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Abstract

In this study, we formulate and analyze a deterministic model for the transmission of
COVID-19 and evaluate control strategies for the epidemic. It has been well documented
that the severity of the disease and disease related mortality is strongly correlated with age
and the presence of co-morbidities. We incorporate this in our model by considering two
susceptible classes, a high risk, and a low risk group. Disease transmission within each
group is modelled by an extension of the SEIR model, considering additional compartments
for quarantined and treated population groups first and vaccinated and treated population
groups next. Cross Infection across the high and low risk groups is also incorporated in the
model. We calculate the basic reproduction number R, and show that for R, < 1 the dis-
ease dies out, and for R, > 1 the disease is endemic. We note that varying the relative pro-
portion of high and low risk susceptibles has a strong effect on the disease burden and
mortality. We devise optimal medication and vaccination strategies for effective control of
the disease. Our analysis shows that vaccinating and medicating both groups is needed for
effective disease control and the controls are not very sensitive to the proportion of the high
and low risk populations.

1 Introduction

Coronavirus Disease (COVID-19) overshadowed all events in 2020 across the world and the
pandemic is still ongoing in 2021. With the first case reported in Wuhan, China, in December
2019, the disease rapidly spread around the world, and was declared a pandemic by the WHO
in March 2020 [1]. COVID-19 is caused by the SARS-CoV-2 virus which belongs to the family
coronaviridae. Strains of this family were also responsible for the severe acute respiratory syn-
drome (SARS) and the Middle East respiratory syndrome (MERS) outbreaks in 2003 and 2012
[2].

COVID-19 is primarily spread by person to person contact through respiratory droplets.
Symptoms appear 2-14 days after exposure and may include fever, dry cough, muscle pain,
fatigue, and shortness of breath [3]. The symptoms are mild in 85% of the cases, and they vary
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from severe in 10% to critical in 5% of those infected [2]. The severity and progression of
COVID-19 are known to be exacerbated by the presence of co-morbidities such as diabetes,
hypertension and cardio/cerebrovascular diseases [4]. It has also been observed that COVID-
19 mortality risk is highly concentrated within the elderly population [5].

Mathematical models have found widespread use in the study of epidemics. The aim of
such modelling is twofold, one to provide estimates of the severity of the outbreak by calcu-
lating quantities like the growth trends of the epidemic, estimates of the final outbreak size
and duration of the outbreak and second to provide insights into efficacy of various control
measures [6, 7]. Since the COVID-19 outbreak, several models have been proposed for the
transmission dynamics and control of the disease. These include phenomenological models
[8-10], which are useful at the beginning of an outbreak and mechanistic models which
incorporate relevant and important transmission pathways [11-15]. For the first few months
into the outbreak, the widely available control strategies were non-pharmaceutical, ranging
from social distancing, usage of face masks, both of which reduce the effective contact rate to
quarantine and isolation. Many studies have considered the effectiveness of these measures
whereas some studies have also proposed optimal strategies using non-pharmaceutical mea-
sures [14, 16-19]. Since that time several treatments and a number of vaccines Pfizer-BioN-
Tech, Moderna, AstraZeneca [20] have now either been approved or granted emergency
approval.

The progression of COVID-19 has been markedly different in some countries. Starting in
China, COVID-19 spread around the world rapidly, with Europe becoming the epicenter of
the outbreak [2], followed by North and South America. With the first cases being reported in
March 2020, Pakistan has had a very different epidemic curve as compared to China, Europe
and the Americas, with a much lower disease burden and mortality. Many reasons have been
suggested for this including, effective and early quarantine and isolation, a younger demo-
graphic and possibly difference in the prevalence of co-morbidities [21].

In this study, we propose an Ordinary Differential Equation (ODE) based compartmental
model for the transmission dynamics of COVID-19. We have included compartments for high
and low risk susceptible individuals to incorporate the role of demographics and co-morbidi-
ties in the progression of the disease and mortality. The disease transmission for both high and
low risk populations is modelled by a variant of the SEIR model, with additional compart-
ments representing quarantined, vaccinated and medicated population subgroups. Further,
infection across the two groups is modelled by adding a cross-infection term to the force of
infection. There are two main questions we investigate: first, does the proportion of high risk
susceptibles explain the difference in the disease burden and/or mortality in different regions
as described above, and second, if resources are limited, on which segment of the population,
should the available control strategies be concentrated?

