chigh and Ly6Clow monocytes can
differentiate into macrophages with distinct polarization profiles
in response to the cytokine milieu encountered in the tissue
microenvironment. Reflecting this complexity, the overall impact
of classical and non-classical monocytes on joint disease
pathogenesis remains unclear. On the one hand, adoptive transfer
of Ly6Clow monocytes following pan monocyte depletion increases
the development of serum-transfer induced arthritis (58, 167, 168).
In thismodel, Ly6Clowmonocytes are actively recruited to the joint,
where they are critical for the initiation of sterile joint inflammation
and differentiate into inflammatory macrophages (169). On the
other hand, Ly6Clow monocytes were also found to limit excessive
inflammation in arthritic mice via enhanced recruitment of
regulatory T-cells (Tregs) (58, 170). This seemingly contradictory
evidence regarding the role of Ly6Clow monocytes in RA
underscores the need for further studies that improve the
understanding of the complex role of monocytes in inflammatory
arthritis, and similar considerations apply to OA. The diverse roles
of monocytes and macrophages in ptOA pathogenesis will be
Frontiers in Immunology | www.frontiersin.org 9
discussed in more detail in the following section, focusing on
molecular and cellular factors shaping their respective functions.
SIGNALS AND CELLULAR INTERACTIONS
SHAPING MONOCYTES AND
MACROPHAGES IN PTOA

Depending on severity, joint injury can induce marked
mechanical, anatomical and immunological changes, initially
resulting in recruitment of monocytes and other inflammatory
cells. Pathological changes persist throughout ptOA
development and in established disease, and impact both
incoming monocytes and previously resident macrophages.
This section discusses how the perturbed joint tissue
environment might affect monocytes and macrophages
(Figure 3). An overview of murine and human monocytes and
macrophages found in the synovial tissue during homeostasis,
rheumatoid arthritis and in as far as known osteoarthritis, can be
found in Table 1.

Perturbations Following Joint Injury
Joint injury triggers a series of complex mechano-biological and
immunological changes, which can be broadly separated into three
successive phases. Immediately after injury, mechanical
perturbation effects predominate. These are direct results of the
injury (9, 171) andmay include tissue disruption (e.g., subchondral
bone (micro)fractures, ligament tearing), collagenous matrix
disruption and cartilage swelling, blood-vessel injury and
hemarthrosis i.e. the presence of blood in the synovial cavity. This
immediate joint-tissue injury is followed by an acute inflammatory
phase (172), which is characterized by abundant cell death and pro-
inflammatory signaling involving both innate and adaptive lineages
(173). The nature and duration of this inflammatory response have
been identified as major determinants for the risk of developing
ptOA post injury (9, 172, 173). While appropriate control and
resolution of inflammation is essential for normal wound-healing
and might prevent ptOA development, perpetuated inflammation
leads to the chronic and final phase of OA pathogenesis, which is
defined by fluctuating low-level synovitis (174) and continuous
tissue remodeling processes that ultimately lead to destruction of
the cartilage and joint failure (175). Delayed or failed resolution
of inflammation can bedue to a permanently disrupted equilibrium
of pro- and anti-inflammatory factors (171) or inadequate post-
injury inflammation control (172). In addition, biomechanical
factors such as instability or recurring joint injuries (176) can
result in continuous re-triggering of acute mechano-biological
responses, which initiate an inflammatory vicious circle. These
considerations identify the acute inflammatory phase as a potential
target for ptOA DMDs and highlight the need for a better
understanding of its cellular and molecular regulators.

Mechanisms Underlying Monocyte
Recruitment During OA Pathogenesis
The exact nature of the inflammatory response subsequent to
joint injury is still under investigation, and differences might
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exist depending on the type of injury and/or tissues injured, as we
will discuss below. Overall, however, a growing body of evidence
implicates chemokines and their receptors in monocyte
recruitment during OA pathogenesis. As reported for other
pathologies (177), classical and non-classical monocytes
differentially depend on CCL2/CCR2 or CCL5/CCR5 and
CX3CL1/CX3CR1. CCL2 (also known as MCP-1) is a key
regulator of Ly6Chigh monocyte egress from the BM and their
recruitment to peripheral tissues (178). Following joint injury,
release of ECM degradation products and complement factors
Frontiers in Immunology | www.frontiersin.org 10
temporally induces CCL2 production by chondrocytes, resident
synovial macrophages (179) and endothelial cells (180). This
occurs via a positive feedback loop, stimulated by increased IL-
1b and TNF-a expression in synovial macrophages (181) and
fibroblasts (182). In keeping with this, clinical studies have
reported elevated levels of CCL2 in synovial fluid immediately
after traumatic joint injury (183) and subsequent to meniscal
tears (184), and concentrations correlate with severity of OA
(185, 186). Its expression is also significantly elevated in the
serum of OA patients (187), and CCL2 might also affect other
FIGURE 3 | Putative changes in joint tissues after injury and during post-traumatic OA development. (Top, left) Acutely following injury, synovial lining macrophages
are spatially re-orientated and the barrier is disrupted. DAMPs, PAMPs and catabolic enzymes are released into the synovial cavity by chondrocytes and damaged
tissues (ligament, meniscus). Extra-vascular erythrocytes and associated free heme from blood vessel injury may pathologically imprint synovial macrophages. Barrier
disruption may impede cyclic stretching of lining macrophages, resulting in NLRP3 inflammasome activation and increased IL-1ß production, known to promote of
OA. Altered mechanics may also promote joint inflammation through TRPV1/4 cation channels. (Top right) At later stages of ptOA pathogenesis, the synovial lining
layer may be restored. Levels of IL-1ß remain elevated, though involvement of the NLRP3 inflammasome is unclear. TRPV1 activation may continue to promote OA
pathogenesis, although likely via signals other than or in addition to mechanical stimuli. Cellular debris, DAMPs and PAMPs remain abundant in the synovial cavity
and thus potentially imprint pathological macrophage phenotypes. (Bottom, left) Increased numbers and activation of osteoclasts contribute to accelerated bone
turnover and remodeling in the arthritic joint. Osteoclastogenesis may be promoted by CCL2 produced by activated osteoblasts and inflammatory cells, potentially
resulting in recruitment and fusion of Ly6Chigh and Ly6Clow monocytes, a process that may be further stimulated by RANKL produced by lining fibroblasts. (Bottom,
right) In the sublining layer, exposure to ECM degradation products may stimulate interstitial macrophages to produce CCL2 and CCL5, leading to recruitment of
Ly6Chigh and Ly6Clow monocytes. Ly6Chigh monocytes produce IL-1ß, TNF-a and IL-6, potentially in response to the adipokine visfatin, a TLR4 receptor agonist,
which also induces changes in the subchondral bone. Ly6Clow monocytes may supply the interstitial macrophage pool, but these macrophages may retain higher
baseline NF-kB and IL-1ß activity than those in healthy joints. Created with BioRender.com and smart.servier.com.
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cells relevant to OA pathogenesis. In chondrocytes, for example,
CCL2 increases expression of the catabolic enzymes MMP3 and
MMP13 (179) and inhibits proliferation and enhances apoptosis.
CCL2 might thus promote OA pathogenesis via attracting
monocytes to the joint, but also by directly promoting cartilage
destruction (179).

