DOI: 10.1111/dom.14382

LETTER TO THE EDITOR

WILEY

The J-shaped relationship between body mass index and mortality in patients with COVID-19: A dose-response metaanalysis

The coronavirus disease 2019 (COVID-19) pandemic has caused a considerable number of deaths. Identifying individuals at higher risk of critical illness and death is critical for planning prevention strategies, such as assigning vaccination priority. Several studies have linked obesity to more severe illness and higher mortality in COVID-19 patients.¹⁻⁴ However, the relationship between underweight and COVID-19 mortality remains inconclusive; previous dose-response meta-analyses did not include the underweight population in their evidence synthesis.^{5,6} We conducted a systematic review and dose-response meta-analysis to investigate the relationship between body mass index (BMI) and mortality in both obese and underweight patients with COVID-19.

We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines.⁷ The protocol was registered in the International Platform of Registered Systematic Review and Meta-analysis Protocols (registration number: INPLASY2020120090). We searched the PubMed, Embase, Cochrane Library, Scopus and Web of Science databases from inception until February 11, 2021 using the keywords "COVID-19", "body mass index", "obesity", "overweight", "underweight" and "mortality." Details of the search strategies and article selection process are shown in the Supplementary Materials. We included studies if they: (i) reported mortality risk for patients with COVID-19; (ii) divided patients into at least three different BMI categories and reported the relative risk (RR) of mortality for each category; and (iii) reported adjusted estimates (adjustment for age and sex at minimum). We only included studies that reported at least three BMI categories and the numbers of patients and deaths for each BMI category to investigate a potential nonlinear trend in dose-response meta-analysis. Both clinical trials and observational studies that provided sufficient data were eligible. Review articles, case reports, editorials, letters and conference abstracts were excluded. Studies that reported only crude estimates without adjusting for confounders were excluded. The primary outcome was mortality. Three reviewers (H.K.H., K.B. and D.P.H.) independently assessed the relevant articles to identify eligible studies, three reviewers (H.K.H., K.B. and D.P.H.) independently extracted the data, and two reviewers (K.B. and D.P.H.) assessed the quality of the studies using the Newcastle-Ottawa Scale.⁸ Discrepancies were resolved via discussion among the study team.

We first conducted a meta-analysis for the difference in the risk of mortality between the highest and the lowest category of BMI using a DerSimonian and Laird random-effects model (the high vs. low meta-analysis).⁹ We then conducted the random-effects doseresponse meta-analysis to estimate the linear and nonlinear trends in the association between BMI and mortality.¹⁰ The linear trend was estimated by using the generalized least squares model described by Greenland and Longnecker.¹¹ We used the two-stage approach to estimating the nonlinear trend by first fitting a restricted cubic splines model with knots at the 10th, 50th and 90th percentiles for each study and then undertaking a multivariate meta-analysis for the model variables.¹² The Wald test was used to test for nonlinearity by comparing the model fit between the linear and nonlinear models. When the BMI level was presented as a range, the dose was assigned using the midpoint of the upper and lower boundaries; for the open-ended highest and lowest BMI categories, the width between the boundaries was assumed to be equal to that of the adjacent category. RRs for mortality with 95% confidence intervals (CIs) were used to report the outcome. For the dose-response meta-analysis, a sensitivity analysis was conducted by pooling only studies specifically evaluating underweight patients (BMI < 18.5 kg/m²). We assessed heterogeneity among studies with l^2 statistics. The heterogeneity was considered low, moderate and high for $l^2 < 50\%$, 50% to 75%, and > 75%, respectively.¹³ Potential publication bias was assessed using funnel plots, Egger's test and Begg's test.^{14,15} A leave-one-out sensitivity analysis was performed to evaluate the influence of each study on the overall pooled estimate. All statistical tests were two-sided, with the significance level set at 5%. Statistical analyses were conducted using Stata version 15.1 (StataCorp, College Station, Texas) and R software version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria).