After describing the model, we derive some basic properties using standard dynamical sys-
tems theory. The system has two steady states, a disease free equilibrium (DFE), when the dis-
ease dies out in the long run and an endemic equilibrium (EE), where the disease is endemic
in the population. We then determine a threshold quantity, the basic reproductive number R,
such that the DFE is stable whenever R, < 1 and unstable otherwise, when R > 1 the EE is
stable. Time series plots for different values of the high and low susceptible populations are
plotted to explore how the disease burden and mortality varies with the varying proportion of
these subgroups in the population. Next we explore different control measures that can be
taken to reduce the disease burden. Using optimal control theory, efficient vaccine and medi-
cation strategies are devised, we also consider how the controls differ for the low and high risk
groups. Finally, we summarize our findings in the conclusions section.
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2 Effect of quarantine and medication

2.1 Model formulation

We propose a deterministic compartmental model for the transmission dynamics of COVID-
19. The total population at any time instant, N(#), is the sum of two sub-population groups,
those at low risk for severe infection denoted by N (#) and those at a higher risk denoted by
Ny(t). The transmission dynamics within each group are modelled by an extension of the
SEIR model.

The susceptibles of Low-Risk S; () and High-Risk Sy(f) groups are quarantined at rates
0;(t) and () moving to the quarantine compartments Q; and Q. They can also move to the
exposed class E;(t) and Eg(t) after coming in contact with infected individuals, this occurs at
rates f3;, By for the low and high risk groups, respectively. In this model, we assume that the
individuals in the low risk group have a higher contact rate with the infected population of
that group as compared to the high risk group, mathematically, 8; > By. We also assume that
exposed individuals are not infectious.

Exposed individuals move to the infected classes I; (t) and Iy(t) at rates o7 and oy, it is
assumed that the latency period is the same for both classes, ;—L = é Infected population(s)

recover at rates y; and yg, with y; > yy, this assumption follows from the fact that it takes lon-
ger to recover from a severe infection. A fraction of the infected individuals receive medication
and move to the classes M; and M(t) at rates 7; and 7. An Individual from M; and My
moves to the recovered classes at rates x; and xp;. The recovery rate for the low risk group with
medication k7 is higher than that of the high risk medicated group x.

An important feature of our model is the possibility of infection across the low and high
risk groups. We assume that individuals from the low risk infected group can come into con-
tact with the high risk susceptibles and vice versa, making cross infection possible. In fact,
from very early on in the outbreak, there have been warnings about the low risk individuals
not following social distancing protocols causing severe infection in the high risk population.
We model this by assuming that the low risk infected population comes in contact with the
high risk susceptibles at rate 3, ;; and the high risk infected come in contact with the low risk
susceptibles at a rate Sy;. It is also assumed that 8; > B;y and S > By. This is based on the
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Fig 1. Flow diagram of model (1).
https://doi.org/10.1371/journal.pone.0257354.g001
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premise that high risk individuals are in general more cautious and observant of social distanc-
ing measures.

To summarize, the population is divided based on their risk for severe infection, transmis-
sion within each of these groups is then modelled by an extension of the SEIR model.

N(t) = N (t) + Ny(2)
where
= SL(t) + QL(t) + EL(t) + IL(t) + ML(t) + RL(t)
Ny = SH(t) + QH(t) + EH(t) + IH(t) +MH(t) + RH(t)

The schematic of the transmission pathways is given in Fig 1 below.

2.2 Model equations

Mathematically, the model is described by the following system of Ordinary Differential Equa-
tions where the variables are described in Table 1.

% =, — (0, +u+2)S, + 1,0,
% — 0,5, — (u+1,)Q,

% =NS, — (u+o0,)E,

% =0,E, — (u+71,+06,+7)],
d;‘fl =10, — (u+v, +1,)M,

% =1, + kM, — uR,

s (1)
. Ty — (HH + n + kH)SH + ’/’HQH

dr

dQ

d—H =048y — (L +1)Qy

t

dE

TtH =AySy — (.“ + O'H)EH

dl,

7;{ =0yEy; — (W+ 1y + 0y + 7))y
dM

dtH =1yl — (u+ vy +Ky)My
dR

d—tH = Vuly + KMy — uRy,

where Ay and Ay respectively are force of infection for low and high risk groups

b= R0+ o) + Pt @)
o = (1, 4 9,1, + Pl ®
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Table 1. Description of the variables of the model (1) and (8).

Variable Description

Ny Total population of individuals at Low Risk

Ny Total population of individuals at High Risk

St Susceptible individuals for Low Risk

Su Susceptible individuals for High Risk

QL Susceptible individuals Quarantined at Low Risk

Qu Susceptible individuals Quarantined at High Risk

Er Individuals Exposed to corona virus at Low Risk

Ey Individuals Exposed to corona virus at High Risk

I Individuals Infected with corona virus at Low Risk

Iy Individuals Infected with corona virus at High Risk

My, Medication for infected/susceptible individuals at Low Risk
My Medication for infected/susceptible individuals at High Risk
Ry Susceptible individuals Recovered from virus at Low Risk
Ry Susceptible individuals Recovered from virus at High Risk
Vi Vaccinated of Low risk individuals

Vi Vaccinated of High risk individuals

https://doi.org/10.1371/journal.pone.0257354.t001

2.3 Basic properties

Model (1) has non-negative time series solutions for non-negative initial conditions. i.e. the
differential system is well posed and bounded in positive orbit for all # > 0 with non-negative
initial values.

