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Abstract: In this paper, a methodology is discussed concerning the measurement of yarn’s angle
of two different glass-reinforced polypropylene matrix materials, widely used in the production of
automotive components. The measurement method is based on a vision system and image processing
techniques for edge detection. Measurements of angles enable, if accurate, both useful suggestions
for process optimization to be made, and the reliable validation of the simulation results of the
thermoplastic process. Therefore, uncertainty evaluation of angle measurement is a mandatory
pre-requisite. If the image acquisition and processing is considered, many aspects influence the whole
accuracy of the method; the most important have been identified and their effects evaluated with
reference to two different materials, which present different optical-type characteristics. The influence
of piece geometry has also been taken into account, carrying out measurements on flat sheets and on
a semi-spherical object, which is a reference standard shape, to verify the effect of thermoforming and
to tune the process parameters. Complete uncertainty in the order of a few degrees has been obtained,
which is satisfactory for purposes of simulation validation and consequent process optimization.
The uncertainty budget also allowed individuation of the most relevant causes of uncertainty for
measurement process improvement.

Keywords: image analysis; angle measurement; uncertainty; composite materials; thermoforming;
surface inspection

1. Introduction

In the past few years, the use of advanced composites has become more and more
popular in a wide range of activities, in particular, in the automotive and aerospace
industries, due to their important characteristics, such as high strength-to-weight ratios,
high stiffness-to-weight ratios, low density, wear resistance, and long fatigue life. Among
advanced composites, those consisting of a thermoplastic matrix present many advantages
compared to thermoset-based composites, such as chemical resistance, recyclability and
the capacity to be formed and produced at a high volume rate [1].

The thermoforming process is among the most promising manufacturing processes
for the production of thermoplastic-based composite parts.

However, it must be considered that during the process, several defects may be in-
troduced, such as wrinkles, variations of thickness, residual stresses, and, in particular,
deformation of the fiber textile reinforcement that influences both the structural character-
istics of the product and its aesthetic characteristics [1].

In fact, fiber-reinforced plastic materials exhibit an orthotropic behavior due to fiber
orientation, closely linked to the structure of the textile and to the angles between weft and
warp [2-4].

The textile draping process is one of the most critical steps in the production of fiber-
reinforced thermoplastic composite because, during the process, a flat textile has to be
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adapted to a 3D geometry, and this induces shear deformations and changes in the local
yarn orientation, which can be critical to the performance of the material [3].

Analysis of the genesis of these defects for optimizing the manufacturing process is
typically realized by performing large deformation mechanical tests, although in recent
years, there have been an increasing number of studies using finite element (FE) modelling
for simulating the process [5-7].

Simulation plays a fundamental role for process optimization, but many aspects
should be taken into account when the phenomenon is so complex, with reference not
only to physical and chemical characteristics of materials, but also to the real operating
condition during the production process [8-10]. For these reasons, the integration and
completion with experimental evaluations is an unavoidable aspect of the approaches
aiming to optimize the production process.

To assess the conformity between measurement and modelling results, study of the
causes of variability in the measurement process and their evaluation is essential [11-13].

Different methods are proposed in the literature for the measurement of yarn ori-
entation in draped fabrics. For the analysis of intermediate levels, high-frequency eddy
current testing is often used for the detection of fabric defects such as gaps and foreign
materials [14-16], or for the visualization of yarns in fabrics [3]. For this method, the fibers
of the composite material have to be conductive, which is the case for carbon fiber fabrics,
but not, for example, for glass fiber composites.

Accurate descriptions of microstructure in terms of fiber volume and fiber orientation
are possible with the analysis of 3D images of material, obtained by micro-tomography,
although this technique is scarcely used and very expensive for large-scale studies [17].
Investigation of fiber orientation is also possible with scanning electron microscopy (SEM),
but this kind of method cannot be easily automated [18].

Direct optical methods exist, useful for the inspection of one-layer fabrics or of the
uppermost layer in multi-layer materials, based on image analysis algorithms such as
edge detection or gradient methods [3,4,19], or on the analysis of the bi-directional re-
flectance distribution function (BRDF) [20]; an interesting and promising line of research
also concerns the analysis of images acquired with polarized cameras [21-23].

Optical methods present various advantages, being non-destructive, contactless, rela-
tively inexpensive and with the possibility of automation, provided they are associated
with effective techniques of image analysis. They are also very versatile and applicable to
different types of surfaces, if the experimental set-up is suitably developed, in particular,
regarding lighting.