Institutional ethical approval was not required because this was a meta-analysis of primary published studies only.

Of the 7443 potential studies screened, 4455 duplicate studies, 2393 irrelevant studies, and 567 studies without usable data on this topic were excluded, yielding 28 studies comprising 112 682 patients for the analysis (Figure S1).^{1,16-42} The characteristics of the included studies are summarized in Table 1. The mean ages of the patients ranged from 51 to 71 years, the proportion of female participants ranged from 9% to 67%, and the sample sizes ranged from 191 to 25 952. The majority of the included studies were conducted in the United States and Europe and were retrospective cohort studies. Among them, 13 studies evaluated underweight patients specifically.^{16,18,19,21,22,24,26,28-31,34,41} All the included studies had an

First author and year	Study design	Country	Study population	Patient inclusion period	Sample size, n	Mean age, years	Female, %	BMI categories, kg/m ²	Outcome measurement
Anderson 2020 ¹⁶	Retrospective cohort	United States	Adults hospitalized with laboratory confirmed SARS-CoV-2 infection in NewYork-Presbyterian /Columbia University Irving Medical Centre and the affiliated Allen Hospital	March 10 to April 24, 2020	2466	67ª	42	<18.5; 18.5-24.9; 25.0-29.9; 30- 34.9; 35-39.9; ≥40	In-hospital mortality
Baronia 2020 ¹⁷	Retrospective cohort	Italy	Patients tested positive for SARS-CoV-2 RNA admitted to the Fondazione Poliambulanza di Brescia hospital	March 1 to April 11, 2020	191	66 ^a	28.1	<25; 25-29.9; ≥30	In-hospital mortality
Czernichow 2020 ¹⁸	Prospective cohort	France	Patients tested positive for SARS-CoV-2 and hospitalized in one of the Assistance Publique- Hôpitaux de Paris hospitals	February 1 to April 30, 2020	5795	59.8	34.6	<18.5; 18.5-24.9; 25-29.9; 30- 34.9; 35-39.9; ≥40	30-day mortality
Eastment 2020 ¹⁹	Retrospective cohort	United States	All VA patients tested positive for SARS-CoV-2 in the inpatient or outpatient setting	February 28 to June 21, 2020	25 952	61.7	10.9	<18.5; 18.5-24.9; 25-29.9; 30- 34.9; 35-39.9; ≥40	30-day mortality
Fai2r 2020 ²⁰	Retrospective cohort	France	COVID-19 patients with inflammatory rheumatic disease	Feb 24 to April 17, 2020	694	56.1	66.6	<30; 30-39.9; ≥40	21-day mortality
Goyal 2020 ²¹	Retrospective cohort	United States	Persons hospitalized with confirmed COVID-19 at two new York City hospitals	March 3 to may 15, 2020	1687	66.5 ^a	40	<18.5; 18.5-24.9; 25-29.9; 30- 39.9; ≥40.0	In-hospital mortality
Gu 2020 ²²	Retrospective cohort	United States	Patients tested or treated for COVID-19 at the University of Michigan (Michigan medicine)	March 10 to April 22, 2020	1139	53.0	53.4	<18.5; 18.5-24.9; 25-29.9; ≥30	Both inpatient and nonhospitalized mortality
Gupta 2020 ²³	Retrospective cohort	United States	Adults with COVID-19 who were admitted to participating ICUs at 65 hospitals across the United States	March 4 to April 4, 2020.	2215	60.5	35.2	<25; 25-29.9; 30-34.9; 35- 39.9; ≥40	28-day in-hospital mortality