Lemma 2.1. For a given non-negative initial conditions of state variables, there exists a
unique solution Sg, Qr, Er, I, M1, Ry, St Qms Eg, I, My, Ry respectively, for all time t > 0.
Moreover, The closed set:

D = {(SL,QL,EL,IL,ML,RL,SH,QH,EH,IH,MH,RH) eRY:
T, + Ty
SL+QL+EL+IL+ML+RL+SH+QH+EH+IH+MH+RH ST

is positively invariant.
Proof is attached in the Appendix A.

2.4 Steady state analysis
2.4.1 Disease free equilibrium (DFE). The model (1) attains the disease free equilibrium

state when there is no force of infection i.e. A; (2) and Ay (3) are zero. Let £, denote the DFE
of the model.
& = (SZV Q. E I, M, R, Sy, Q;WE;I’IIZ’M;I?R;I)

_ ( TEL(:u + ’7L) m 0,
plp+n,+0,) " p(w+n, +0,)

(1 + 1)
:u(.u + 1y + GH) ’ (4)

,0,0,0,0>

50)0’07 07

0y
p(p+ny +0y)

The stability of disease free equilibrium is determined by a threshold quantity, the basic repro-
duction number R,,.
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The basic reproduction number R,. The Basic reproduction number R, determines the
average secondary infections produced by the single infected in a completely susceptible popu-
lation. This is a measure of propagation of the infection in the population and can be used for
inference about the extinction or endemicity of the infection in the population. The next gen-
eration operator method described by [22] is used to calculate R, which is determined by the
spectral radius of FV"!, where F (The New infection Matrix) and V (Transmission Matrix) and
are given below.

0 ﬁLQL BLQL(bL 0 BHLQL 0

0 0 0 0 0 0
. 0 0 0 0 0 0
o e 0 0 Be B, |

0 0 0 0 0 0

0 0 0 0 0 0
k, 0o 0 0 0 0
-0, k, 0 O 0 o0
0 -1, k5 O 0 0
Yo 0 0 0 Kk 0 0
0 0 0 -0, k O
0 0 0 0 -1, kb

where Q, NizandQH I\ii[,kl=0'L+[,l,k2=5L+TL+7L+[/l,k3=‘Ll+vL+K'L,k4=O'H+‘Ll,

k5=5H+ Ty + yH'f‘ﬂ, k6=‘u+VH+ KH,
The basic reproductive number R, = p(FV~') can be written as

(A+B) —/(A—B)’+4C (A4 B)+ /(A —B)’+4C

R, = max 5 ) 5 (5)
(A+B)++/(A—B)’ +4C )
a 2
Where A = B0ty + ki) B= Profulk + 7.0)) C= 0182 P10, By
kyksks ’ kykk, ’ kikok, ks

Lemma 2.2. [22] The steady state (DFE) &, of the model (1) is locally-asymptotically stable if
R, < 1, and unstable if R, > 1.

2.4.2 Endemic equilibrium. The model (1) attains the endemic equilibrium when A; (2)
and Ay (3) are non zero. Let £, represent the endemic equilibrium of the model (1).

_ ok Hok sk TRk Hok *ok 5k Kk sk Tk Kk *k
gl_(SL7 L7EL’IL¥7ML7RL7SI‘;7 H7EH7IH7MH’RH) (7)

Moreover, the force of infection A; and Ay can be written in terms of the endemic equilibrium
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as
sk B Kk sk B I**
7\’L = N;* (IL + o, M; )+ K%*H
*k B Sk ok B I**
7\‘H = NII’; (IH + ¢HMH) + ;\P;;FL

withN;* =8+ Q) + E* + I + M;* + R;*and Ny = S;; + Q;; + E;f + I;; + M + R};
Solving for the transmission (1) at this specific fixed point, the endemic equilibrium

becomes
§ — T, (1, + 1) Q" = 7,0,
t O +w)+u0, +0 ) T (O ) 4+ u(0, + 0+
B mh (n, + p) e A (n, + po,
R

ki, +w) +u(0,+0 +0) 7 kk (0 4 ) 4 (0, + 0+ )
TELA‘? (’7L + :“)ULTL

M T RRR 05 ) a0, 4 )
R = A (’7&*"’ oy (kyy, + KL;L-*L) :
kikoky(n, (A + ) + (0, + A + p)
DR /1 i) R Y — 7 —
MMy + 1) + (04 + 2 + p) Na(hy + 1) + (0, + 2y + )
B = Tkt l) Ty Oy + )0
k(g + 1) + (0 + 7 + )7 " Kk (hg + ) + 00 + Mg + 1)
My = TEHZ:: (ny + wo,ty, _ 7
kykskg(ny (M + 1) + p(0y + Ay + 1)
R Tk (g + 10y (ke + KuTh)

e k4k5k6(’71~1(;\’: +u) + :“(GH + )‘: + )

2.4.3 Numerical simulations. Numerical Simulations are performed with the help of
Matlab(ODE 45) using the parameter values given in the Table 2. Fig 2 shows the time series
solutions of model (1). Solutions achieve the DFE and Endemic Equilibrium whenever the
threshold quantity R, is less than one and more than one, respectively. These results are in
line with the qualitative results found above.