The measurement of yarn angles is a not trivial task; if a low level of uncertainty is re-
quired and the agreement between experimental data and the results of FE modelling is not
easy to obtain, in research where a comparison is made with simulation, a deviation of 10°
or more between predicted and measured fiber or shear angles is generally found [3,5,24].

In this study, a method based on a vision system for the measurement of yarn angles
in glass fiber thermoplastic composites was applied to two different types of materials, and
the results were compared taking into account the respective contributions of uncertainty;,
which can differ for various reasons: contrast between elements of the image, geometric
regularity of the weaving, uniformity of the angle between weft and warp, etc.

Indications from the uncertainty budget can enable optimization of the experimental
set-up and the procedure in order to obtain a suitable level of uncertainty for effective
control of the production process of parts made of thermoplastic composite material. In
addition, uncertainty is important information when validating simulation results, which,
in the case of thermoforming processes of composite materials, presents various criticalities
linked to the complexity of the phenomena and the knowledge of the actual operating
conditions. This approach, based on the assessment of uncertainty, is new compared to
extant work in the field.

The effect of varying the geometry of pieces is also considered, because the effect of
the above aspects is modulated by the shape of pieces.
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In Section 2, the materials examined are described, and the method for the yarn angle
measurement is explained, together with the measurement strategy.

In Section 3, the results are presented for both materials examined, with reference to
flat and 3D geometries. Moreover, an uncertainty budget is realized, for both the materials
taken into account, and some considerations concerning the most relevant aspects are
discussed with the aim of improving the experimental procedure.

Conclusions and suggestions for future work close the paper.

2. Materials and Methods

Both materials under analysis consisted of a polypropylene matrix reinforced with a
woven 2-2 twill E-glass textile.

The first material considered was a commercial composite material called TRICAP®
(Samyang, Seoul, Republic of Korea) with a fiber volumetric content of 43.5%, and melting
point of the matrix equal to 160 °C.

The second material, called TEPEX® (Bond Laminates GmbH, Brilon, Germany)
Roving Glass (RG) fabric, had a fiber volumetric content of 47%, and the melting point of
the matrix was 163 °C.

These composite materials were fully impregnated and consolidated. All the fibers
were thus sheathed with plastic, and the material did not contain any air pockets.

The two materials were very similar in mechanical properties, but they were very
different in the color of the matrix, which in the first case was transparent, and in the
second was black (Figure 1).

Figure 1. (a) TRICAP flat plate; (b) TEPEX flat plate.

The color of the matrix is a crucial aspect for the measurement method, because it can
either favor or make it difficult to identify the features of interest in the image.

The materials examined had been thermoformed at different temperatures, which has
a great influence on the angles between warp and weft of the finished object.

A careful analysis of the uncertainty of measurement by the vision system was carried
out, with reference to the main aspects affecting the accuracy:

Surface characteristics of material (texture and optical characteristics);

Surface curvature and geometry;

Measurement set-up (lighting and distance of measurement);

Choice of the parameters of the algorithm for image analysis (depending on the method).

2.1. Surface Characteristics of Material (Texture and Optical Characteristics)

The color uniformity of the first material caused greater difficulties in identifying
the edges and required a more careful setting of the software parameters. To mitigate the
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problem, a black sheet was placed behind the composite in order to highlight the contrast
between the interstices and the fabric.

On the other hand, because the matrix was transparent, the entire length of the fibers
was visible, unlike the dark matrix material, where the fiber was partially submerged by the
matrix itself; this was an advantage because the angle measurement could be performed
on more regular and extended elements.

2.2. System Calibration and Surface Curvature and Geometry

Measurements were preliminarily carried out on a reference image realized by CAD
software, to validate and evaluate the accuracy of the methods. Then, repeated measure-
ments were carried out on a flat piece of the composite materials, to also evaluate the
variability of the yarn angles on the planar starting plate.

In the next phase, measurements were carried out on 3D objects, with semi-spherical
geometry, obtained through a thermoforming process (Figure 2). This step enabled verifica-
tion of the effect of the surface geometry on the proposed approaches and validation of the
simulation of the thermoforming process.
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Figure 2. (a) TRICAP semi-sphere; (b) TEPEX semi-sphere.