 TABLE 1
 Summary of the 28 studies included in the dose-response meta-analysis

Outcome measurement	In-hospital mortality	30-day mortality	In-hospital mortality	COVID-19-related death	All-cause mortality at any time after the index date	All-cause mortality (before April 27, 2020)	Mortality during follow- up period	In-hospital mortality	(Continues)
BMI categories, kg/m ²	<18.5; 18.5-29.9; ≥30	18.5-24.9; 25- 29.9; 30-34.9; 35- 39.9; ≥40	<18.5; 18.5-24.9; 25-29.9; 30- 34.9; 35-39.9; ≥40	30-39.9; 40-50; >50	<18.5; 18.5-24.9; 25-29.9; 30- 34.9; ≥35	<18.5; 18.5-34.9; ≥35	<18.5; 18.5-22.9; 23-24.9; ≥25	<18.5; 18.5-24.9; 25-29.9; 30-	
Female, %	39	18.2	45	48.2	6	53	58	40.5	
Mean age, years	63.5	64	63 ^a	59.1	63.6	58ª	Not reported	65 ^a	
Sample size, n	770	242	7606	8286	10 131	5902	4057	10 861	
Patient inclusion period	March 4 to April 9, 2020	February to April, 2020	Up to July 2020	January 1 to may 15, 2020	February 28 to may 14, 2020	March 14 to April 15, 2020	All participants released from isolation by 30 April, 2020	March 1 to April 27, 2020	
Study population	Adult patients admitted with confirmed COVID-19 in two hospitals (an academic tertiary care referral centre and a smaller community hospital) in New York City	Patients with laboratory- confirmed COVID-19 treated with invasive ventilation and admitted to the ICU of Guglielmo da Saliceto Hospital in Piacenza (Italy)	Patients hospitalized with COVID-19 at 88 US hospitals enrolled in the American Heart Association's COVID-19 cardiovascular disease registry	Patients with morbid obesity admitted for COVID-19	VA enrollees tested positive for SARS-CoV-2 identified using data from the Veterans' Affairs corporate data warehouse	Patients with COVID-19 presented for care to the Montefiore Medical Centre whether or not they were admitted as inpatients	Confirmed COVID-19 patients, collected by the Centres for Disease Control and Prevention of Korea	Patients with COVID-19 admitted to 12 Northwell	
Country	United States	ttaly	United States	France	United States	United States	Korea	United States	
Study design	Retrospective cohort	Retrospective cohort	Retrospective cohort	Retrospective cohort	Retrospective cohort	Retrospective cohort	Retrospective cohort	Retrospective cohort	
First author and year	Hajifathalian 2020 ²⁴	Halasz 2020 ²⁵	Hendren 2021 ²⁶	lannelli 2020 ²⁷	loannou 2020 ²⁸	Kabarriti 2020 ²⁹	Kim 2020 ³⁰	Kim 2021 ³¹	

TABLE 1 (Continued)

TABLE 1 (C	Continued)								
First author and year	Study design	Country	Study population	Patient inclusion period	Sample size, n	Mean age, years	Female, %	BMI categories, kg/m ²	Outcome measurement
			health system acute-care hospitals in New York					34.9; 35-39.9; ≥40	
Klang 2020 ³²	Retrospective cohort	United States	Patients with COVID-19 who were hospitalized in a large academic hospital system in New York City	March 1 to May 17, 2020	3406	Not provided ^b	42.4	<30; 30−39.9; ≥40	In-hospital mortality
Nakeshbandi 2020 ³³	Retrospective Cohort	United States	Patients with COVID-19 hospitalized at SUNY downstate health sciences University in New York (a COVID-19-only hospital)	March 10 to April 13, 2020	504	88	48	18.5-24.9; 25- 29.9; ≥30	30-day in-hospital mortality
Nimkar 2020 ³⁴	Retrospective case series	United States	Patients with COVID-19 admitted to a teaching community hospital in new York City	March 10 to may 13, 2020	370	71 ^a	44.3	<18.5; 18.5-24.9; 25-29.9; ≥30	In-hospital mortality
Olivas- Martínez 2021 ³⁵	Prospective cohort	Mexico	Consecutive adult patients hospitalized with severe confirmed COVID-19 pneumonia at a SARS- CoV-2 referral Centre in Mexico City	February 26 to June 5, 2020	800	51.9	39	18.5-24.9; 25- 29.9; 30-34.9; 35- 39.9; ≥40	In-hospital mortality
Palaiodimos 2020 ³⁶	Retrospective cohort	United States	First 200 patients who presented to the emergency room and were admitted to the inpatient medicine service or ICU with laboratory-confirmed COVID-19 at the Montefiore Medical Centre	March 9 to March 22, 2020	200	64ª	51	<25; 25-34; ≥35	In-hospital mortality
Petrilli 2020 ³⁷	Prospective cohort	United States	Patients with confirmed COVID-19 at NYU Langone Health, which includes more than 260 outpatient office sites and four acute care hospitals	March 1 to April 8, 2020	5279	5 4ª	50.5	<25; 25-29.9; 30-39.9; ≥40	In-hospital mortality
Rottoli 2020 ³⁸	Retrospective cohort	Italy	Patients admitted to the hospital who had a confirmed COVID-19 diagnosis who were hospitalized in Sant'Orsola Hospital in Bologna, Italy	March 1 and April 20, 2020.	482	66.2	37.3	<30; 30-34.9; ≥35	30-day mortality