One of the issues we investigate is the dependence of disease burden on the proportion of
high and low risk susceptibles in the population. As noted in the introduction, the epidemic
curve has been very different in many South Asian countries as compared to Europe and
America. One plausible explanation could be the difference in the numbers of high and low
risk individuals based on demographics and perhaps co-morbidities in the populations. It is
relatively easy to obtain the demographic data for different countries, data on the co-morbidi-
ties with COVID-19 is harder to unfold. Italy, which has a severe outbreak and very high mor-
tality, has a high proportion of aging individuals, with around 23% of the population above the
age of 65 years, whereas Pakistan has less than 5% of the population above 65. We plot in Fig 3,
the time series for different proportion f of high risk individuals in the susceptible population,
we look at the epidemic curve for f=0.05, 0.1, 0.25 and 0.5.

It is clear from the graphs that the epidemic curve varies with the proportion of the high
risk individuals f, not only is the maximum daily number of infected higher for a higher £, but
the curve peaks later as well, both these factors contribute to a higher total infected as the
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Table 2. Description of the parameters of the model.

Parameters Description Values

II; Recruitment rate for Humans at Low Risk 10 Assumed
Iy Recruitment rate for Humans at High Risk 10 Assumed
u Natural death rate of humans at High/Low Risk 60 years Assumed
0, Susceptible Quarantine rate of Susceptible individuals at Low Risk 0.12 Assumed
% Susceptible Quarantine rate of Susceptible individuals at High Risk 0.15 Assumed
n Waning rate of susceptible quarantined individuals at Low Risk 1/28 Assumed
NH Waning rate of susceptible quarantined individuals at High Risk 1/28 Assumed
i Incubation rate of susceptible individuals at Low Risk 3-5 days [13,23]
i Incubation rate of susceptible individuals at High Risk 3-5 days [13,23]
T Medication rate of infected individuals at Low Risk 0.1 [13]

T Medication rate of infected individuals at High Risk 0.1 [13]

oL Disease-induced death rate of individuals at Low Risk 0.065 day ™! Estimated
O Disease-induced death rate of individuals at High Risk 0.10 day ™" Estimated
Br Effective contact rate 0.8-1.5 [13]

Bu Effective contact rate 0.8-1.5 [13]

i Recovery rate of infected individuals at Low Risk 10 days [13,23]
lH Recovery rate of infected individuals at High Risk 14 days [13,23]
KL Recovery rate of quarantined individuals at Low Risk 0.14 [13,23]
Kn Recovery rate of quarantined individuals at High Risk 0.14 [13, 23]
BLH Effective contact rate 0.8-1.5 [13]

BuL Effective contact rate 0.8-1.5 [13]

https://doi.org/10.1371/journal.pone.0257354.1002

proportion of high risk individuals is increased. In our simulations we observe that over 120
days for f= 0.05, the total number of infected is 364,000, for f= 0.1, total infected are 428,000,
f=0.25 the total infected are around 566,000, for f= 0.5 the total infected are around 726,000.
Another major difference that has been observed in the COVID-19 outbreak is the low dis-
ease related morbidity in these countries as compared to Europe and the Americas. We explore
whether this can be explained, at least to some degree, by the number of high risk individuals
in a population. We plot in Fig 4, the cumulative deaths due to disease for different values of f

below.
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Fig 2. Time series simulations. (a) Disease free equilibrium, (b) Endemic Equilibrium.

https://doi.org/10.1371/journal.pone.0257354.9002
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Fig 3. Comparison of total infected for different values of f. (a) Infected Comparison for f= 0.05, (b) Infected
Comparison for f= 0.1, (c) Infected Comparison for f = 0.25, (d) Infected Comparison for f= 0.5.

https://doi.org/10.1371/journal.pone.0257354.g003

We note that the disease mortality is significantly higher for a population with a greater
proportion of high risk individuals. Over 120 days, for f= 0.05 the total disease related deaths
are around 25,000, for f = 0.1 this number is around 21,000, for f= 0.25 the total deaths due to
disease are around 42,000 and for f= 0.5 the total deaths due to disease are around 58,000. Our
study establishes that both the disease burden and mortality is higher with a greater proportion
of high risk individuals in the population.

