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Abstract

In this study, we formulate and analyze a deterministic model for the transmission of

COVID-19 and evaluate control strategies for the epidemic. It has been well documented

that the severity of the disease and disease related mortality is strongly correlated with age

and the presence of co-morbidities. We incorporate this in our model by considering two

susceptible classes, a high risk, and a low risk group. Disease transmission within each

group is modelled by an extension of the SEIR model, considering additional compartments

for quarantined and treated population groups first and vaccinated and treated population

groups next. Cross Infection across the high and low risk groups is also incorporated in the

model. We calculate the basic reproduction number R0 and show that for R0 < 1 the dis-

ease dies out, and for R0 > 1 the disease is endemic. We note that varying the relative pro-

portion of high and low risk susceptibles has a strong effect on the disease burden and

mortality. We devise optimal medication and vaccination strategies for effective control of

the disease. Our analysis shows that vaccinating and medicating both groups is needed for

effective disease control and the controls are not very sensitive to the proportion of the high

and low risk populations.

1 Introduction

Coronavirus Disease (COVID-19) overshadowed all events in 2020 across the world and the

pandemic is still ongoing in 2021. With the first case reported in Wuhan, China, in December

2019, the disease rapidly spread around the world, and was declared a pandemic by the WHO

in March 2020 [1]. COVID-19 is caused by the SARS-CoV-2 virus which belongs to the family

coronaviridae. Strains of this family were also responsible for the severe acute respiratory syn-

drome (SARS) and the Middle East respiratory syndrome (MERS) outbreaks in 2003 and 2012

[2].

COVID-19 is primarily spread by person to person contact through respiratory droplets.

Symptoms appear 2-14 days after exposure and may include fever, dry cough, muscle pain,

fatigue, and shortness of breath [3]. The symptoms are mild in 85% of the cases, and they vary
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from severe in 10% to critical in 5% of those infected [2]. The severity and progression of

COVID-19 are known to be exacerbated by the presence of co-morbidities such as diabetes,

hypertension and cardio/cerebrovascular diseases [4]. It has also been observed that COVID-

19 mortality risk is highly concentrated within the elderly population [5].

Mathematical models have found widespread use in the study of epidemics. The aim of

such modelling is twofold, one to provide estimates of the severity of the outbreak by calcu-

lating quantities like the growth trends of the epidemic, estimates of the final outbreak size

and duration of the outbreak and second to provide insights into efficacy of various control

measures [6, 7]. Since the COVID-19 outbreak, several models have been proposed for the

transmission dynamics and control of the disease. These include phenomenological models

[8–10], which are useful at the beginning of an outbreak and mechanistic models which

incorporate relevant and important transmission pathways [11–15]. For the first few months

into the outbreak, the widely available control strategies were non-pharmaceutical, ranging

from social distancing, usage of face masks, both of which reduce the effective contact rate to

quarantine and isolation. Many studies have considered the effectiveness of these measures

whereas some studies have also proposed optimal strategies using non-pharmaceutical mea-

sures [14, 16–19]. Since that time several treatments and a number of vaccines Pfizer-BioN-

Tech, Moderna, AstraZeneca [20] have now either been approved or granted emergency

approval.

The progression of COVID-19 has been markedly different in some countries. Starting in

China, COVID-19 spread around the world rapidly, with Europe becoming the epicenter of

the outbreak [2], followed by North and South America. With the first cases being reported in

March 2020, Pakistan has had a very different epidemic curve as compared to China, Europe

and the Americas, with a much lower disease burden and mortality. Many reasons have been

suggested for this including, effective and early quarantine and isolation, a younger demo-

graphic and possibly difference in the prevalence of co-morbidities [21].

In this study, we propose an Ordinary Differential Equation (ODE) based compartmental

model for the transmission dynamics of COVID-19. We have included compartments for high

and low risk susceptible individuals to incorporate the role of demographics and co-morbidi-

ties in the progression of the disease and mortality. The disease transmission for both high and

low risk populations is modelled by a variant of the SEIR model, with additional compart-

ments representing quarantined, vaccinated and medicated population subgroups. Further,

infection across the two groups is modelled by adding a cross-infection term to the force of

infection. There are two main questions we investigate: first, does the proportion of high risk

susceptibles explain the difference in the disease burden and/or mortality in different regions

as described above, and second, if resources are limited, on which segment of the population,

should the available control strategies be concentrated?

After describing the model, we derive some basic properties using standard dynamical sys-

tems theory. The system has two steady states, a disease free equilibrium (DFE), when the dis-

ease dies out in the long run and an endemic equilibrium (EE), where the disease is endemic

in the population. We then determine a threshold quantity, the basic reproductive number R0

such that the DFE is stable whenever R0 < 1 and unstable otherwise, when R0 > 1 the EE is

stable. Time series plots for different values of the high and low susceptible populations are

plotted to explore how the disease burden and mortality varies with the varying proportion of

these subgroups in the population. Next we explore different control measures that can be

taken to reduce the disease burden. Using optimal control theory, efficient vaccine and medi-

cation strategies are devised, we also consider how the controls differ for the low and high risk

groups. Finally, we summarize our findings in the conclusions section.
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2 Effect of quarantine and medication

2.1 Model formulation

We propose a deterministic compartmental model for the transmission dynamics of COVID-

19. The total population at any time instant, N(t), is the sum of two sub-population groups,

those at low risk for severe infection denoted by NL(t) and those at a higher risk denoted by

NH(t). The transmission dynamics within each group are modelled by an extension of the

SEIR model.

The susceptibles of Low-Risk SL(t) and High-Risk SH(t) groups are quarantined at rates

θL(t) and θH(t) moving to the quarantine compartments QL and QH. They can also move to the

exposed class EL(t) and EH(t) after coming in contact with infected individuals, this occurs at

rates βL, βH for the low and high risk groups, respectively. In this model, we assume that the

individuals in the low risk group have a higher contact rate with the infected population of

that group as compared to the high risk group, mathematically, βL> βH. We also assume that

exposed individuals are not infectious.