¹⁷⁰⁴ WILEY

First author and year	Study design	Country	Study population	Patient inclusion period	Sample size, n	Mean age, years	Female, %	BMI categories, kg/m ²	Outcome measurement
Schmidt 2021 ³⁹	Prospective cohort	France, Switzerland, and Belgium	Patients admitted to the ICU with laboratory-confirmed SARS-CoV-2 infection	February 25 to may 4, 2020	4244	63 ^a	26	<25; 25-29.9; 30-34.9; 35- 39.9; ≥40	90-day mortality
Shah 2020 ⁴⁰	Retrospective cohort	United States	All hospitalized patients with confirmed COVID-19 at Phoebe Putney Health System (three Phoebe Putney hospitals)	March 2 to may 6, 2020	522	63 ^a	58.2	<30; 30-39 <i>.9</i> ; ≥40	In-hospital mortality
Smati 2021 ¹	Retrospective cohort	France	Patients with type 2 diabetes and confirmed COVID-19 admitted to 68 French hospitals	10 March to April 10, 2020	1965	70.1	35.5	18.5-24.9; 25- 29.9; 30-34.9; ≥35	7-day mortality
Tartof 2020 ⁴¹	Retrospective cohort	United States	Kaiser Permanente Southern California members diagnosed with COVID-19 by diagnostic codes or positive laboratory test results	February 13 to May 2, 2020	6916	49.1	55	 <18.5; 18.5-24.9; 25-29.9; 30- 34.9; 35-39.9; 40- 44.9; ≥45 	21-day mortality
Yoshida 2021 ⁴²	Retrospective cohort	United States	Sequentially hospitalized adults admitted for COVID- 19 at two tertiary care academic hospitals in New Orleans, LA	February 27 to July 15, 2020	776	60.5 ^a	61.4	<25; 25-29.9; 30-34.9; 35- 39.9; ≥40	In-hospital mortality
hhreviations: Co	OVID-19, coronavi	rus disease 2019: IC	CU intensive care unit: VA. Veteral	s Affairs: SARS-CoV-2. severe	acute respir	atory syndrome	e coronavirus		

ome corona arui y syriur î ^a Median is presented. ^b572 patients were younger than 50 years and 2834 patients were older than 50 years. vA, vete ullt, u V ν ν ZU19; ICU, ase Abbreviations: COVID-19, coronavirus

TABLE 1 (Continued)

acceptable quality, with a Newcastle-Ottawa Scale score of \geq 7 points (Table S1).

In the high versus low meta-analysis, we found that COVID-19 patients with a high BMI had an increased risk of mortality (pooled RR 1.33, 95% CI 1.15–1.53; P < 0.001), with moderate heterogeneity ($l^2 = 54.2\%$; Figure S2). There was no evidence of publication bias according to Egger's test (P = 0.270), Begg's test (P = 0.260), or the funnel plot (Figure S3). The leave-one-out sensitivity analysis demonstrated that the pooled RR was robust (Figure S4).