We now look at the variation of R, with different parameters of the model. To this end we
plot in Fig 5, the contours of R, varying two of the model parameters.

We note that contact rates for both risk classes need to be low in order to bring R less than
one, to achieve this strict social distancing and masking protocols would need to be in place
for both low and high risk individuals. Further, for lower quarantine rates we would need a
high rate of medication in order to control the outbreak and vice versa, this translates into rec-
ommendation that both medication (which reduces the duration of the disease) and quaran-
tine should be used together to control the epidemic.

As mentioned, at the beginning of the epidemic, non pharmaceutical interventions were
the only control measures available, we now have several vaccines that have been approved for
use against COVID-19. In the next section, we look at a variant of our model that incorporates
the effects of vaccination.
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Comparison for f = 0.1, (c) Deaths Comparison for f = 0.25, (d) Deaths Comparison for f = 0.5.

https://doi.org/10.1371/journal.pone.0257354.9004

3 Effect of imperfect vaccine

In this section, we are interested in studying the effects of an imperfect vaccine on the trans-
mission of the COVID-19. We consider that individuals are being vaccinated at rates &; and &y
for the low risk and high risk classes respectively. There are several vaccines that are available
at present, with vaccine effectiveness varying from 70% for AstraZeneca-University of Oxford
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Fig 5. Contours of R,,. (a) Contact rate Low vs High, (b) Medication vs Quarantine.
https://doi.org/10.1371/journal.pone.0257354.9005
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Fig 6. Schematic diagram of imperfect vaccine transmission.

https://doi.org/10.1371/journal.pone.0257354.g006

to 95% for Pfizer pharma [20]. As a result, a small fraction of vaccinated individuals who are
exposed to the COVID-19 virus eventually develop symptoms and become infected. Fig 6
describes the flow of transmission of the COVID-19 when an imperfect vaccine is available.

% =m — (& +utn)S,

% =68 —uV, —(1—ehV,

% =08, + (1= NV, — (u+0,)E,
% —6,E — (u+1,+0,+9)I,

d;\fL =11, — (u+ v, +1,)M,

dR,

ar =7, +x, M, — uR;
(8)

% =1y — (&g +p+Ay)Sy

% = &Sy — 1V — (1= )hyVy,

% =Sy + (1= Ay Vy — (1 + 04)Ey
% =0,E, — (U4t + 0, +70),
% = tyly — (b + vy + Ky)My

% = uly + KMy — UR,

Where A, Ay are defined as in Egs (2) and (3).

3.1 Positivity and invariance

The vaccine model (8) has non-negative time series solutions for non-negative initial condi-
tions which implies that the system is well posed and bounded in the positive orbit starting
with non negative initial data.
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Lemma 3.1. For any given, non-negative initial conditions of state variables of the model (8),
there exists a unique solution Sy, Vi, Er, I, M1, Ry, Sp, Vi Exp, I, My, Ry respectively, for all
time t > 0. Moreover, The closed set:

D = {(Su VLvEuILaMLaRLvSHa VH?EH’IHvMH7RH) € Rf :
T, + Ty
S+V,+E +L +M, +R +S, +V,+E, +1,+ M, +R, <——

is positively invariant.
Proof is presented in appendix.

3.2 Steady states: Disease free equilibrium

The vaccine transmission model (8) achieves the disease free equilibrium state when the force
of infection A; (2) and Ay (3) are both zero. Let E(V)M denote the DFE of the model (8).

3.3 Disease free equilibrium

Eve = (S5, Vi, B I, M Ry, Sy, Vi, gy, Iy, My, Ry)
& - ( 23 ST 000,08 Sa™n__ 00,0 0) ©)
vac (M—"—éL)’M(M—"—fL)’ b) b) b) 7(#—"—5}1)’“(”—*—6}1)7 b) b) )

The threshold quantity (basic reproduction number R;*) for disease free equilibrium is deter-
mined by finding the F (The New infection Matrix) and V (The Transmission Matrix) as

O /))LAL ﬂLAL¢L O ﬁHLAL 0

0 0 0 0 0 0
0 0 0 0 0 0
F =
0 0 0 0 0 0
0 0 0 0 0 0
k 0 0 0 0 0
%, k, 0 0 0 0
0 -1, kb, 0O 0 0
V =
O 0 0 k 0 0
0 0 0 -6, k O
0O 0 0 0 -1, k
where A, =1 —eLand A, =1—c L ki=o+puhky=6+1+yL+phks=p+v+ x5, ky
N; Ny

=0+ iks=0u+Tutyutke=p+vu+Kn,
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The stability of the £_is determined by the value of the R;* = p(FV1).

e o (A, + B,) — \/(A, — B,)* +4C, (A,+B,) +1/(A, — B,)" +4C,
0 = X ,

2 2
(10)
vac (AO + Bo) + (An - Bn)z + 4C0
Ry = 5
Where A, = _ BuouPu(tydy + kﬁ), B, = froA,(k; + TL¢L)’ G = NP0 A Bry
k,k;kg 0 k k,k, 0 k k,k K

R, is the expected number of secondary infections by single infected in the completely

susceptible population. If R;* < 1, on average the new infections decrease with time and the
number of infections will approach the disease free equilibrium. In this case, £ will be a sta-

ble equilibrium state. On the contrary, if R;* > 1, on average new infections increase with
time and the disease will tend towards the endemic equilibrium state.