Unlike CCL2, which is foundmainly in the intimal lining of the
synovium, CCL5 [also known as RANTES (Regulated on
Activation, Normal T Cell Expressed and Secreted)] is
distributed more diffusely throughout the synovial tissue (188).
Conflicting evidence exists regarding the role of CCL5 and its
receptor CCR5, which possess strong chemo-attractive properties
for Ly6Clow monocytes. In line with a disease-promoting role of
Ly6Clow monocytes, CCR5-/- mice were initially reported to exhibit
reduced cartilage destruction (189), however, a recent study by
Raghu and colleagues found that neither deficiency in CCL5, nor
Frontiers in Immunology | www.frontiersin.org 11
CCR5 protects mice from ptOA (21). This was further
corroborated by a clinical study of synovial biopsy specimens,
which found significantly higher levels of CCL5 in RA compared
to OA patients, whilst expression of all other chemokines and
receptors is comparable (188). This may suggest that the
inflammatory responses underlying these different arthritides
have some unique molecular signatures or phenotypes.
Considering its role in attracting Ly6Clow monocytes, which are
known to promote pathogenesis of inflammatory arthritis, it
seems surprising that depletion of CCR5 has no protective
function in ptOA (21). However, CX3CL1/CX3CR1 signaling
also participates in recruitment of non-classical monocytes, and
elevated levels of CX3CL1 have been found in peripheral blood
(190) and synovial fluid (186) of OA patients. Functional
experiments revealed that in addition to its chemo-attractive
properties, CX3CL1 also stimulates inflammation specifically at
TABLE 1 | Markers, origin and putative function of monocytes and synovial macrophage subsets in mouse and human.

Population, location Phenotype Origin, maintenance Functions at
homeostasis

Functions in osteoarthritis

Mouse: TREM2+ CX3CR1high

MHCII-
Long-lived, BM-independent, not
proliferating2,3 replenished from sublining
interstitial

Protective barrier2 Protective barrier,2 limiting disease
development (RA), immune
regulation3

Macrophages, synovial
lining

“mTOR activated M1
macrophages” iNOS+1

Unknown Unknown (low number) Chondrocyte differentiation1

Human: TREM2+ CD68+ MerTK+

LYVE1+ FOLR2+4,2
Proliferation4,5 Protective barrier2

Control local immune
responses4

Protective barrier2 Resolution of
inflammation, induce reparative
fibroblast

CD14+HLADR+ FOLR2+CD86+5

KI67high ULK1+
Proliferation5 Unknown

CD14+HLADR+ FOLR2+CD86+

KI67low HTRA1+ (location
uncertain)

Uncertain Unknown Cartilage remodelling5

Macrophages, synovial
sublining/ interstitital

Mouse: RELMa+ CD206+

CD163+
BM-independent2 Joint homeostasis

CX3CR1− MHCII+ CSF1R+ Proliferation, BM-independent (RA)2 / BM
(arthritis)3

Generate lining and
sublining macrophages2

Generate lining and sublining
macrophages2, Inflammation

Human TREM2- MerTK- CD206-

CLEC10a+42
Unknown Unknown Fibroblast inflammatory response4

Macrophages, synovial
tissue of the “bare
area”

Mouse: CX3CR1+ MHCII+

Ly6CintF4/80+
BM6 Absent Osteoclastogenesis6

Human: CX3CR1
+ HLA-DRhigh

CD11c+ CD80- CD86+
Unknown Unknown Osteoclastogenesis6

Monocytes, synovial
tissue

Mouse: Ly6C+ CD64int BM3 Tissue patrolling Generate Ly6C- monocytes
Ly6C- BM3 Absent Initiation of sterile joint inflammation3