Exposed individuals move to the infected classes IL(t) and IH(t) at rates σL and σH, it is

assumed that the latency period is the same for both classes, 1

sL
¼ 1

sH
. Infected population(s)

recover at rates γL and γH, with γL> γH, this assumption follows from the fact that it takes lon-

ger to recover from a severe infection. A fraction of the infected individuals receive medication

and move to the classes ML and MH(t) at rates τL and τH. An Individual from ML and MH

moves to the recovered classes at rates κL and κH. The recovery rate for the low risk group with

medication κL is higher than that of the high risk medicated group κH.

An important feature of our model is the possibility of infection across the low and high

risk groups. We assume that individuals from the low risk infected group can come into con-

tact with the high risk susceptibles and vice versa, making cross infection possible. In fact,

from very early on in the outbreak, there have been warnings about the low risk individuals

not following social distancing protocols causing severe infection in the high risk population.

We model this by assuming that the low risk infected population comes in contact with the

high risk susceptibles at rate βLH and the high risk infected come in contact with the low risk

susceptibles at a rate βHL. It is also assumed that βL> βLH and βHL> βH. This is based on the

Fig 1. Flow diagram of model (1).

https://doi.org/10.1371/journal.pone.0257354.g001
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premise that high risk individuals are in general more cautious and observant of social distanc-

ing measures.

To summarize, the population is divided based on their risk for severe infection, transmis-

sion within each of these groups is then modelled by an extension of the SEIR model.

NðtÞ ¼ NLðtÞ þ NHðtÞ

where

NL ¼ SLðtÞ þ QLðtÞ þ ELðtÞ þ ILðtÞ þMLðtÞ þ RLðtÞ

NH ¼ SHðtÞ þ QHðtÞ þ EHðtÞ þ IHðtÞ þMHðtÞ þ RHðtÞ

The schematic of the transmission pathways is given in Fig 1 below.

2.2 Model equations

Mathematically, the model is described by the following system of Ordinary Differential Equa-

tions where the variables are described in Table 1.

dSL
dt

¼ pL � ðyL þ mþ lLÞSL þ ZLQL

dQL

dt
¼ yLSL � ðmþ ZLÞQL

dEL

dt
¼ lLSL � ðmþ sLÞEL

dIL
dt

¼ sLEL � ðmþ tL þ dL þ gLÞIL
dML

dt
¼ tLIL � ðmþ nL þ kLÞML

dRL

dt
¼ gLIL þ kLML � mRL

dSH
dt

¼ pH � ðyH þ mþ lHÞSH þ ZHQH

dQH

dt
¼ yHSH � ðmþ ZHÞQH

dEH

dt
¼ lHSH � ðmþ sHÞEH

dIH
dt

¼ sHEH � ðmþ tH þ dH þ gHÞIH
dMH

dt
¼ tHIH � ðmþ nH þ kHÞMH

dRH

dt
¼ gHIH þ kHMH � mRH

ð1Þ

where λL and λH respectively are force of infection for low and high risk groups

lL ¼
bL

NL
ðIL þ �LMLÞ þ

bHLIH
NL

ð2Þ

lH ¼
bH

NH
ðIH þ �HMHÞ þ

bLHIL
NH

ð3Þ
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2.3 Basic properties

Model (1) has non-negative time series solutions for non-negative initial conditions. i.e. the

differential system is well posed and bounded in positive orbit for all t� 0 with non-negative

initial values.

Lemma 2.1. For a given non-negative initial conditions of state variables, there exists a
unique solution SL, QL, EL, IL, ML, RL, SH, QH, EH, IH, MH, RH respectively, for all time t� 0.

Moreover, The closed set:

D ¼

�

ðSL;QL;EL; IL;ML;RL; SH;QH;EH; IH;MH;RHÞ 2 R
12

þ
:

SL þ QL þ EL þ IL þML þ RL þ SH þ QH þ EH þ IH þMH þ RH �
pL þ pH

m

�

is positively invariant.
Proof is attached in the Appendix A.

2.4 Steady state analysis

2.4.1 Disease free equilibrium (DFE). The model (1) attains the disease free equilibrium

state when there is no force of infection i.e. λL (2) and λH (3) are zero. Let E0 denote the DFE

of the model.

E0 ¼ ðS�L;Q
�
L;E

�
L; I
�
L;M

�
L;R

�
L; S

�
H;Q

�
H;E

�
H; I

�
H;M

�
H;R

�
HÞ

¼

�
pLðmþ ZLÞ

mðmþ ZL þ yLÞ
;

pLyL
mðmþ ZL þ yLÞ

; 0; 0; 0; 0;
pHðmþ ZHÞ

mðmþ ZH þ yHÞ
;

pHyH
mðmþ ZH þ yHÞ

; 0; 0; 0; 0

�
ð4Þ

The stability of disease free equilibrium is determined by a threshold quantity, the basic repro-

duction number R0.

Table 1. Description of the variables of the model (1) and (8).

Variable Description

NL Total population of individuals at Low Risk

NH Total population of individuals at High Risk

SL Susceptible individuals for Low Risk

SH Susceptible individuals for High Risk

QL Susceptible individuals Quarantined at Low Risk

QH Susceptible individuals Quarantined at High Risk

EL Individuals Exposed to corona virus at Low Risk

EH Individuals Exposed to corona virus at High Risk

IL Individuals Infected with corona virus at Low Risk

IH Individuals Infected with corona virus at High Risk

ML Medication for infected/susceptible individuals at Low Risk

MH Medication for infected/susceptible individuals at High Risk

RL Susceptible individuals Recovered from virus at Low Risk

RH Susceptible individuals Recovered from virus at High Risk

VL Vaccinated of Low risk individuals

VH Vaccinated of High risk individuals

https://doi.org/10.1371/journal.pone.0257354.t001
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The basic reproduction number R0. The Basic reproduction number R0 determines the

average secondary infections produced by the single infected in a completely susceptible popu-

lation. This is a measure of propagation of the infection in the population and can be used for

inference about the extinction or endemicity of the infection in the population. The next gen-

eration operator method described by [22] is used to calculate R0, which is determined by the

spectral radius of FV−1, where F (The New infection Matrix) and V (Transmission Matrix) and

are given below.