811/ (S** V** E* ™ M** R** S** V** B> [ M** R**) (11)

L >~ L Y"L > H>»YH» "H>

Lemma 3.2. [22] The steady state (DFE) £, of the model (8) is locally-asymptotically stable
if Ry < 1, and unstable if R > 1.

3.4 Steady states: Endemic equilibrium

The endemic equilibrium is attained when the force of infection is not zero. i.e. A; # 0. £, rep-
resents the endemic equilibrium of the model (8)

Epee = (7 VI B I My R, Sy, Vi B Iy, My Ry (12)
where
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Here, the force of the infection can be written with endemic equilibrium values as

*k B 2.8 ",k I**
7“L = NLf* (IL + ¢LML ) + ;;Z*H

Kk B Rkl *ok I**
My :NII;(IH + ¢uMi;) +;\TLI*{*L
We now plot, Fig 7, the epidemic curve for different values of the model parameters.
We note that the results follow the qualitative analysis presented above. Specifically, for
Ry < 1 the disease dies out for any initial condition and for R;* > 1 the disease is endemic
in the population.

3.5 Optimal control

The Theory of Optimal control was developed as an extension of the calculus of variations, by
Lev Pontryagin and his collaborators. It is used to determine control strategies that minimize
an objective functional, for models where the underlying dynamics are governed by systems of
differential equations. It has found wide application in biological models including epidemic
models [24-26]. The goal here is to reduce the infected population by means of specific con-
trols, which may appear as time dependent parameters in the model, while minimizing the
required resources. The algorithm is implemented by appending an adjoint system of differen-
tial equations having terminal conditions along with the original state system. Further, details
regarding Optimal Control and adjoint system can be found in [27, 28].

3.5.1 Optimal vaccine and medication. We use the theory of optimal control to suggest
the ‘best’ control strategies for the COVID-19 epidemic, which will minimize the total infected
numbers while keeping the associated costs low. In the initial phase of the outbreak, only non-
pharmaceutical interventions were available to control the epidemic, however by mid 2020,
emergency approvals for some promising treatments for the disease were given, followed by
emergency approval of vaccines, starting in December 2020.

We consider vaccination and medication measures as possible control strategies for both
high and low risk populations. Optimal control theory is used to propose the ‘best’ control
strategy by minimizing a cost functional subject to the differential equation constraints given
by the model equations.

Let U be the control set defined for the parameters 1, Ty, £; and & from model (8).

U = {z,(8),7,(8), &, (), € (1) - 0 < 7 (8),7(1), &, (8), (1) < 5,0 <t < T, )
13
0<{<1,j=1,2,---,4}
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(a) Disease free equilibrium (b) Endemic Equilibrium
Fig 7. Time series simulations for vaccine model (8). (a) Disease free equilibrium, (b) Endemic Equilibrium.

https://doi.org/10.1371/journal.pone.0257354.9007
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Here, 7;(), 1u(t), £1.(¢), &x(t) are Lebesgue measurable and the C_j, Vj = 1,2, 3,4 are positive
upper bound of respective control parameters. We wish to minimize the costs incurred due to
the burden of disease along with vaccination and medication costs [27].

The functional J consists of the infected individuals (I; + I;) and the nonlinear(quadratic)

weighted (Wj) functions of the control variables &;, £y, 77, Ty representing the cost of control.

0060600 = [ (041,00 + 5 Wik + 5 Wb

WD+ W0 Jar (9

Tlep (), 7 (6), &1 (1), &4(0] = min Tt (t),7(8), &,(8), €y ()]

(RS RIRHISY

As described above to calculate the optimal controls an adjoint system is appended to the orig-
inal model equations (state equations). In our study numerical results are produced using the
forward (state system) backward (adjoint system) sweep method with a fourth-order backward
Runge-Kutta method.

Theorem 3.3. Given the functional (14) subject to the state system (8), there exist unique opti-
mal controls T} (t), T, (1), & (1), &, (£), (19), which minimize the functional ] over the control set
U. Moreover, there exists feed back control adjoint differential system (18) which supports opti-
mizing the vaccination and medication strategies. This adjoint system (18) satisfies the transvers-
ality conditions {®,(T) = 0,j = 1,2,---,12}.

Proof. Further details are attached in appendix.