Generate MHCII+ macrophages3

Human: CD14+ CD11c+ CD38+

IL1B+ IFN-activated SPP1+7
Unknown Pro-inflammatory7

CD14+ CD11c−7 NUPR1+7 Joint homeostasis7 Inversely correlated with tissue
inflammation, bone remodelling7
November
TREM2, triggering receptor expressed on myeloid cells 2; CXCR1, C-X3-C Motif Chemokine Receptor 1; MHCII, major histocompatibility complex class II; mTOR, mammalian target of
rapamycin; iNOS, inducible nitric oxide synthase; BM, bone marrow; RA, rheumatoid arthritis; MerTK, MER Proto-Oncogene, Tyrosine Kinase; LYVE1, Lymphatic Vessel Endothelial
Hyaluronan Receptor 1; FOLR2, Folate Receptor Beta; CD, cluster of differentiation; HLADR, Human Leukocyte Antigen – DR isotype; ULK1, Unc-51 Like Autophagy Activating Kinase 1;
HTRA1, HtrA Serine Peptidase 1; RELMa, Resistin-like molecule a; CSF1R, colony-stimulating factor 1 receptor; CLEC10a, C-type lectin domain family 10; Ly6, lymphocyte antigen 6; IL,
interleukin; IFN, interferon; SPP1, Secreted phosphoprotein 1; NUPR1, Nuclear Protein 1.
1Zhang, H. et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann. Rheum. Dis. 77, 1524–1534 (2018).
2Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).
3Misharin, A. V. et al. Nonclassical Ly6C- monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604 (2014).
4Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).
5Wood, M. J. et al. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 4, (2019).
6Hasegawa, T. et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat. Immunol. 20, 1631–1643 (2019).
7Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942
(2019).
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the early stages of OA (190). Finally, soluble CX3CL1 induces
production of the pro-inflammatory cytokines IL-1b, IL-6 and
TNF-a in recently recruited monocytes (191). Taken together
these data indicate that the CX3CL1/CX3CR1 axis predominates
in recruitment and pro-inflammatory activation of Ly6Clow

monocytes in the context of OA initiation. Ly6Chigh monocytes
recruited and activated via CCL2/CCR2, on the other hand, might
help sustain inflammation at later stages (192). Temporal changes
in chemokine expression and associated monocyte sub-population
recruitment and accumulation, may in part explain the recently
described loss with time post-injury, of an initially protective/
anabolic effect of injured synovium on chondrocytes (193).

Osteoclasts have been implicated in progressive joint
destruction. Osteoclastogenesis is controlled by RANK (Receptor
Activator of Nuclear factor Kappa B (NF-kB) (194). Its ligand
(RANKL) is expressed by fibroblast-like synoviocytes and Th17
cells, and expression is regulated by pro-inflammatory cytokines
secreted by monocytes and macrophages (IL-1b, IL-6, IL-17 and
TNF-a) (195). A particularly interesting mechanism by which
monocytes could contribute to increased osteoclastogenesis in the
context of arthritis was proposed by Hirose et al. They postulated
that CCL2 secreted by osteoblasts leads to fusion of Ly6Chigh with
Ly6Clow monocytes stimulated by RANKL, resulting in mature,
multinucleated osteoclasts (195). In addition to osteoblasts,
activated inflammatory cells produce large amounts of CCL2
and this might explain the accelerated osteoclastogenesis and
joint destruction in an inflammatory setting (195).

Signals Governing Monocyte Differentiation,
Activation, and Functions in OA
Following their recruitment to the tissue, monocyte functions can
be shaped by a variety of signals present in the non-homeostatic
joint. Calcium binding proteins can act as damage- or pathogen-
associated molecular patterns (DAMPs and PAMPs, respectively)
and have multi-faceted effects on OA pathogenesis. Damage to the
cartilage leads to increased levels of S100A8 and its binding
partner S100A9 specifically in synovial pro-inflammatory
macrophages, but not fibroblasts (196). Secretion of these factors
induces the production of pro-inflammatory cytokines in these
macrophages in an autocrine manner (196). In addition, in a
murine collagenase-induced OA model, which has a more
inflammatory phenotype than surgically-induced disease, release
of S100A8/9 elicits influx of Ly6Chigh monocytes via upregulation
of CCL2 (197) and increased egress of Ly6Chigh monocytes from
the BM (197). In turn, activated monocytes are a major source for
S100A8/9, which might thus constitute a positive feedback loop.
Finally, S100A8/9 might also be derived from chondrocytes and
directly contribute to cartilage disruption in OA by inducing
production of ADAMTS-4 and -5, MMP-1, -3, -9 and -13 and
the pro-inflammatory cytokines IL-6, IL-8 and CCL2 in
chondrocytes in a TLR4-dependent manner (198, 199).
Interestingly, chondrocyte-derived S100A8/9 may play a
predominant role in the acute post-injury phase, as expression
and protein levels in cartilage decrease with post-traumatic OA
disease progression while levels are maintained in immune-
mediate inflammatory arthropathy (199). S100A8/9 thus fuel the
Frontiers in Immunology | www.frontiersin.org 12
initial pro-inflammatory microenvironment in the joint, provide
chemotactic cues for Ly6Chigh monocytes and exert direct
catabolic effects within the cartilage, processes which are further
amplified by several feedback loops. Another class of OA-
associated DAMPs are basic calcium phosphate (BCP) crystals.
Whilst in vivo data on their relevance to OA are currently lacking,
in vitro exposure of monocyte-derived macrophages to BCP
crystals leads to a classically activated, pro-inflammatory
phenotype, a bioenergetic switch towards glycolysis and
increased expression of S100A8 (200). Promisingly, both BCP-
induced phenotypic polarization and S100A8 expression are
inhibited by a glycolytic inhibitor (2DG) indicating that
metabolic reprogramming might be underlying these effects (200).