In the dose-response meta-analysis, a positive dose-response relationship between BMI and mortality was found based on the linear model. The mortality of patients with COVID-19 increased by 1.6% for each 1-kg/m² increase in BMI (pooled RR 1.016, 95% CI 1.008–1.025), with high heterogeneity ($I^2 = 75.9\%$). However, a significant nonlinear relationship between BMI and mortality was observed (Wald test: $P_{\text{non-linearity}} < 0.001$). We demonstrated a J-shaped curve, indicating that both underweight and obese patients had a higher mortality than those with normal weight (Figure 1A). A BMI of approximately 27 kg/m² appeared to be associated with the lowest mortality risk. Using a BMI of 15 kg/m^2 as the reference, the RRs for mortality decreased with BMI initially, and this trend continued until a BMI of approximately 27 kg/m² (RR 0.836, 95% CI 0.708-0.987). The relationship between BMI and mortality was then reversed, and an upward trend was observed when BMI exceeded 27 kg/m²; the RRs at BMI values of 30, 35, 40 and 45 kg/m² were 0.855 (95% CI 0.707-1.033), 0.965 (95% CI 0.785-1.186), 1.166 (95% CI 0.942-1.443) and 1.443 (95% CI 1.152-1.807), respectively. There was a moderate between-study heterogeneity ($l^2 = 62.3\%$). In the sensitivity analysis of the 13 studies with data on underweight patients, the J-shaped relationship between BMI and mortality remained unchanged, and the nonlinear fit was significantly better than the linear fit (Figure 1B), further supporting the robustness of our findings.

To our knowledge, this is the first dose-response meta-analysis to demonstrate a J-curved relationship between BMI and COVID-19 mortality, indicating that both underweight and obese COVID-19 patients had a higher mortality risk than patients with normal weight. Our findings are supported by previous studies which suggested a more severe respiratory virus infection or respiratory mortality in both underweight and obese patients.⁴³⁻⁴⁵ We found that overweight patients (BMI 25-30 kg/m²) seemed to have the lowest COVID-19 mortality risk, which was compatible with some previous evidence evaluating all-cause mortality in the general population.⁴⁶ However. the observed association between overweight and lower mortality may be subject to the problems of reverse causation and confounding by smoking or other confounders discussed previously in the literature.⁴⁷ As our meta-analysis comprises observational studies only, causality and underlying mechanisms could not be explored and still require further investigation. Despite these limitations, our findings have important public health implications. Awareness of vulnerable populations is critical when developing strategies for prevention, control, and treatment in the current pandemic. For example, the supply of COVID-19 vaccines is limited worldwide; thus, determining the vaccine priority group was a crucial issue. Patients with obesity are already considered a risk group for assigning high vaccine priority,^{48,49} but underweight patients have not received comparable attention. Our meta-analysis shows a poor prognosis of both underweight and obese COVID-19 patients, so we suggest that the underweight should also be considered an at-risk group when assigning vaccine priority.

FIGURE 1 Dose-response relationship between body mass index and mortality in patients with COVID-19. (A) Full analysis using all studies listed in Table 1. (B) Sensitivity analysis that included only 13 studies with specific data on underweight patients

WILEY

This meta-analysis has some limitations. First, the majority of the included studies were retrospective, the presence of unadjusted confounders may have biased the relationship between BMI and mortality, and we were unable to determine whether there was a causal relationship between body weight and COVID-19 mortality. Second, the BMI thresholds for overweight and obesity differed between Asian and Western countries; however, only one Asian study met the inclusion criteria and thus we could not conduct a subgroup analysis of Asian populations. Moreover, the relationship between BMI and the risk of COVID-19 has been found to differ according to ethnicity.⁵⁰ The differences in obesity rates may explain some of the variations in the COVID-19 mortality rates among countries.⁵¹ Owing to these limitations, more high-quality studies from different countries and ethnic groups are necessary to validate our findings.