2.3. Measurement Set-Up

A FLIR Polarized Camera, model BFS-PGE-5155P-C, 2448 x 2048 pixels, and 25 mm,
1:2.8 lens, were used for the acquisition of the images. The working distance of the camera
from the piece was set equal to 250 mm. As for illumination, two soft-boxes with 80 W
lamp bulbs were used, positioned about 800 mm apart, either side of the object.

2.4. Yarn Angle Measurement Methods and Parameters of Interest

The processing of the images was performed by means of high-performance software
for the geometrical analysis of elements in the images: Vision Builder for Automated
Inspection, by National Instruments. The algorithm for edge detection was used for the
specific application; the purpose was to identify the edges of the warp and weft yarns in
order to measure their relative angles.

To locate an edge, a search direction had to be set in the figure, which is a segment
along which the differences of intensity between pixels are detected: edges were identified
by peaks in the edge strength profile. To find a whole edge line, a region of interest (ROI)
was defined, in which about 20 research lines were distributed (Figure 3), each identifying
a point on the edge. Fitting of the identified points provided the searched edge. The
number of research lines can affect the results; therefore, a contribution of uncertainty due
to different settings is considered in Section 3.3.
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Figure 3. ROI for edge identification.

The method for inspection of the composite surface involved identification of the
straight edge of the individual glass yarn elements. Pairs of perpendicular and neighboring
elements were selected for determining the angle 8 between fibers (Figure 4).

Figure 4. The inspection method concerning the determination of the angle between segments sl
and s2.

The tow width variation throughout the fabric was considered a cause of variability.

It is necessary to point out that this kind of technique presents specific difficulties in
measuring angles on curved surfaces, because the representation of a three-dimensional
object on a flat image may induce a perspective error. However, if the regions considered
are restricted, and the camera axis is perpendicular to the scanned region, the ROIs can be
considered nearly flat, and the error is expected to be minimal.

The angle between weft and warp can be defined in two possible ways (Figure 5),
considering the two supplementary angles between yarns; therefore, it was necessary to
define a conventional rule. In this study, the angles were defined as those evaluated in a
counterclockwise direction between weft and warp: 3 in Figure 5. Thus, the orientation
of the piece within the image did not matter, because in each point of the piece the
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angle between the tows was evaluated exclusively with reference to the weft and warp
orientations, regardless of external reference systems.

warp
N

[ — weft

Figure 5. Possible definitions of the measured angles.

After a preliminary validation of the method on a reference twill fabric picture, the
following experimental sequence was carried out:

1.  Measurements on a flat plate whose nominal angles are 90°:

e 32 repeated measurements, realized with reference to the same couple of yarns.
In particular, the pair was taken at random within an area of 200 x 200 mm?,
and repeated measurements were carried out by redefining the ROIs for the
identification of the edges each time;

e 32 measurements on different couples of yarns, taken within the considered area
of 200 x 200 mm?. Couples were considered different if at least one element of
the pair was different. It was determined that the area considered was of the
same extent as the flat sheet from which the semi-spherical object was obtained
by thermoforming.

2. Measurement on the semi-spherical object. The semi-spherical surface was divided
into 16 segments and 3 zones (central, intermediate and extreme), as indicated in the
scheme of Figure 6.

VAr
A Central zone

\ ANV ARY .
N |Intermediate zon
y Extreme zone

Figure 6. Zoning of the spherical shell.
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Twelve measurements were performed on the central zone in a single image. In the
intermediate and the extreme zones, twelve measurements were made for each segment
on four different images.

3. Results
3.1. Measurements on the Flat Plate

The preliminary validation with respect to a reference image, where all the angles
were 90°, provided satisfactory results, with the variability of repeated measurements in
the order of hundredths of a degree, and the average value of the angle centered on a
reference value of 90°.

The results of the tests carried out on the flat plate are summarized in Figure 7,
which shows the histograms of the results obtained with reference to the same couples of
yarns (Figure 7a), and to different couples of yarns (Figure 7b) for both the TRICAP and
TEPEX composites.

Same couple Different couples
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Figure 7. Distribution of measurements for TRICAP and TEPEX flat plates: (a) on the same couples of yarns; (b) on different

couples of yarns.

In the first case (TRICAP), the distribution of measurements had a mean and standard
deviation of 91.7° and 1.3°, respectively, when the same couple of yarns were considered
in repeated measurements; a mean angle of 89.7° and standard deviation of 2.1° were
obtained when different couples were considered.