F ¼

0 bLOL bLOL�L 0 bHLOL 0

0 0 0 0 0 0

0 0 0 0 0 0

0 OHbLH 0 0 bHOH bHOH

0 0 0 0 0 0

0 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

V ¼

k1 0 0 0 0 0

� sL k2 0 0 0 0

0 � tL k3 0 0 0

0 0 0 k4 0 0

0 0 0 � sH k5 0

0 0 0 0 � tH k6

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

where OL ¼
S�L
N�L

and OH ¼
S�H
N�H

, k1 = σL + μ, k2 = δL + τL + γL + μ, k3 = μ + νL + κL, k4 = σH + μ,

k5 = δH + τH + γH + μ, k6 = μ + νH + κH,

The basic reproductive number R0 ¼ rðFV � 1Þ can be written as

R0 ¼ max
ðAþ BÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA � BÞ2 þ 4C
q

2
;
ðAþ BÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA � BÞ2 þ 4C
q

2

0

@

1

A ð5Þ

¼
ðAþ BÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA � BÞ2 þ 4C
q

2

ð6Þ

Where A ¼
bHsHOHðtH�H þ k6Þ

k4k5k6

, B ¼
bLsLOLðk3 þ tL�LÞ

k1k2k3

, C ¼
sHOHbHLsLOLbLH

k1k2k4k5

Lemma 2.2. [22] The steady state (DFE) E0 of the model (1) is locally-asymptotically stable if
R0 < 1, and unstable if R0 > 1.

2.4.2 Endemic equilibrium. The model (1) attains the endemic equilibrium when λL (2)

and λH (3) are non zero. Let E1 represent the endemic equilibrium of the model (1).

E1 ¼ ðS��L ;Q
��
L ; E

��
L ; I

��
L ;M

��
L ;R

��
L ; S

��
H ;Q

��
H ;E

��
H ; I

��
H ;M

��
H ;R

��
H Þ ð7Þ

Moreover, the force of infection λL and λH can be written in terms of the endemic equilibrium
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as

l
��

L ¼
bL

N��L
ðI��L þ �LM

��

L Þ þ
bHLI��H
N��L

l
��

H ¼
bH

N��H
ðI��H þ �HM

��

H Þ þ
bLHI��L
N��H

with N��L ¼ S��L þ Q��L þ E��L þ I��L þM��
L þ R��L and N��H ¼ S��H þ Q��H þ E��H þ I��H þM��

H þ R��H
Solving for the transmission (1) at this specific fixed point, the endemic equilibrium

becomes

S��L ¼
pLðZL þ mÞ

ZLðl
��

L þ mÞ þ mðyL þ l
��

L þ mÞ
; Q��L ¼

pLyL
ZLðl

��

L þ mÞ þ mðyL þ l
��

L þ mÞ
;

E��L ¼
pLl

��

L ðZL þ mÞ

k1ðZLðl
��

L þ mÞ þ mðyL þ l
��

L þ mÞ
; I��L ¼

pLl
��

L ðZL þ mÞsL

k1k2ðZLðl
��

L þ mÞ þ mðyL þ l
��

L þ mÞ
;

M��
L ¼

pLl
��

L ðZL þ mÞsLtL
k1k2k3ðZLðl

��

L þ mÞ þ mðyL þ l
��

L þ mÞ
;

R��L ¼
pLl

��

L ðZL þ mÞsLðk3gL þ kLtLÞ

k1k2k3ðZLðl
��

L þ mÞ þ mðyL þ l
��

L þ mÞ
;

S��H ¼
pHðZH þ mÞ

ZHðl
��

H þ mÞ þ mðyH þ l
��

H þ mÞ
; Q��H ¼

pHyH
ZHðl

��

H þ mÞ þ mðyH þ l
��

H þ mÞ
;

E��H ¼
pHl

��

H ðZH þ mÞ

k4ðZHðl
��

H þ mÞ þ mðyH þ l
��

H þ mÞ
; I��H ¼

pHl
��

H ðZH þ mÞsH

k4k5ðZHðl
��

H þ mÞ þ mðyH þ l
��

H þ mÞ
;

M��
H ¼

pHl
��

H ðZH þ mÞsHtH
k4k5k6ðZHðl

��

H þ mÞ þ mðyH þ l
��

H þ mÞ
;

R��H ¼
pHl

��

H ðZH þ mÞsHðk6gH þ kHtHÞ

k4k5k6ðZHðl
��

H þ mÞ þ mðyH þ l
��

H þ mÞ

2.4.3 Numerical simulations. Numerical Simulations are performed with the help of

Matlab(ODE 45) using the parameter values given in the Table 2. Fig 2 shows the time series

solutions of model (1). Solutions achieve the DFE and Endemic Equilibrium whenever the

threshold quantity R0 is less than one and more than one, respectively. These results are in

line with the qualitative results found above.

One of the issues we investigate is the dependence of disease burden on the proportion of

high and low risk susceptibles in the population. As noted in the introduction, the epidemic

curve has been very different in many South Asian countries as compared to Europe and

America. One plausible explanation could be the difference in the numbers of high and low

risk individuals based on demographics and perhaps co-morbidities in the populations. It is

relatively easy to obtain the demographic data for different countries, data on the co-morbidi-

ties with COVID-19 is harder to unfold. Italy, which has a severe outbreak and very high mor-

tality, has a high proportion of aging individuals, with around 23% of the population above the

age of 65 years, whereas Pakistan has less than 5% of the population above 65. We plot in Fig 3,

the time series for different proportion f of high risk individuals in the susceptible population,

we look at the epidemic curve for f = 0.05, 0.1, 0.25 and 0.5.