KEYWORDS

body mass index, COVID-19, meta-analysis, mortality, obesity, underweight

ACKNOWLEDGMENTS

We thank Stella Seal, MLS, from Johns Hopkins University, for her expertise with the database search.

FUNDING INFORMATION

The authors received no specific funding for this study.

AUTHOR CONTRIBUTIONS

Author contributions were as follows. Study conception and design: Huei-Kai Huang and Yu-Kang Tu. Acquisition of data: Huei-Kai Huang, Khulood Bukhari, Carol Chiung-Hui Peng, Duan-Pei Hung and Rachel Huai-En Chang. Analysis and interpretation of data: Huei-Kai Huang, Ming-Chieh Shih and Yu-Kang Tu. Preparation of manuscript: Huei-Kai Huang and Yu-Kang Tu. Critical revisions: Huei-Kai Huang, Ming-Chieh Shih, Shu-Man Lin, Kashif M. Munir and Yu-Kang Tu. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

None declared.

PEER REVIEW

The peer review history for this article is available at https://publons. com/publon/10.1111/dom.14382.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Huei-Kai Huang MD^{1,2,3} Khulood Bukhari MBBS⁴ Carol Chiung-Hui Peng MD⁵ Duan-Pei Hung MD³

Ming-Chieh Shih PhD¹ D

WILEY 1707

Rachel Huai-En Chang MD⁶ Shu-Man Lin MD⁷

Kashif M. Munir MD⁸ 🕩

Yu-Kang Tu PhD^{1,9,10}

¹Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan ²Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan ³Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan ⁴Department of Medicine, University of Maryland Medical Centre Midtown Campus, Baltimore, Marvland ⁵Department of Internal Medicine, University of Maryland Medical Centre Midtown Campus, Baltimore, Maryland ⁶The Johns Hopkins University Bloomberg School of Public Health, **Baltimore** Maryland ⁷Department of Physical Medicine and Rehabilitation. Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan ⁸Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland ⁹Department of Dentistry. National Taiwan University Hospital and School of Dentistry, National Taiwan University, Taipei, Taiwan ¹⁰Research Centre of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

Correspondence

Yu-Kang Tu, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No 17, Xu-Zhou Road, Taipei, Taiwan. Email: yukangtu@ntu.edu.tw

ORCID

Huei-Kai Huang https://orcid.org/0000-0003-3612-653X Khulood Bukhari https://orcid.org/0000-0001-7343-0501 Carol Chiung-Hui Peng https://orcid.org/0000-0003-2352-6374 Ming-Chieh Shih https://orcid.org/0000-0002-8610-5916 Rachel Huai-En Chang https://orcid.org/0000-0002-3257-0038 Kashif M. Munir https://orcid.org/0000-0002-1075-1284 Yu-Kang Tu https://orcid.org/0000-0002-2461-474X

REFERENCES

- Smati S, Tramunt B, Wargny M, et al. Relationship between obesity and severe COVID-19 outcomes in patients with type 2 diabetes: results from the CORONADO study. *Diabetes Obes Metab.* 2021;23(2):391-403.
- Luo XM, Jiaerken YM, Shen ZM, et al. Obese COVID-19 patients show more severe pneumonia lesions on CT chest imaging. *Diabetes Obes Metab.* 2021;23(1):290-293.
- Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. *Obes Res Clin Pract*. 2020;14(4): 295-300.
- Huang Y, Lu Y, Huang YM, et al. Obesity in patients with COVID-19: a systematic review and meta-analysis. *Metabolism*. 2020;113:154378.