For TEPEX, the distribution of measurements had a mean and standard deviation of
91.9° and 3.3°, respectively, when the same couple of yarns were considered in repeated
measurements; a mean angle of 93.2° and standard deviation of 4.4° were obtained when
different couples were considered.

It can be observed that the variability evaluated on the same pair of yarns considered
the variability of the methods, which was affected by the way in which the regions of
interest used for the measurement were selected. Instead, the variability evaluated on
different couples of yarns was also affected by the variability of the measurand, which is
the superficial inhomogeneity typical of the analyzed material.

3.2. Measurements on 3D Objects

In the present work, a semi-spherical geometric structure, which is a standard reference
shape for the evaluation of draping effects, has been considered due to its simplicity in
characterizing several induced phenomena, and because it is a closed geometrical shape,
it most likely assists in the development of defects such as those mentioned above [6].
The 3D objects were obtained from 200 x 200 mm? sheets of 0.5 mm in thickness, by
means of a draping test stand, with a hemispherical punch radius of about 50 mm [6]. The
TEPEX shell was thermoformed at a temperature of 160 °C, close to the melting point of the
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thermoplastic matrix. The TRICAP semi-sphere was obtained at a temperature of 125 °C,
which was not the optimal temperature, and this could have strongly influenced the final
result. The cooling rate, and therefore the crystallinity of the matrix, has been shown to not
significantly affect angle measurements in separate experimental tests.

The conventional rule for angle measurements, described in Section 2.4, was applied
to the case of a semi-sphere (Figure 8).

| Undeformed sheet |

waereft
8 9
7 10 measured
¢ \ / 1 angles
5 12
—— ad e ad
pa—
4 13
3 14
N
1 16

Figure 8. Angle definition between warp and weft on the semi-sphere.

For each area described in Figure 5, the average angle (arithmetic mean over 12 mea-
surements in each area), referred to as y subsequently, has been calculated.

With reference to the central, intermediate and extreme zones, the average angles for
each segment, in the case of TRICAP, are presented in Figure 9; for TEPEX, the results are
presented in Figure 10. Notably, areas 1 and 17 represent the same segment.

160
140
= 120 : 3
° :
) 7/\ /\
S 100 - P AN ~A N -
% o / \// \
40
20
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ID Area
——extreme zone intermediate zone central zone

Figure 9. Average angles in the central, intermediate and extreme zones in TRICAP.
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Figure 10. Average angles in the central, intermediate and extreme zones in TEPEX.

In both intermediate and extreme areas, a periodic trend was observed, of greater
amplitude in the most extreme areas, caused by shear deformations induced by the drap-
ing process.

The results are also presented in the heat maps in Figures 11 and 12, in terms of the
complement (9) of angle y:

49.4°

-29.1°

-48.6%

Figure 11. Heat map of the difference between 90° and the measured angle, in the TRICAP semi-sphere.
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49.4°

-48 67

Figure 12. Heat map of the difference between 90° and the measured angle, in the TEPEX semi-sphere.

V=90° —vy

Notably, in these two cases, the maps were rotated by 45° with respect to each other,
because weft and warp were rotated by 45° with respect to the draping test stand.

The results show that in the case of the TRICAP semi-sphere, the variations with
respect to the nominal angle of 90° were lower than in the case of the TEPEX workpiece.
This was due to the different temperatures at which the thermoforming was carried out.
In fact, in the case of TEPEX, the higher temperature (160 °C) at which the forming was
realized caused the matrix to melt, which allowed the fibers to move more freely, deviating
from the original orientations, compared to the case of TRICAP, in which the temperature
process was set at 125 °C.

Measurements were repeated on three different pieces, both for TEPEX and TRICAP,
and the results proved to be repeatable within the limits of the estimated uncertainty.

Furthermore, preliminary measurements were also carried out on semi-spheres ob-
tained by thermoforming TEPEX at 125 °C and TRICAP at 160 °C. TEPEX and TRICAP
exhibited comparable behaviors in terms of average values of angles when the thermoform-
ing temperature was the same, even if the variability was different, as already observed in
the repeatability tests.

The choice of a different temperature was to highlight the great importance of temper-
ature in the process, from the point of view of angles between warp and weft: in future,
this will be further explored.