The Janus Kinase/Signal Transducer and Activator of
Transcription (JAK/STAT), Mitogen-Activated Protein Kinase
(MAPK) and NF-kB pathways are involved in differentiation of
monocytes into macrophages and their functional polarization.
The latter depends on interferon regulatory factors (IRFs) (201).
IRF5 is a also downstream target of Granulocyte-Macrophage
Colony-Stimulating Factor Receptor (GM-CSFR), and plays a
critical role in pro-inflammatory macrophage polarization (202).
A recent clinical study investigated the role of IRF5 in OA and
found it to be overexpressed in synovial macrophages, but not
circulating monocytes (203). However, exposure to synovial fluid
from OA patients induced expression of IRF5 and IL-12 (via the
individual subunits IL-12p35 and IL-12p40) in monocytes, in turn
making them potent inducers of a Th1 response characterized by
expression of IFN-g and Tbx21 in co-cultured naïve CD4+ T-cells
(203). This suggests that patient synovial fluid contains soluble
factors capable of inducing IRF5 in monocytes, thus contributing
towards a Th1 inflammatory response.

TLR 4 is a receptor for PAMPs and DAMPs expressed on
monocytes that plays an important role in the activation of innate
immunity (204), and has been implicated in the inflammatory
reaction associated with OA (205). The adipokine visfatin was
recently identified as a TLR4 receptor agonist capable of evoking
inflammatory responses (206). In addition, visfatin stimulates
production of IL-1b, TNF-a and IL-6 by monocytes (207), and
the resulting inflammatory environment displays higher levels of
circulating visfatin, thus constituting a positive feedback loop (208,
209). Visfatin is also involved in inter-tissue joint communication
underlying changes in the subchondral bone (210). These have
long been described in OA, but the exact mechanisms of this
remodeling and pathways of its activation has remained elusive.
Emerging evidence now points towards direct communication
between the subchondral bone and cartilage via diffusion (211).
Laiguillon et al. found that visfatin is produced in cartilage,
synovium and subchondral bone and exerts an enzymatic
effector function selectively inducing a pro-inflammatory
phenotype in chondrocytes, osteoblasts and synoviocytes,
characterized by increased secretion of IL-6 and CCL2 (210,
212–214). Because of its contribution to the inflammatory
response and tissue remodeling, inhibition of visfatin might be a
promising DMD approach.

The gene expression profiles of monocytes and monocyte-
derived macrophages, and hence, their functional polarization,
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might also be shaped by microRNAs expressed in response to
environmental stimuli. A recent study identified miR-155 as a
potential genomic switch in monocyte-derived macrophages
generated in vitro, which regulates their inflammatory profile
(215). Intriguingly, this phenomenon is partially reversed by
treatment with monoclonal anti-TNF antibodies, but not a
soluble TNF receptor (Etanercept) (215). MiRNAs expressed
by monocytes and their macrophage progeny, such as miR-155,
might therefore represent promising candidate DMD targets.

While we have focused primarily on joint injury and ptOA,
monocytes and macrophages in the arthritic joint might also be
affected by age and cellular senescence, as has been demonstrated
for RA. In this context, an elegant mouse study from Misharin et
al. is of note, where the role of different monocyte subsets in RA
pathogenesis using serum-transfer induced arthritis was
investigated. Ly6Clow monocytes are recruited to the joint and
initially develop into classically activated macrophages, but the
macrophage compartment gradually undergoes a switch towards
a more alternatively activated phenotype (169). The initial highly
pro-inflammatory nature of the Ly6Clow monocytes could be
caused by a senescence-associated secretory phenotype, which is
associated with high baseline NF-kB and IL-1a activity (216). In
addition, accumulation of Ly6Clow monocytes is found in the
elderly. These findings suggest that senescence might correlate
with increased numbers and pro-inflammatory skewing of
Ly6Clow monocytes, which might further exaggerate the
inflammatory response unfolding during RA progression.
Whether similar mechanisms might be at play in ptOA
requires evaluation, but it is interesting to note the accelerated
disease progression, increased expression of inflammatory genes
and inhibitory effects of MIF ablation following medial meniscal
destabilization in older versus younger mice (217, 218).

Immunogenic and Imprinting Signals in the
Injured Joint
As introduced, the synovial membrane plays a key role in
maintaining joint homeostasis as it guarantees the relative
immune privilege of the synovial cavity. However, while the
joint space itself is not vascularized, the synovial membrane also
features a vascular net located just below the intima. This
comprises capillaries, venules, arterioles and lymphatics (219)
through which systemic and local inflammatory stimuli can be
sensed (125, 220). Hemarthrosis and cartilage damage are direct
consequences of joint trauma, which affect the joint not only
macroscopically, but also on a cellular and molecular level (176).
Of note, the presence of blood in synovial fluid is an independent
predictor or poorer 2-year outcome following joint injury (221).
It is tempting to speculate that heme could be a cellular cue
shaping macrophages in the early stages of ptOA pathogenesis,
but unlike in the homeostatic spleen, it may instruct more
inflammatory cell states (222). Moreover, hemarthrosis directly
activates the complement system, leading to production of
complement anaphylatoxins (C3a and C5a) and formation of
the membrane attack complex (223). Intriguingly, genetic
deficiency for individual components of the complement
system in mice leads to either attenuated [C5 and C6 (224)] or
Frontiers in Immunology | www.frontiersin.org 13
aggravated [CD59, also known as protectin (224)] ptOA joint
damage following injury.