3.5.2 Vaccination and medication strategies. We now present the optimal vaccination
strategy, this minimizes the total infected population over time as well as keeps the cost of con-
trol low. We would like to address two issues: (1) Given a maximum possible vaccination rate,
how should the vaccination rate vary over time? (2) Should the vaccination strategies differ for
the high and low risk groups?

We note that for different proportion of the high risk population the ‘best’ vaccination strat-
egy is to vaccinate at the highest possible rate initially and then gradually bring down the rate
of vaccination. There are two competing effects in our model, the low risk group is assumed to
have a higher contact rate and individuals in the high risk group stay infected for a longer
period (due to severe infection), both of these tend to increase the total infected population
over time. This also makes the vaccination strategy, Fig 8, somewhat insensitive to the high
and low risk proportion in the population.

We next consider the optimal medication strategy, Fig 9, the goal is again to study the the
time dependent medication rate, and differences if any, in the mediation strategy for high and
low risk infected groups.

We note that the medication strategy is insensitive to the proportion of high risk individu-
als. The optimal strategy is to medicate both high and low risk infected individuals at a high
rate throughout the course of the epidemic.

We would like to point out that our goal here was to look at the optimal strategies designed to
keep the total infected population at a minimum considering the effects of the high and low risk
population proportions. Two other factors may be of importance which we do not consider in
this work; the role of mobility and trying to keep the number of fatalities due to disease low, we
aim to address these issues in a follow up work. We now sum up our study in the next section.
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Fig 8. Comparison of vaccine strategies for different values of f. (a) Vaccine Strategies for f= 0.05, (b) Vaccine
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4 Conclusions

We present and analyze a model for the transmission dynamics of COVID-19. It has been well
established that some segments of the population are far more at risk for a more severe infection
with a much higher mortality, based on age and presence of co-morbidities. Our model takes this
into account by considering two susceptible population subgroups consisting of high and low
risk individuals. The transmission within each group is modelled by an extension of the SEIR
model, considering first two additional compartments representing quarantined and medicated
individuals, as these were the only viable control strategies available during most of 2020 and
then vaccination and medication as we now have several vaccines available as well as antiviral
therapies. There are two main questions we addressed: (1) does the proportion of the high risk
susceptibles in the population lead to a markedly different epidemic curve and (2) if resources
are limited, should the available control measures be concentrated on a particular risk group?

o We derive basic properties for the first model using standard dynamical systems techniques.
Existence of a disease free state (DFE) and an endemic state (EE) is established. A threshold
quantity R is derived such that the DFE is stable whenever R, < 1 and unstable otherwise,
it is also shown that the EE is stable whenever R, > 1.

o Time series plots for the infected population(s) are presented, taking into consideration a
varying proportion of susceptibles from the two risk groups. We also plot the cumulative
deaths over time for these cases. Our findings show that the difference in numbers of
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infected as well as deaths can be explained in part by the difference in proportion of the two
risk groups in the susceptible population. Our simulations show that a higher percentage of
high risk individuals leads to a higher disease burden and mortality. We also observe that the
epidemic peaks earlier for when the proportion of high risk individuals is lower, also contrib-
uting to a lower total number of infected.

o Welook at contour plots of R, to study how it varies with the contact rates of the two classes.
To make R, < 1 contact rates for both classes need to be brought down, this points towards
the rationale of social distancing and mask mandates. We also look at the variation of R,
with the rate and efficacy of medication, which reinforces the idea that a with more effective
medication would require a lower rate of medication for effective disease control.

o We next consider a model with vaccination and medication as control measures. After deter-
mining the DFE and EE, we determine R, such that the DFE is stable whenever R, < 1 and
unstable otherwise, it is also shown that the EE is stable whenever R, > 1.

Using ideas from optimal control theory, we then propose optimal vaccination and medica-
tion strategies. We need to vaccinate and medicate both groups at the highest possible rate
initially and then bring it down over time, there does not seem to be any significant differ-
ence in the vaccination strategy based on the proportion of high and low risk individuals.
We note here that the goal here was to minimize the total infected population, although this
in turn will have the effect of lowering the mortality, we do not consider minimizing the
number of deaths directly in this study.

To summarize, we presented a deterministic ODE based compartmental model for the
transmission dynamics of COVID-19. We wanted to study the effects of the presence of indi-
viduals at high and low risk for severe symptoms and high morbidity in the population. Our
findings show that a higher proportion of high risk individuals leads to a higher disease burden
and much higher mortality, this has been observed in countries with a high percentage of
aging population and/or co-morbidities. Our study also shows that to effectively control the
outbreak, available control strategies should be used more or less equally across the two popu-
lation sub groups, irrespective of their proportion in the total population.