It is clear from the graphs that the epidemic curve varies with the proportion of the high

risk individuals f, not only is the maximum daily number of infected higher for a higher f, but

the curve peaks later as well, both these factors contribute to a higher total infected as the
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proportion of high risk individuals is increased. In our simulations we observe that over 120

days for f = 0.05, the total number of infected is 364,000, for f = 0.1, total infected are 428,000,

f = 0.25 the total infected are around 566,000, for f = 0.5 the total infected are around 726,000.

Another major difference that has been observed in the COVID-19 outbreak is the low dis-

ease related morbidity in these countries as compared to Europe and the Americas. We explore

whether this can be explained, at least to some degree, by the number of high risk individuals

in a population. We plot in Fig 4, the cumulative deaths due to disease for different values of f
below.

Table 2. Description of the parameters of the model.

Parameters Description Values

PL Recruitment rate for Humans at Low Risk 10 Assumed

PH Recruitment rate for Humans at High Risk 10 Assumed

μ Natural death rate of humans at High/Low Risk 60 years Assumed

θL Susceptible Quarantine rate of Susceptible individuals at Low Risk 0.12 Assumed

θH Susceptible Quarantine rate of Susceptible individuals at High Risk 0.15 Assumed

ηL Waning rate of susceptible quarantined individuals at Low Risk 1/28 Assumed

ηH Waning rate of susceptible quarantined individuals at High Risk 1/28 Assumed

1

sL
Incubation rate of susceptible individuals at Low Risk 3−5 days [13, 23]

1

sH
Incubation rate of susceptible individuals at High Risk 3−5 days [13, 23]

τL Medication rate of infected individuals at Low Risk 0.1 [13]

τL Medication rate of infected individuals at High Risk 0.1 [13]

δL Disease-induced death rate of individuals at Low Risk 0.065 day−1 Estimated

δH Disease-induced death rate of individuals at High Risk 0.10 day−1 Estimated

βL Effective contact rate 0.8−1.5 [13]

βH Effective contact rate 0.8−1.5 [13]

1

gL
Recovery rate of infected individuals at Low Risk 10 days [13, 23]

1

gH
Recovery rate of infected individuals at High Risk 14 days [13, 23]

κL Recovery rate of quarantined individuals at Low Risk 0.14 [13, 23]

κH Recovery rate of quarantined individuals at High Risk 0.14 [13, 23]

βL H Effective contact rate 0.8−1.5 [13]

βH L Effective contact rate 0.8−1.5 [13]

https://doi.org/10.1371/journal.pone.0257354.t002

Fig 2. Time series simulations. (a) Disease free equilibrium, (b) Endemic Equilibrium.

https://doi.org/10.1371/journal.pone.0257354.g002
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We note that the disease mortality is significantly higher for a population with a greater

proportion of high risk individuals. Over 120 days, for f = 0.05 the total disease related deaths

are around 25,000, for f = 0.1 this number is around 21,000, for f = 0.25 the total deaths due to

disease are around 42,000 and for f = 0.5 the total deaths due to disease are around 58,000. Our

study establishes that both the disease burden and mortality is higher with a greater proportion

of high risk individuals in the population.

We now look at the variation of R0 with different parameters of the model. To this end we

plot in Fig 5, the contours of R0 varying two of the model parameters.

We note that contact rates for both risk classes need to be low in order to bring R0 less than

one, to achieve this strict social distancing and masking protocols would need to be in place

for both low and high risk individuals. Further, for lower quarantine rates we would need a

high rate of medication in order to control the outbreak and vice versa, this translates into rec-

ommendation that both medication (which reduces the duration of the disease) and quaran-

tine should be used together to control the epidemic.

As mentioned, at the beginning of the epidemic, non pharmaceutical interventions were

the only control measures available, we now have several vaccines that have been approved for

use against COVID-19. In the next section, we look at a variant of our model that incorporates

the effects of vaccination.

Fig 3. Comparison of total infected for different values of f. (a) Infected Comparison for f = 0.05, (b) Infected

Comparison for f = 0.1, (c) Infected Comparison for f = 0.25, (d) Infected Comparison for f = 0.5.

https://doi.org/10.1371/journal.pone.0257354.g003
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3 Effect of imperfect vaccine

In this section, we are interested in studying the effects of an imperfect vaccine on the trans-

mission of the COVID-19. We consider that individuals are being vaccinated at rates ξL and ξH
for the low risk and high risk classes respectively. There are several vaccines that are available

at present, with vaccine effectiveness varying from 70% for AstraZeneca-University of Oxford

Fig 4. Comparison of total deaths for different values of f. (a) Deaths Comparison for f = 0.05, (b) Deaths

Comparison for f = 0.1, (c) Deaths Comparison for f = 0.25, (d) Deaths Comparison for f = 0.5.

https://doi.org/10.1371/journal.pone.0257354.g004

Fig 5. Contours of R0. (a) Contact rate Low vs High, (b) Medication vs Quarantine.

https://doi.org/10.1371/journal.pone.0257354.g005
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to 95% for Pfizer pharma [20]. As a result, a small fraction of vaccinated individuals who are

exposed to the COVID-19 virus eventually develop symptoms and become infected. Fig 6

describes the flow of transmission of the COVID-19 when an imperfect vaccine is available.

dSL
dt

¼ pL � ðxL þ mþ lLÞSL
dVL

dt
¼ xLSL � mVL � ð1 � �ÞlLVL

dEL

dt
¼ lLSL þ ð1 � �ÞlLVL � ðmþ sLÞEL

dIL
dt

¼ sLEL � ðmþ tL þ dL þ gLÞIL
dML

dt
¼ tLIL � ðmþ nL þ kLÞML

dRL

dt
¼ gLIL þ kLML � mRL

dSH
dt

¼ pH � ðxH þ mþ lHÞSH
dVH

dt
¼ xHSH � mVH � ð1 � �ÞlHVH

dEH

dt
¼ lHSH þ ð1 � �ÞlHVH � ðmþ sHÞEH

dIH
dt

¼ sHEH � ðmþ tH þ dH þ gHÞIH
dMH

dt
¼ tHIH � ðmþ nH þ kHÞMH

dRH

dt
¼ gHIH þ kHMH � mRH

ð8Þ

Where λL, λH are defined as in Eqs (2) and (3).