As discussed above, mechanical forces may directly shape
macrophage functions in the homeostatic joint. It is therefore
plausible that the mechanical changes following joint injury,
impact on resident and recruited macrophages. This appears to
be the case at least in experimental RA, where the extent of
mechanical loading determines the local distribution of
inflammation and degree of damage (225). Mechanical damage
to the cartilage also leads to substantial ECM degradation.
Collagen fibers fail to contract (226, 227) and ECM
degradation is further enhanced by the lack of maintenance
and repair (228) following chondrocyte death. ECM-derived
tissue fragments are widely recognized as pro-inflammatory
and immunogenic (229, 230). These fragments and the
complement anaphylatoxin C5a can act as effective chemo-
attractants for innate and adaptive immune cells (231, 232)
and directly activate macrophages via NF-kB signaling (233).
Released cartilage destruction products such as matrilin-3 (229,
234), tenascin-C (235), fragmented biglycan (236) and
fibronectin (237) can also potently activate resident synovial
macrophages. Finally, cartilage and other joint tissue degradation
can induce release of additional DAMPs (238) capable of
activating innate immune cells via TLR2 and 4 (239) and NF-
kB signaling. The mechano-biological damage induced by injury
thus generates an inflammatory microenvironment in the joint
space, which is characterized by an increase in soluble
inflammatory mediators and chemo-attractants that might
induce transition to the acute inflammatory phase, and
importantly shape subsequent responses of both recruited
monocytes and resident macrophages.

T Cell-Mediated Monocyte and
Macrophage Activation in OA?
Other immune cells may provide signals amplifying the effects of
monocytes and macrophages. In the context of joint injury,
recruitment and activation of lymphocytes have traditionally
been thought of as secondary events that follow monocyte influx
and changes in macrophages (11). However, T cells are found in
synovium at higher levels in early versus late OA (240) and might
actively contribute to monocyte and macrophage activation via
co-stimulatory pathways. One such pathway relies on
interactions between CD40, a member of the TNF receptor
family found primarily on antigen-presenting cells and
monocytes, and its ligand CD40L (CD154), which is almost
exclusively expressed by activated CD4+ T cells (241, 242).
CD40/CD40L interactions elicit a broad pro-inflammatory
response (243) that involves B cell differentiation (244) and
macrophage activation. In turn, activated macrophages and
other antigen-presenting cells enhance immunoglobulin
antigen affinity (241), activate cytotoxic T cells and promote a
Th1 immune response (245). This co-stimulatory pathway
therefore has the potential to initiate a powerful amplification
loop that propagates joint inflammation. In keeping with this
notion, exaggerated CD40/CD40L signaling contributes to
autoimmunity (246), including RA. Multiple studies have
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shown overexpression of both CD40L (247–249) and CD40
(246) in RA, and levels of CD40L are associated with disease
activity (248) and perpetuation (247). Based on these findings,
biological treatments targeting this axis in RA have been
developed, which are currently undergoing early phase clinical
trials (250). Despite differences in the pathogenesis and
mechanisms involved in the development of RA and OA,
shared elements in the underlying inflammatory response seem
plausible (251). The effects of targeting the CD40/CD40L axis in
OA remain to be determined, however we have found that
CD40L mRNA levels are elevated exclusively in the synovium
immediately after ACL rupture and during early onset of OA
development (252). These preliminary findings support the
notion that CD40/CD40L may be an early driver of T cell-
mediated synovial macrophage activation and warrant future
research into the CD40/CD40L axis specifically in ptOA.
Additional Candidate Pathways and
Mechanisms Leading to Macrophage
Dysregulation During OA Pathogenesis
In addition to the factors discussed above, obesity is a well-
established risk factor contributing to OA development (253),
through increased mechanical loading but also via dysregulated
secretion of adipokines and other metabolic factors (254). In mice,
high-fat diet (HFD) results in elevated leptin-induced levels of
lysophosphatidylcholine (lysoPC), which in turn increases
MMP13 production by chondrocytes. As a consequence, obese
mice show an earlier onset and progressive course of spontaneous
OA (254). Direct links between obesity and OA have also been
shown in mouse models of ptOA. HFD was associated with
inflammation in the infrapatellar fat pad, characterized by
macrophage crown-like structures, which may have a priming
effect on the fat pad leading to a metabolic state of progressive OA
following injury (123). HFD was also shown to aggravate
inflammation of the synovial membrane post-injury, which was
marked by increased macrophage infiltration (255). These
findings are in line with the notion that obesity contributes to
aberrant macrophage activation in OA pathogenesis. Intriguingly,
these detrimental effects of HFD on OA persisted even after a
normal diet was resumed (254), indicating long-lasting effects and
potential windows or particular susceptibility. Some of these
effects may even be programmed in early life and transmitted
across generations. Indeed, increased higher susceptibility to
experimental ptOA has been reported in the first and second
generation offspring of mice fed a HFD during breeding (256).
Immune cells have been implicated as mediators of such
programming and transgenerational effects of obesity in
offspring (256), and epigenetic dysregulation has been
postulated as a central mechanism.