A Appendix
A.1 Proof of Lemma 2.1

We can rewrite system (1) as
=) (15)

where X = (S, QE,, I}, M,, R, QuE,;, I;;, My, R;) and g(X) = (¢,(X), £,(X), -+, £,,(X))
represent the RHS of the model (1). It is evident that for all k=1, 2, - - -, 12, g,(X) > 0 when-
ever X € [0, oo)12 and X; = 0. Since total population N(f) = Ni(f) + Ny(t) is positive, g(X)is
locally Lipschitz in the set D. It follows from the Theorem A.4 in [29], model (1) shares a posi-
tive unique solution in the set D.

Adding all the equations of the model (1)

dN, dN,

? 7 :7EL+7TH—,LLNL—,UNH—(SLIL—(SHIH—VLML—VHMH
dN
= Tty N = 80— Oyl — v M, — v M,
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Since X, > 0

dN
ar Sy — UNy

LN < N(Ojen + Tt ) (1 gy
Thus if N(0) < M, implies N(¢) < (m+ my) for all £ > 0. Hence the set D is positively
U
invariant.
A.2 Proof of Lemma 3.1

The system (8) can be rewritten as

o) (16)

whereY = (S,, V,,E,, I,,M,,R,, Sy, Viy, Ey, Ij, My, Ry) and g(Y) =
(g,(Y),g,(Y),---,g,(Y)) are the right hand sides of model (8). It is noticeable that for all
k=1,2,---12,(Y) > 0 whenever Y € [0, 00)" and Y; = 0. As the total population is
divided into two sub populations which, N(f) = N7 () + Ny(#) is positive, g(Y) is locally
Lipschitz in the set D. Using result (Theorem A.4) form [29], model (8) has a positive unique

solution in the set D.
Adding all the equations of the model (8)

dN, dN,
d—tL d—tH =7, + Ty — uN, — uNy — 0,1, — oyl — v M, — v, My,
dN
T + 1y — uN = O,1; — Oply — v M; — vyMy
Since Y, > 0
dN
dr <+ 7y — uNy
= N(t) < N(0)e™ + (M + ) (1—e*)
Thus if N(0) < (HLMEH), implies N(¢) < (m+ m) for all £ > 0. Hence the set D is positively
invariant.
A.3 Proof of Lemma 3.3

Proof. The Hamiltonian can be written as

1
2

1

H =1 +I,+ 5

1 1 -
eri + Wﬂ?{ + ) sti + 9 W4‘f?1 + ;‘D}f;
where the f;, j=1, 2, - - -, 12 are right hand sides of the model (8). It can be easily shown that
the Integrand J (-) is convex with respect to the control variables defined as 77, 75, &1, &5
Lemma (3.1) guarantees that state system solutions are positive and bounded above by

N(t) < "LT%, vt > 0. Also, The model (8) follows Lipschitz property with respect to the state
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variables. Combining the above three properties i.e., Convexity of the Integrand J, bounded-
ness of state system solutions with Lipsctiz property ensures us the existence of the optimal
solution of the control variables over the set U [30]. Using Pontryain’s Maximum principle
conditions, the adjoint system can be written as

do, OH"
dt aSLa 1( ) 0
do, OH
L 17
do,, OH* ——
dt 3RH’ 12( ) O
i, S
dt] =, (,u + A, + ‘fL) — Q0 — D,
do, — — &
dtz -0, 0, + Dy (u+ w, — (e—1)A;) + (e — 1)D,A,
o, —
d—i = E(ﬂ +0,) —®0, o
d(I)4 — q)7SHBLH _ D SHﬂLH +( ) HﬂL ( )(D HﬁLH
dt N, I Ny, Ny Ny
_ — 1-—
+O, (uy, +0, +1,) — By, + ﬁ ( + ﬂL )
+(1 _G)EﬁLVL_if _1
B —NI_ 571 B
o, — 0
ddtJ :q)s(ﬂ+KL+VL)_q)6KL+M
L L
n (1—-e)d,p,V, 0, . B.S1é, + (1-9B Vo,
o N, U N, N,
()] I
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o, _ . Dp,S
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dt Ny o
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Ny Ny _ Ny N,
733 <ﬁHLSL + (1- E)ﬂHLVL) + (1 —€)®,B,V,
N, N, N,
o, — O, ,S,0
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The optimal conditions can be written as

e e
A
e o (5
ZIZ _Ojéﬂ_<(¢7—v§)sﬂ>

Since the control variables are bounded in set in U, The control variables are updated accord-

ing the max limits in set U by {;’s. The optimal controls becomes:

= min

min

_Z, max <0, (647(1)5) L):|
L W1
_C_ max [ 0 (q)_wfq)_u)IH
L > ’ W2
)
)

I
_g, max <O, (7&>

£ e (0.0 2%

&) —

The uniqueness of optimal controls is followed from the uniqueness of the optimal uniqueness

of the optimality systems (state and adjoint).
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