3.1 Positivity and invariance

The vaccine model (8) has non-negative time series solutions for non-negative initial condi-

tions which implies that the system is well posed and bounded in the positive orbit starting

with non negative initial data.

Fig 6. Schematic diagram of imperfect vaccine transmission.

https://doi.org/10.1371/journal.pone.0257354.g006
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Lemma 3.1. For any given, non-negative initial conditions of state variables of the model (8),

there exists a unique solution SL, VL, EL, IL, ML, RL, SH, VH, EH, IH, MH, RH respectively, for all
time t� 0. Moreover, The closed set:

D ¼

�

ðSL;VL;EL; IL;ML;RL; SH;VH;EH; IH;MH;RHÞ 2 R
12

þ
:

SL þ VL þ EL þ IL þML þ RL þ SH þ VH þ EH þ IH þMH þ RH �
pL þ pH

m

�

is positively invariant.
Proof is presented in appendix.

3.2 Steady states: Disease free equilibrium

The vaccine transmission model (8) achieves the disease free equilibrium state when the force

of infection λL (2) and λH (3) are both zero. Let E0

vac denote the DFE of the model (8).

3.3 Disease free equilibrium

E0

vac ¼ ðS
?
L;V

?
L ;E

?
L; I

?
L;M

?
L;R

?
L; S

?
H;V

?
H;E

?
H; I

?
H;M

?
H;R

?
HÞ

E0

vac ¼
pL

ðmþ xLÞ
;

xLpL

mðmþ xLÞ
; 0; 0; 0; 0;

pH

ðmþ xHÞ
;

xHpH

mðmþ xHÞ
; 0; 0; 0; 0

� �
ð9Þ

The threshold quantity (basic reproduction number Rvac
0

) for disease free equilibrium is deter-

mined by finding the F (The New infection Matrix) and V (The Transmission Matrix) as

F ¼

0 bLLL bLLL�L 0 bHLLL 0

0 0 0 0 0 0

0 0 0 0 0 0

0 LHbLH 0 0 bHLH bHLH�H

0 0 0 0 0 0

0 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

V ¼

k1 0 0 0 0 0

� sL k2 0 0 0 0

0 � tL k3 0 0 0

0 0 0 k4 0 0

0 0 0 � sH k5 0

0 0 0 0 � tH k6

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

where LL ¼ 1 � �
V?

L

N?
L

and LH ¼ 1 � �
V?

H

N?
H

, k1 = σL + μ, k2 = δL + τL + γL + μ, k3 = μ + νL + κL, k4

= σH + μ, k5 = δH + τH + γH + μ, k6 = μ + νH + κH,
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The stability of the E0

vac is determined by the value of the Rvac
0
¼ rðFV � 1Þ.

Rvac
0
¼ max

ðA0 þ B0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA0 � B0Þ
2
þ 4C0

q

2
;
ðA0 þ B0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA0 � B0Þ
2
þ 4C0

q

2

0

@

1

A

Rvac
0
¼
ðA0 þ B0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA0 � B0Þ
2
þ 4C0

q

2

ð10Þ

Where A0 ¼
bHsHLHðtH�H þ k6Þ

k4k5k6

, B0 ¼
bLsLLLðk3 þ tL�LÞ

k1k2k3

, C0 ¼
sHLHbHLsLLLbLH

k1k2k4k5

Rvac
0

is the expected number of secondary infections by single infected in the completely

susceptible population. If Rvac
0
< 1, on average the new infections decrease with time and the

number of infections will approach the disease free equilibrium. In this case, E0

vac will be a sta-

ble equilibrium state. On the contrary, if Rvac
0
> 1, on average new infections increase with

time and the disease will tend towards the endemic equilibrium state.

E1

vac ¼ ðS
??
L ;V

??
L ;E

??
L ; I

??
L ;M

??
L ;R

??
L ; S

??
H ;V

??
H ;E

??
H ; I

??
H ;M

??
H ;R

??
H Þ ð11Þ

Lemma 3.2. [22] The steady state (DFE) Evac
0

of the model (8) is locally-asymptotically stable
if Rvac

0
< 1, and unstable if Rvac

0
> 1.

3.4 Steady states: Endemic equilibrium

The endemic equilibrium is attained when the force of infection is not zero. i.e. λi 6¼ 0. Evac
1

rep-

resents the endemic equilibrium of the model (8)

E1

vac ¼ ðS
??
L ;V

??
L ;E

??
L ; I

??
L ;M

??
L ;R

??
L ; S

??
H ;V

??
H ;E

??
H ; I

??
H ;M

??
H ;R

??
H Þ ð12Þ

where

S??L ¼
pL

lL þ xL þ m
; V??

L ¼
xLpL

ðlL þ xL þ mÞðð1 � �ÞlL þ mÞ

E??L ¼
pLlLðð1 � �ÞlL þ ð1 � �ÞxL þ mÞ

ðlL þ xL þ mÞðð1 � �ÞlL þ mÞk1

;

I??L ¼
pLlLsLðð1 � �ÞlL þ ð1 � �ÞxL þ mÞ

ðlL þ xL þ mÞk2ðð1 � �ÞlL þ mÞk1

M??
L ¼

lLtLpLðð1 � �ÞlL þ ð1 � �ÞxL þ mÞsL

ðlL þ xL þ mÞk2ðð1 � �ÞlL þ mÞk3k1

R??L ¼
sLðð1 � �ÞlL þ ð1 � �ÞxL þ mÞðgLk3 þ tLkLÞpLlL

ðlL þ xL þ mÞk2ðð1 � �ÞlL þ mÞk3k1m

S??H ¼
pH

lH þ xH þ m
; V??