While some epigenetic modifications are stable and passed on
across generations, others are more dynamic and responsive to
environmental stimuli (257). These are believed to play a
significant role in OA development. Of the studies that have
investigated epigenetic changes in OA development, most have
focused on epigenetic mechanisms modulating chondrocyte
Frontiers in Immunology | www.frontiersin.org 14
biology and inflammatory mediators (258). Evidence for
epigenetic modifications of macrophage remains scarce in the
context of OA. In principle, epigenetic processes govern various
aspects of macrophage biology, including their development,
differentiation, and activation, as well as the specification of
their tissue identity (259–261). For example, active DNA
demethylation occurs during monocyte to macrophage
differentiation in vitro (262) and the identity of tissue-resident
macrophages is shaped by unique enhancer landscapes in
response to microenvironmental cues (70, 71). They also
activate genes governing embryonic stem cell-like self-renewal
through macrophage-specific enhancers (263). Fully
differentiated macrophages are maintained in a “balanced”
state through a combination of activating (such as PU.1,
H3K4me1 and open chromatin) (264) and repressive (such as
H3K9me3, H3K27me3 and H4K20me3) (265) epigenetic marks
and regulators (262). These repressive marks are removed upon
stimulation of macrophages through TLR, and specifically TLR4,
ultimately resulting in the production of inflammatory cytokines
such as IL-1b, CXCL10, IL-6 and TNF (262). TLR4 signaling has
also been implicated in low-grade inflammation mediated by
plasma proteins present in the synovial fluid of OA patients
(266). Whether epigenetic changes in macrophages contribute to
this remains to be formally shown, however.

Activation via TLR4 also initiates metabolic reprogramming
of macrophages, and distinct metabolic states have been linked to
functional differences in macrophage subsets. For example,
metabolic reprogramming towards increased glycolysis
promotes pro-inflammatory polarization (267). In OA,
increased glucose uptake correlates with disease progression,
and the hypoxic environment in the OA synovium may
enhance osteoclastogenesis (267, 268). Osteoclastogenesis
appears to also be promoted by metabolic syndrome through
NF-kB activation and advanced glycation end products (269). A
bioenergetic switch towards glycolysis is also induced in
macrophages by basic calcium phosphate crystals, which are
specifically found in OA (220), further supporting the notion
that macrophages may undergo metabolic reprogramming
during OA pathogenesis.

Finally, epigenetic and immunometabolic changes are also
hallmarks of “trained immunity”. This recently coined concept
(270) acknowledges that innate immune cells, including
macrophages, show increased responsiveness to secondary
stimuli following “training” by primary exposures. Whilst
trained immunity has not specifically been studied in the
context of OA, many of the cellular signals that impact on
macrophages during OA pathogenesis – or even preceding
disease onset - could mediate long-term effects through inducing
this type of innate memory in macrophages. Thus, obesity/HFD
may be primary exposures that train heightened or specific OA
inducing immune responses to a secondary stimulus such as injury
(123, 256). It is interesting to speculate that this may also be
relevant in the context of prior evenminor joint injuries increasing
the risk and/or severity of ptOA following a critical/destabilizing
injury such as anterior cruciate ligament (ACL) rupture (see
Blaker et al., 2021 and references therein) (271).
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HARNESSING MONOCYTE AND
MACROPHAGE BIOLOGY FOR OA
RISK STRATIFICATION, DIAGNOSIS,
AND THERAPY?

It is now well recognized that ptOA development features an
early inflammatory response. This involves systemic processes
resulting in monocyte recruitment, as well as a local disbalance
within the immune “niches” of the affected joint, whose immune
privilege is therefore compromised. This recognition has several
implications that in the future could be exploited for prognostic,
diagnostic and therapeutic benefit, examples of which we
discuss below.

Monocytes and Macrophages as
Biomarkers for OA
To this day, OA diagnosis largely depends on clinical
presentation/symptoms and conventional imaging methods like
x-ray, computerized tomography (CT) scans or magnetic
resonance imaging (MRI) (272). Diagnostic biomarkers are
currently missing, as are reliable predictive markers. Access to
synovial fluid and hence, the search for useful biomarkers, is
limited by the invasive nature of the acquisition procedure.
Nonetheless, advances have been made recently in the search
for cellular and molecular biomarkers with diagnostic and/or
predictive potential (221, 273), using synovial fluid where
available, or peripheral blood, which can bemore readily obtained.

On the cellular level, a growing body of data implicates
monocytes and monocyte-derived macrophages in OA
pathogenesis, as discussed in this review. Several recent clinical
studies therefore investigated the prognostic value of peripheral
immune cell ratios. While the exact ratios differ between studies,
monocytes represent a common denominator. In particular, the
neutrophil to monocyte ratio is independently and inversely
associated with OA severity as classified using the Kellgren-
Lawrence scale (274). Similarly, the monocyte to lymphocyte
ratio reliably predicts OA progression (275). MicroRNA analysis
of peripheral blood mononuclear cells (PBMCs) from OA
patients showed elevated expression of miRNA-146a and
miRNA-155 (276), which influence inflammatory cell signaling
via the NF-kB pathway (277, 278). Moreover, transcriptomic
analysis of PBMCs from OA patients identified more than 1000
differently expressed genes, pathway analysis of which implicated
inhibition of chondrocyte differentiation, increased
osteoclastogenesis and MAPK activation (279). These data
collectively indicate that peripheral blood monocytes of OA
patients differ from healthy controls both quantitatively and
qualitatively. It is tempting to speculate that specific OA-
primed inflammatory monocytes exist in the peripheral blood
during disease progression, and even potentially prior to onset.
This notion is corroborated by data from Loukov and colleagues,
who demonstrated that following in vitro exposure to DAMPs,
peripheral blood monocytes from women with knee
OA produced higher levels of the pro-inflammatory cytokines
IL-1b and TNF-a than monocytes from healthy controls (280).
The same group also demonstrated significantly higher levels of
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CD14 expression on monocytes of OA patients, further
implicating non-classical activated monocytes.