1708 WILEY-

- 5. Pranata R, Lim MA, Yonas E, et al. Body mass index and outcome in patients with COVID-19: a dose-response meta-analysis. *Diabetes Metab*. 2020;47(2):101178.
- Du Y, Lv Y, Zha W, Zhou N, Hong X. Association of Body mass index (BMI) with critical COVID-19 and in-hospital mortality: a doseresponse meta-analysis. *Metabolism*. 2020;117:154373.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* 2009;151(4):264-269.w264.
- Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute website. http://www.ohri.ca/ programs/clinical_epidemiology/oxford.asp. Accessed August 22, 2020.
- Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011.
- Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175(1):66-73.
- Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *Am J Epidemiol.* 1992;135(11):1301-1309.
- Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. *Stat Med.* 2010;29(9): 1037-1057.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.
- 14. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics*. 1994;50(4):1088-1101.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. *BMJ*. 1997;315(7109): 629-634.
- Anderson MR, Geleris J, Anderson DR, et al. Body mass index and risk for intubation or death in SARS-CoV-2 infection : a retrospective cohort study. Ann Intern Med. 2020;173(10):782-790.
- Baronio M, Freni-Sterrantino A, Pinelli M, et al. Italian SARS-CoV-2 patients in intensive care: towards an identikit for subjects at risk? *Eur Rev Med Pharmacol Sci.* 2020;24(18):9698-9704.
- Czernichow S, Beeker N, Rives-Lange C, et al. Obesity doubles mortality in patients hospitalized for severe acute respiratory syndrome coronavirus 2 in Paris hospitals, France: a cohort study on 5,795 patients. *Obesity*. 2020;28(12):2282-2289.
- Eastment MC, Berry K, Locke E, et al. BMI and outcomes of SARS-CoV-2 among US veterans. *Obesity*. 2020. https://doi.org/10.1002/ oby.23111.
- FAI2R /SFR/SNFMI/SOFREMIP/CRI/IMIDIATE consortium and contributors. Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients. Ann Rheum Dis. 2020;80:527–538.
- Goyal P, Ringel JB, Rajan M, et al. Obesity and COVID-19 in new York City: a retrospective cohort study. Ann Intern Med. 2020;173 (10):855-858.
- Gu T, Mack JA, Salvatore M, et al. Characteristics associated with racial/ethnic disparities in COVID-19 outcomes in an academic health care system. JAMA Netw Open. 2020;3(10):e2025197.
- Gupta S, Hayek SS, Wang W, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med. 2020;180(11):1-12.
- 24. Hajifathalian K, Kumar S, Newberry C, et al. Obesity is associated with worse outcomes in COVID-19: analysis of early Data from new York City. *Obesity*. 2020;28(9):1606-1612.
- Halasz G, Leoni ML, Villani GQ, Nolli M, Villani M. Obesity, overweight and survival in critically ill patients with SARS-CoV-2 pneumonia: is there an obesity paradox? Preliminary results from Italy. *Eur J Prev Cardiol*. 2020. https://doi.org/10.1177/2047487320939675.