H ¼
xHpH

ðlH þ xH þ mÞðð1 � �ÞlH þ mÞ

E??H ¼
lHpHðð1 � �ÞlH þ ð1 � �ÞxH þ mÞ

ðlH þ xH þ mÞðð1 � �ÞlH þ mÞk4

;

I??H ¼
lHpHsHðð1 � �ÞlH þ ð1 � �ÞxH þ mÞ

ðlH þ xH þ mÞk5ðð1 � �ÞlH þ mÞk4

M??
H ¼

lHtHpHðð1 � �ÞlH þ ð1 � �ÞxH þ mÞsH

ðlH þ xH þ mÞk5ðð1 � �ÞlH þ mÞk6k4

R??H ¼
sHðð1 � �ÞlH þ ð1 � �ÞxH þ mÞðgHk6 þ tHkHÞpHlH

ðlH þ xH þ mÞk5ðð1 � �ÞlH þ mÞk6k4m
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Here, the force of the infection can be written with endemic equilibrium values as

l
??

L ¼
bL

N??
L

ðI??L þ �LM
??

L Þ þ
bHLI??H
N??

L

l
??

H ¼
bH

N??
H

ðI??H þ �HM
??

H Þ þ
bLHI??L
N??

H

We now plot, Fig 7, the epidemic curve for different values of the model parameters.

We note that the results follow the qualitative analysis presented above. Specifically, for

Rvac
0
< 1 the disease dies out for any initial condition and for Rvac

0
> 1 the disease is endemic

in the population.

3.5 Optimal control

The Theory of Optimal control was developed as an extension of the calculus of variations, by

Lev Pontryagin and his collaborators. It is used to determine control strategies that minimize

an objective functional, for models where the underlying dynamics are governed by systems of

differential equations. It has found wide application in biological models including epidemic

models [24–26]. The goal here is to reduce the infected population by means of specific con-

trols, which may appear as time dependent parameters in the model, while minimizing the

required resources. The algorithm is implemented by appending an adjoint system of differen-

tial equations having terminal conditions along with the original state system. Further, details

regarding Optimal Control and adjoint system can be found in [27, 28].

3.5.1 Optimal vaccine and medication. We use the theory of optimal control to suggest

the ‘best’ control strategies for the COVID-19 epidemic, which will minimize the total infected

numbers while keeping the associated costs low. In the initial phase of the outbreak, only non-

pharmaceutical interventions were available to control the epidemic, however by mid 2020,

emergency approvals for some promising treatments for the disease were given, followed by

emergency approval of vaccines, starting in December 2020.

We consider vaccination and medication measures as possible control strategies for both

high and low risk populations. Optimal control theory is used to propose the ‘best’ control

strategy by minimizing a cost functional subject to the differential equation constraints given

by the model equations.

Let U be the control set defined for the parameters τL, τH, ξL and ξH from model (8).

U ¼ ftLðtÞ; tHðtÞ; xLðtÞ; xHðtÞ : 0 � tLðtÞ; tHðtÞ; xLðtÞ; xHðtÞ � zj ; 0 � t � T;

0 < zj � 1; j ¼ 1; 2; � � � ; 4g

ð13Þ

Fig 7. Time series simulations for vaccine model (8). (a) Disease free equilibrium, (b) Endemic Equilibrium.

https://doi.org/10.1371/journal.pone.0257354.g007
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Here, τL(t), τH(t), ξL(t), ξH(t) are Lebesgue measurable and the zj ; 8j ¼ 1; 2; 3; 4 are positive

upper bound of respective control parameters. We wish to minimize the costs incurred due to

the burden of disease along with vaccination and medication costs [27].

The functional J consists of the infected individuals (IL + IH) and the nonlinear(quadratic)

weighted ðWjÞ functions of the control variables ξL, ξH, τL, τH representing the cost of control.

J ½tLðtÞ; tHðtÞ; xLðtÞ; xHðtÞ� ¼
Z T

0

�

ILðtÞ þ IHðtÞ þ
1

2
W1t

2

LðtÞ þ
1

2
W2t

2

HðtÞ

þ
1

2
W3x

2

LðtÞ þ
1

2
W4x

2

HðtÞ
�

dt

J ½t?LðtÞ; t
?
HðtÞ; x

?

LðtÞ; x
?

HðtÞ� ¼ min
ðtL ;tH ;xL ;xHÞ2U

J ½tLðtÞ; tHðtÞ; xLðtÞ; xHðtÞ�

ð14Þ

As described above to calculate the optimal controls an adjoint system is appended to the orig-

inal model equations (state equations). In our study numerical results are produced using the

forward (state system) backward (adjoint system) sweep method with a fourth-order backward

Runge-Kutta method.

Theorem 3.3. Given the functional (14) subject to the state system (8), there exist unique opti-
mal controls t?LðtÞ; t

?
HðtÞ; x

?

LðtÞ; x
?

HðtÞ, (19), which minimize the functional J over the control set
U . Moreover, there exists feed back control adjoint differential system (18) which supports opti-
mizing the vaccination and medication strategies. This adjoint system (18) satisfies the transvers-
ality conditions fF jðTÞ ¼ 0; j ¼ 1; 2; � � � ; 12g.

Proof. Further details are attached in appendix.

3.5.2 Vaccination and medication strategies. We now present the optimal vaccination

strategy, this minimizes the total infected population over time as well as keeps the cost of con-

trol low. We would like to address two issues: (1) Given a maximum possible vaccination rate,

how should the vaccination rate vary over time? (2) Should the vaccination strategies differ for

the high and low risk groups?

We note that for different proportion of the high risk population the ‘best’ vaccination strat-

egy is to vaccinate at the highest possible rate initially and then gradually bring down the rate

of vaccination. There are two competing effects in our model, the low risk group is assumed to

have a higher contact rate and individuals in the high risk group stay infected for a longer

period (due to severe infection), both of these tend to increase the total infected population

over time. This also makes the vaccination strategy, Fig 8, somewhat insensitive to the high

and low risk proportion in the population.