Within the synovial fluid of knee OA patients, monocytes and
macrophages constitute the second most abundant cell
population after T cells, and a large proportion of these are
CD16-, thus further implicating non-classical monocytes (281).
Liu et al. investigated the relative abundance of phenotypically
distinct macrophages in synovial fluid of knee OA patients and
found an increased ratio of “classically” compared to
“alternatively” activated macrophages (282). This ratio further
correlated with disease severity, suggesting that despite the
limitations of this simplistic dichotomy, such analyses can
yield clinically relevant data.

A wealth of experimental and clinical studies has analysed
inflammatory parameters and markers in synovial fluid for their
potential to serve as biomarkers. These studies have shown that levels
ofCCL2, IL-6 and IL-8 accurately distinguishOA fromnormal joints
(283–285) and inflammatory markers can even predict the outcome
of ACL reconstruction. Similarly, the presence and severity of
synovitis following meniscal injury are associated with the risk of
progressive cartilage damage, even if inflammation subsequently
resolves (286). Elevated levels of several additional synovial fluid
biomarkers associate not only with radiographic OA severity
(sVCAM-1, sICAM-1, TIMP-1 and VEGF) and OA symptoms
(VEGF, MMP-3, TIMP-1, sVCAM-1, sICAM-1 and MCP-1) but
are also highly correlatedwith levels of neutrophil elastase (287). This
highlights apotential role forneutrophil activation in theonsetofOA.
These initial findings were further corroborated by a recent study
indicating that expression levels of TGF-ß1 and elastase were
associated with radiographic severity scores and predictive of knee
OA progression (288).

Based on such findings, Jayadev et al. used a novel machine
learning approach to develop a “cytokine fingerprint” for end-
stage OA. Using a panel of eight biomarkers (PIIANP, TIMP-1,
ADAMTS-4, CCL2, IP-10 and TGF-b3), this model
distinguishes between OA, knee injury and inflammatory knee
arthritis (i.e. RA or psoriatic arthritis) with almost 100% efficacy
(289). Interestingly, knee/hip arthroplasty further increases the
levels of angiogenic and pro-inflammatory cytokines, but leaves
anti-inflammatory cytokines unaffected, suggesting underlying
changes specifically in pro-inflammatory pathways, which might
be further exacerbated with surgical treatment (290).

In summary, biomarker research has both leveraged and fueled
the notion that monocytes contribute to OA pathogenesis, and
that OA-primed non-classical monocytes might exist. Although
this progress is encouraging, the majority of recently identified
biomarkers are associated with disease progression, rather than
onset. There remains thus a pressing, unmet clinical need for
biomarkers instrumental in diagnosis and stratification of
individuals at risk of developing ptOA following knee injury.

Disease Modifying Drugs for OA:
Where Are We on the Clinical and
Pre-Clinical Level?
To target the early inflammatory phase that follows joint injury
and initiates OA pathogenesis, adjuvant DMDs are urgently
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needed. A variety of agents with the potential to serve as DMDs
are currently being tested, but unfortunately, with limited success
(291). Some studies on local inhibition of IL-1 in animal models
showed promising results. In particular after closed articular
fracture, intra-articular injection of an antagonist for IL-1
receptor (IL-1Ra) reduces post-traumatic OA, cartilage
degeneration and synovitis (292–294). However, the clinical
efficacy of this approach remains controversial. While an early
clinical study found that intra-articular administration of IL-1Ra
performed within 1 month of severe knee injury led to reduced
knee pain and improved function over a 2-week follow-up period
(295), other clinical studies using either IL-1Ra (Anakira) or a
dual variable domain immunoglobulin that simultaneously
inhibits IL-1a and IL-1b (Lutikizumab) have yielded no benefit
in OA patients compared to placebo controls (291). Interestingly,
retrospective secondary analysis of a large-scale clinical trial of a
monoclonal antibody targeting IL-1b for cardiovascular disease
found reduced incidence of hip and knee replacement in patients
with high C-reactive protein, suggesting a potential effect on OA
progression in an inflammatory setting (296).

It is noteworthy, that the OA-specific studies of DMD
candidates described above were tested mostly in patients with
advanced OA with the intention of reducing established clinical
and radiological disease progression. In line with the current
difficulties in risk stratification and early diagnosis outlined
above, to date, no drugs have been advanced to the clinical
stage that target the inflammatory response at the onset or early
stages of disease. Experimentally, however, attempts to advance
in this direction have been made recently. One study explored
the role of incretin hormone receptors in vitro. It found that an
analogue for the human Glucagon-Like Peptide-1 (GLP-1),
liraglutide, reduced production of reactive oxygen species, IL-6
and CCL2, reduced collagen and aggrecan degradation and
inhibited inflammation via deactivation of NF-kB signaling
(297). Similarly, administration of dexamethasone, rapamycin
or BMP-7 results in a more anti-inflammatory macrophage
phenotype in vitro. Whilst these findings await in vivo
confirmation, these drugs might hold potential of modulating
synovial inflammation in patients (298).