- 26. Hendren NS, de Lemos JA, Ayers C, et al. Association of Body Mass Index and age with Morbidity and mortality in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 cardiovascular disease registry. *Circulation*. 2021;143(2):135-144.
- Iannelli A, Bouam S, Schneck AS, et al. The impact of previous history of bariatric surgery on outcome of COVID-19. A Nationwide medicoadministrative French study. *Obes Surg.* 2020. https://doi.org/10. 1007/s11695-020-05120-z.
- Ioannou GN, Locke E, Green P, et al. Risk factors for hospitalization, mechanical ventilation, or death among 10 131 US veterans with SARS-CoV-2 infection. JAMA Netw Open. 2020;3(9):e2022310.
- Kabarriti R, Brodin NP, Maron MI, et al. Association of Race and Ethnicity with Comorbidities and survival among patients with COVID-19 at an urban medical Center in new York. JAMA Netw Open. 2020;3 (9):e2019795.
- Kim SY, Yoo DM, Min C, Wee JH, Kim JH, Choi HG. Analysis of mortality and morbidity in COVID-19 patients with obesity using clinical epidemiological data from the Korean Center for Disease Control & prevention. *Int J Environ Res Public Health*. 2020;17(24):9336. https:// doi.org/10.3390/ijerph17249336.
- Kim TS, Roslin M, Wang JJ, Kane J, Hirsch JS, Kim EJ. BMI as a risk factor for clinical outcomes in patients hospitalized with COVID-19 in New York. Obesity. 2021;29(2):279-284.
- Klang E, Kassim G, Soffer S, Freeman R, Levin MA, Reich DL. Severe obesity as an independent risk factor for COVID-19 mortality in hospitalized patients younger than 50. *Obesity*. 2020;28(9):1595-1599.
- Nakeshbandi M, Maini R, Daniel P, et al. The impact of obesity on COVID-19 complications: a retrospective cohort study. *Int J Obes*. 2020;44(9):1832-1837.
- Nimkar A, Naaraayan A, Hasan A, et al. Incidence and risk factors for acute kidney injury and its effect on mortality in patients hospitalized from COVID-19. Mayo Clin Proc Innov Qual Outcomes. 2020;4(6):687-695.
- Olivas-Martínez A, Cárdenas-Fragoso JL, Jiménez JV, et al. In-hospital mortality from severe COVID-19 in a tertiary care center in Mexico City; causes of death, risk factors and the impact of hospital saturation. *PLoS One.* 2021;16(2):e0245772.
- 36. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. *Metabolism.* 2020;108: 154262.
- Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in new York City: prospective cohort study. *BMJ*. 2020; 369:m1966.
- Rottoli M, Bernante P, Belvedere A, et al. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian Centre. Eur J Endocrinol. 2020;183(4):389-397.
- Schmidt M, Hajage D, Demoule A, et al. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. *Intensive Care Med.* 2021;47(1):60-73.
- Shah P, Owens J, Franklin J, et al. Demographics, comorbidities and outcomes in hospitalized Covid-19 patients in rural Southwest Georgia. Ann Med. 2020;52(7):354-360.
- Tartof SY, Qian L, Hong V, et al. Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization. Ann Intern Med. 2020;173(10):773-781.
- 42. Yoshida Y, Gillet SA, Brown MI, et al. Clinical characteristics and outcomes in women and men hospitalized for coronavirus disease 2019 in New Orleans. *Biol Sex Differ*. 2021;12(1):20.
- 43. Moser JS, Galindo-Fraga A, Ortiz-Hernández AA, et al. Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses. *Influenza Other Respi Viruses*. 2019;13(1):3-9.

- 44. Yu H, Feng Z, Uyeki TM, et al. Risk factors for severe illness with 2009 pandemic influenza a (H1N1) virus infection in China. *Clin Infect Dis.* 2011;52(4):457-465.
- 45. Kivimäki M, Shipley MJ, Bell JA, Brunner EJ, Batty GD, Singh-Manoux A. Underweight as a risk factor for respiratory death in the Whitehall cohort study: exploring reverse causality using a 45-year follow-up. *Thorax*. 2016;71(1):84-85.
- Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71-82.
- 47. Tobias DK, Hu FB. Does being overweight really reduce mortality? *Obesity (Silver Spring).* 2013;21(9):1746-1749.
- Public Health England. COVID-19 vaccination first phase priority groups [Updated February 23, 2021]; 2021. https://www.gov.uk/ government/publications/covid-19-vaccination-care-home-andhealthcare-settings-posters/covid-19-vaccination-first-phasepriority-groups. Accessed March 1, 2021.

- 49. Centers for Disease Control and Prevention. People with Certain Medical Conditions [Updated February 22, 2021]; 2021. https:// www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/ people-with-medical-conditions.html. Accessed March 1, 2021.
- Razieh C, Zaccardi F, Davies MJ, Khunti K, Yates T. Body mass index and the risk of COVID-19 across ethnic groups: analysis of UKbiobank. *Diabetes Obes Metab.* 2020;22(10):1953-1954.
- Gardiner J, Oben J, Sutcliffe A. Obesity as a driver of international differences in COVID-19 death rates. *Diabetes Obes Metab.* 2021. https://doi.org/10.1111/dom.14357.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.