We next consider the optimal medication strategy, Fig 9, the goal is again to study the the

time dependent medication rate, and differences if any, in the mediation strategy for high and

low risk infected groups.

We note that the medication strategy is insensitive to the proportion of high risk individu-

als. The optimal strategy is to medicate both high and low risk infected individuals at a high

rate throughout the course of the epidemic.

We would like to point out that our goal here was to look at the optimal strategies designed to

keep the total infected population at a minimum considering the effects of the high and low risk

population proportions. Two other factors may be of importance which we do not consider in

this work; the role of mobility and trying to keep the number of fatalities due to disease low, we

aim to address these issues in a follow up work. We now sum up our study in the next section.
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4 Conclusions

We present and analyze a model for the transmission dynamics of COVID-19. It has been well

established that some segments of the population are far more at risk for a more severe infection

with a much higher mortality, based on age and presence of co-morbidities. Our model takes this

into account by considering two susceptible population subgroups consisting of high and low

risk individuals. The transmission within each group is modelled by an extension of the SEIR

model, considering first two additional compartments representing quarantined and medicated

individuals, as these were the only viable control strategies available during most of 2020 and

then vaccination and medication as we now have several vaccines available as well as antiviral

therapies. There are two main questions we addressed: (1) does the proportion of the high risk

susceptibles in the population lead to a markedly different epidemic curve and (2) if resources

are limited, should the available control measures be concentrated on a particular risk group?

• We derive basic properties for the first model using standard dynamical systems techniques.

Existence of a disease free state (DFE) and an endemic state (EE) is established. A threshold

quantity R0 is derived such that the DFE is stable whenever R0 < 1 and unstable otherwise,

it is also shown that the EE is stable whenever R0 > 1.

• Time series plots for the infected population(s) are presented, taking into consideration a

varying proportion of susceptibles from the two risk groups. We also plot the cumulative

deaths over time for these cases. Our findings show that the difference in numbers of

Fig 8. Comparison of vaccine strategies for different values of f. (a) Vaccine Strategies for f = 0.05, (b) Vaccine

Strategies for f = 0.25.

https://doi.org/10.1371/journal.pone.0257354.g008

Fig 9. Comparison of medication strategies for different values of f. (a) Medication Strategies for f = 0.05 (b)

Medication Strategies for f = 0.25.

https://doi.org/10.1371/journal.pone.0257354.g009
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infected as well as deaths can be explained in part by the difference in proportion of the two

risk groups in the susceptible population. Our simulations show that a higher percentage of

high risk individuals leads to a higher disease burden and mortality. We also observe that the

epidemic peaks earlier for when the proportion of high risk individuals is lower, also contrib-

uting to a lower total number of infected.

• We look at contour plots of R0 to study how it varies with the contact rates of the two classes.

To make R0 < 1 contact rates for both classes need to be brought down, this points towards

the rationale of social distancing and mask mandates. We also look at the variation of R0

with the rate and efficacy of medication, which reinforces the idea that a with more effective

medication would require a lower rate of medication for effective disease control.

• We next consider a model with vaccination and medication as control measures. After deter-

mining the DFE and EE, we determine R0, such that the DFE is stable whenever R0 < 1 and

unstable otherwise, it is also shown that the EE is stable whenever R0 > 1.

• Using ideas from optimal control theory, we then propose optimal vaccination and medica-

tion strategies. We need to vaccinate and medicate both groups at the highest possible rate

initially and then bring it down over time, there does not seem to be any significant differ-

ence in the vaccination strategy based on the proportion of high and low risk individuals.

We note here that the goal here was to minimize the total infected population, although this

in turn will have the effect of lowering the mortality, we do not consider minimizing the

number of deaths directly in this study.

To summarize, we presented a deterministic ODE based compartmental model for the

transmission dynamics of COVID-19. We wanted to study the effects of the presence of indi-

viduals at high and low risk for severe symptoms and high morbidity in the population. Our

findings show that a higher proportion of high risk individuals leads to a higher disease burden

and much higher mortality, this has been observed in countries with a high percentage of

aging population and/or co-morbidities. Our study also shows that to effectively control the

outbreak, available control strategies should be used more or less equally across the two popu-

lation sub groups, irrespective of their proportion in the total population.

A Appendix

A.1 Proof of Lemma 2.1

We can rewrite system (1) as

dX
dt
¼ gðXÞ ð15Þ

whereX ¼ ðS;QLEL; IL;ML;RL;QHEH; IH;MH;RHÞ and gðXÞ ¼ ðg1ðXÞ; g2ðXÞ; � � � ; g12ðXÞÞ
represent the RHS of the model (1). It is evident that for all k = 1, 2, � � �, 12, gkðXÞ � 0 when-

ever X 2 ½0;1Þ12
and Xj ¼ 0. Since total population N(t) = NL(t) + NH(t) is positive, gðXÞ is

locally Lipschitz in the set D. It follows from the Theorem A.4 in [29], model (1) shares a posi-

tive unique solution in the set D.

Adding all the equations of the model (1)

dNL

dt
þ

dNH

dt
¼ pL þ pH � mNL � mNH � dLIL � dHIH � nLML � nHMH

dN
dt
¼ pL þ pH � mN � dLIL � dHIH � nLML � nHMH
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Since Xk � 0

dN
dt

� pL þ pH � mNH

) NðtÞ � Nð0Þe� mt þ
ðpL þ pHÞ

m
1 � e� mtð Þ

Thus if Nð0Þ �
ðpL þ pHÞ

m
, implies NðtÞ �

ðpL þ pHÞ

m
for all t> 0. Hence the set D is positively

invariant.