One of the few in vivo studies investigating the impact of anti-
inflammatory therapy immediately after joint injury utilized a
porcine model. Here, the authors induced OA via transection of
the anterior cruciate ligament (ACL) and immediately provided
corticosteroids by intraarticular injection, which resulted in
mitigated collagen degradation, reduced monocyte recruitment
and a less inflammatory macrophage profile/phenotype (299).
Our group has investigated the respective effects of intraarticular
administration of hyaluronan or BM-derived mesenchymal stem
cells in a murine OA model. We found that hyaluronan therapy
increased anti-fibrotic macrophages and decreased pain
sensitization, while treatment with MSCs did not impact pain,
but led to long-term chondroprotection (300). Along similar
lines, another recent study demonstrated that administration of
Alpha defensin-1 renders macrophages less inflammatory and
attenuates OA in a surgical model (301). Collectively, these data
suggest that specific anti-inflammatory treatment immediately
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after knee injury might represent a promising future therapeutic
approach, and thus, justify additional experimental and
ultimately clinical studies.
CONCLUDING REMARKS, OPEN
QUESTIONS, AND FUTURE DIRECTIONS

Distinct Inflammatory Responses in
Different Joint Injuries?
Post-traumatic OA accounts for nearly 12% of all cases of
symptomatic OA (302) and a recent longitudinal cohort study
showed that the risk of developing OA is almost sixfold increased
by knee injury at a young age (303). Further stratification of these
data revealed distinct risks for different injury types: ACL injury,
meniscal tears and articular fractures of the tibia (risk difference
(RD) of 19.5%, 10.5% and 6.6%, respectively) were associated with
the highest risk (303). In trying to identify possible reasons for
these differences, the simplest explanation of variable
biomechanical aberration is insufficient, as an abundance of data
has shown that restoration of biomechanics alone does not
prevent ptOA development (4). An alternative hypothesis is that
phenotypic differences exist in the pathogenesis of ptOA
depending on the type of tissue affected by injury. Thus,
metabolic and immunobiological differences may determine the
individual risk of developing ptOA. Although comprehensive
studies investigating the tissue- and phenotype-specific immune
response after joint injury are missing, existing evidence supports
an immunological role for the meniscus (304), which engages in a
pro-inflammatory crosstalk with the synovium in OA (305).
Furthermore, synovial fluid, cartilage tissue and isolated
cartilage cells display distinct pro-inflammatory cytokine profiles
depending on the type of pathology, further supporting the notion
that a phenotype-specific cytokine topography exists in the joint
(306). Future studies should therefore be designed to examine the
inflammatory reaction associated with different types of
joint injury.

Could Restoring Joint Immune
Homeostasis Hold the Key to OA?
Owing to decades of research, we have come to understand that
OA cannot simply be attributed to “wear and tear” resulting from
biomechanical changes. Rather, OA results from a complex
biological response of different cells in multiple joint tissues,
with “inflammation” playing a crucial role this process.
Monocytes and macrophages are emerging as key players in the
inflammatory process associated with OA. Circulating monocytes
are particularly attractive as druggable targets, but selective
targeting of tissue-resident macrophages might be equally
feasible, for example using antibody-conjugated lipid
nanoparticles (72). It is tempting to speculate that dysregulated
dynamics between monocytes, macrophages and other cell types
they cross-react with in the joint not only fuels pathology, but in
fact represents an underlying cause of OA. To harness these
intricate cellular interactions for diagnostic and therapeutic
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purposes, we need to further improve our understanding of
monocyte and macrophage biology in both healthy and arthritic
joints. Deciphering their developmental and functional dynamics
harbours the potential of one day being able to restore synovial
immune homeostasis and thus, finally provide a causative
treatment for this debilitating disease.

Can Findings From ptOA Be Translated to
Other OA Phenotypes?
A wide range of small and large animal models for OA have been
developed, and these have recently been reviewed (307). Far and
away the most commonly used models are those induced by joint
injury. They share a comparably rapid onset and highly
standardized disease progression, and allow investigation of
underlying molecular and cellular mechanisms, as well as
evaluation of potential treatments at different stages of disease
progression. However, the translation of findings made in these
models to clinical settings has remained challenging (308). One
explanation is the current discrepancy between preclinical
research predominantly using ptOA models and clinical studies,
the majority of which investigate late-stage “primary OA” which
occurs in the absence of prior trauma or disease (309). There is
emerging evidence that the pathophysiologic mechanisms of
structural and symptomatic OA differs depending on the key
initiating factors or disease phenotype (310, 311). How different
the complex cellular inflammatory response is in different OA
phenotypes remains to be resolved. In a first attempt to overcome
this issue, findings from preclinical ptOA studies should be tested
in preclinical models of primary OA, such as spontaneous age-
associated and metabolic/obesity-induced disease. Whilst the
associated immune response may be different in strength and
spatio-temporal patterns, it is likely that at least some aspects of
monocyte and macrophage biology relevant to ptOA apply to
other OA phenotypes, such as their roles in ECM degradation and
chondrocyte death, which are universal OA disease features.
Likewise, some molecular signals identified in ptOA models as
regulators of macrophage activation and polarization, such as
specific cytokines and chemokines, and are also present in
multiple OA phenotypes (312).

Open Questions and Future Directions
for Research

- Does the initial inflammatory response following joint injury
pathologically imprint monocytes, macrophages and their
stromal niche in the joint?

- Do disease-specific, “imprinted” populations of monocytes and
macrophages emerge prior to disease onset? Do they mediate
(or: propagate) OA pathogenesis?
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- Are monocyte and macrophage dynamics permanently altered
following joint injury?

- Can these populations be targeted therapeutically?

- Is there an optimal ratio between pro- and anti-inflammatory
monocyte/macrophage subsets that mitigates the risk of OA
after joint injury?

- Can a threshold be determined that governs the future direction
of either resolution of inflammation and restoration of joint
function or ongoing inflammation that contributes towards
development of OA?

- Do similar considerations also apply to non-traumatic forms
of OA?

Addressing these questions will provide the critical scientific
understanding necessary to improve diagnosis, risk prognosis,
and underpin development of specific targeted therapies to
prevent OA onset and/or slow its progression following joint
injury. Recognizing that the targets may differ depending on
injury and change with time and being able to identify these
therapeutic stages/windows, will be key to providing effective
individualized patient management.
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