A.2 Proof of Lemma 3.1

The system (8) can be rewritten as

dY
dt
¼ gðYÞ ð16Þ

whereY ¼ ðSL;VL;EL; IL;ML;RL; SH;VH;EH; IH;MH;RHÞ and gðYÞ ¼
ðg1ðYÞ; g2ðYÞ; � � � ; g12ðYÞÞ are the right hand sides of model (8). It is noticeable that for all

k = 1, 2, � � �, 12, gkðYÞ � 0 whenever Y 2 ½0;1Þ12
and Yj ¼ 0. As the total population is

divided into two sub populations which, N(t) = NL(t) + NH(t) is positive, gðYÞ is locally

Lipschitz in the set ~D. Using result (Theorem A.4) form [29], model (8) has a positive unique

solution in the set ~D.

Adding all the equations of the model (8)

dNL

dt
þ

dNH

dt
¼ pL þ pH � mNL � mNH � dLIL � dHIH � nLML � nHMH

dN
dt
¼ pL þ pH � mN � dLIL � dHIH � nLML � nHMH

Since Yk � 0

dN
dt

� pL þ pH � mNH

) NðtÞ � Nð0Þe� mt þ
ðpL þ pHÞ

m
1 � e� mtð Þ

Thus if Nð0Þ �
ðpL þ pHÞ

m
, implies NðtÞ �

ðpL þ pHÞ

m
for all t> 0. Hence the set ~D is positively

invariant.

A.3 Proof of Lemma 3.3

Proof. The Hamiltonian can be written as

H ¼ IL þ IH þ
1

2
W1t

2

L þ
1

2
W2t

2

H þ
1

2
W3x

2

L þ
1

2
W4x

2

H þ
X12

j¼1

Fjfj

where the fj, j = 1, 2, � � �, 12 are right hand sides of the model (8). It can be easily shown that

the Integrand Jð�Þ is convex with respect to the control variables defined as τL, τH, ξL, ξH.

Lemma (3.1) guarantees that state system solutions are positive and bounded above by

NðtÞ � pLþpH
m

, 8t> 0. Also, The model (8) follows Lipschitz property with respect to the state
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variables. Combining the above three properties i.e., Convexity of the Integrand J , bounded-

ness of state system solutions with Lipsctiz property ensures us the existence of the optimal

solution of the control variables over the set U [30]. Using Pontryain’s Maximum principle

conditions, the adjoint system can be written as

dF1

dt
¼ �

@H�

@SL
;F1ðTÞ ¼ 0

dF2

dt
¼ �

@H�

@QL
;F2ðTÞ ¼ 0

..

. ..
. ..

.

dF12

dt
¼ �

@H�

@RH
;F12ðTÞ ¼ 0

ð17Þ

dF1

dt
¼ F1ðmþ lL þ xLÞ � F3lL � F2xL

dF2

dt
¼ � F1oL þ F2ðmþ oL � ð� � 1ÞlLÞ þ ð� � 1ÞF3lL

dF3

dt
¼ F3ðmþ sLÞ � F4sL

dF4

dt
¼
F7SHbLH

NH
� F9

SHbLH

NH
þ
ð1 � �ÞVHbLH

NH

� �

þ
ð1 � �ÞF8VHbLH

NH

þF4 mgL þ dL þ tLð Þ � F6gL þ
F1bLSL
NL

� F3

bLSL
NL
þ
ð1 � �ÞbLVL

NL

� �

þ
ð1 � �ÞF2bLVL

NL
� F5tL � 1

dF5

dt
¼ F5 mþ kL þ nLð Þ � F6kL þ

F1bLSL�L

NL

þ
ð1 � �ÞF2bLVL�L

NL
� F3

bLSL�L

NL
þ
ð1 � �ÞbLVL�L

NL

� �

dF6

dt
¼ mF6

dF7

dt
¼ F7ðlH þ xH þ mÞ � F9lH � F8xH

dF8

dt
¼ � F7oH þ F8ðoH � ð� � 1ÞlH þ mÞ þ ð� � 1ÞF9lH

dF9

dt
¼ F9ðsH þ mÞ � F10sH

dF10

dt
¼ � 1þ F10 gH þ dH þ tH þ mð Þ � F12gH þ

F7bHSH
NH

� F9

bHSH
NH
þ
ð1 � �ÞbHVH

NH

� �

� F11tH þ
ð1 � �ÞF8bHVH

NH
þ
F1bHLSL

NL

� F3

bHLSL
NL
þ
ð1 � �ÞbHLVL

NL

� �

þ
ð1 � �ÞF2bHLVL

NL
dF11

dt
¼ F11 kH þ nH þ mð Þ � F12kH þ

F7bHSH�H

NH

� F9

bHSH�H

NH
þ
ð1 � �ÞbHVH�H

NH

� �

þ
ð1 � �ÞF8bHVH�H

NH
dF12

dt
¼ mF12

ð18Þ
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The optimal conditions can be written as

@H�

@tL
¼ 0) tL ¼

ðF4 � F5ÞIL
W1

� �

@H�

@tH
¼ 0) tH ¼

ðF10 � F11ÞIH
W2

� �

@H�

@xL
¼ 0) xL ¼

ðF1 � F2ÞSL
W3

� �

@H�

@xH
¼ 0) xH ¼

ðF7 � F8ÞSH
W4

� �

Since the control variables are bounded in set in U , The control variables are updated accord-

ing the max limits in set U by zi ’s. The optimal controls becomes:

t?LðtÞ ¼ min z1 ; max 0;
ðF4 � F5ÞIL

W1

� �� �

t?HðtÞ ¼ min z2 ; max 0;
ðF10 � F11ÞIH

W2

� �� �

x
?

LðtÞ ¼ min z3 ; max 0;
ðF1 � F2ÞSL

W3

� �� �

x
?

HðtÞ ¼ min z4 ; max 0;
ðF7 � F8ÞSH

W4

� �� �

ð19Þ

The uniqueness of optimal controls is followed from the uniqueness of the optimal uniqueness

of the optimality systems (state and adjoint).
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