3.3. Uncertainty Evaluation

The main uncertainty contributions have been identified for the measurement method,
with reference to TRICAP and TEPEX materials:

e Image resolution is related to the camera sensor resolution and the distance from
the workpiece. It can be estimated, as indicated in Figure 13, with reference to the
horizontal direction, but the same considerations can be made for the vertical direction.
The number of pixels in the horizontal direction, shown in Figure 13, corresponds to
the length of the identified ROI for the angle measurement. The most unfavorable
combinations of angle variations in vertical and horizontal directions were considered,
and the results are indicated as variability in the uncertainty budget in Table 1. The
contributions were different for TRICAP and TEPEX, because the elements considered
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for the measurements were of different lengths in the two types of materials: in the
former they were longer, because the entire bundle of fibers was visible; in the second,
they were partially submerged in the black matrix.

The variability of the method was evaluated in the repeatability trials on the same
couple of elements, with reference to TRICAP and TEPEX materials. The results, in
terms of standard deviation (already discussed in Section 3.1), are reported in Table 1;
The variability of the measurand was evaluated on the basis of the measurement
results obtained on the same couple and different couples of elements.

Table 1. Uncertainty budget.

. ets e Uncertainty
Material Varlaob ility Distribution Factor Sen51.t lylty Contribution
[°] Coefficient °]
TRICAP 0.63 Rectangul € 1 0.36
Resolution ectangwiar V3
TEPEX 1.2 Rectangular % 1 0.69
TRICAP 1.3 Gaussian 1 1 1.3
Method TEPEX 33 Gaussian 1 1 33
M d TRICAP 1.6 Gaussian 1 1 1.6
casuran TEPEX 29 Gaussian 1 1 29
Perspective Both 1 Rectangular % 1 0.58
1
Parameter set-up TRICAP 1.5 Rectangular 7 1 0.87
TEPEX 0.9 Rectangular € 1 0.52
V3
INlumination conditions Both 1 Rectangular % 1 0.58
. TRICAP 2.4°
Overall standard deviation TEPEX 4.6°

Angle variation

’
>
1 pixel
— L

Length of the ROI [pixels]

Figure 13. Angle variability due to the image resolution.

In particular, we obtained the variability due to material inhomogeneity ( sp) from

the standard deviation of measurements obtained on the same couple (ss.) and different
couples (s4.), as follows:

Sm = \/S%.— Sk (1)

Parameter set-up: a sensitivity analysis of the main parameters of the processing
algorithms was carried out, and a maximum variation of 1.5° was obtained for the
angle measurement in the case of TRICAP; a maximum variation of 1° was found for
TEPEX. The different variability was due to the fact that in the case of TRICAP, where
the matrix was transparent and the surface appeared rather uniform, it was more
difficult to determine the edges necessary for measuring the angles, and variations in
the threshold settings had a greater influence on the results;

[umination: lighting conditions were varied, modifying the number of illuminators
(one or two), and distances in the range 500-1500 mm with respect to the piece, keeping
the other parameters constant, and the maximum variation of the angle measurement
was evaluated in the two examined cases.
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In Table 1, the last column (“uncertainty contribution”) was obtained by multiplying
the “variability” by the corresponding “factor” to obtain the standard deviation, and then
by the “sensitivity coefficient” [25]. As for the factor value, in particular, when a rectangular
probability distribution could be assumed, the standard deviation was obtained by dividing
the half-width of the interval by /3. When the variability was already available in terms
of standard deviation, the multiplication factor was equal to one.

4. Discussion

As can be seen in the uncertainty budget of Table 1, the greatest contributions of un-
certainty are those related to the variability of the method and of the measurand, especially
regarding the TEPEX material.

In fact, TEPEX presented a greater superficial inhomogeneity, and the application of
the method was more critical on this kind of material, due to the color of the matrix, which
partially covered the yarns. Therefore, although the uniformity of color that characterizes
TRICAP made the identification of the edges more critical (note that the parameter effect
was greater in this case), the positive effect of the total visibility of the fiber bundles
prevailed; thus, the edges appeared more rectilinear and longer than in the other case.

Whole standard uncertainties in the order of 2.4° for TRICAP and 4.6° for TEPEX
were obtained, which was satisfactory for the purposes of validating the simulation and
consequent process optimization.

5. Conclusions

In this paper, a method based on a vision system and image analysis for the mea-
surement of yarn angles in glass fiber thermoplastic composites has been applied to two
different types of composite materials, TRICAP and TEPEX.

The analysis showed that the thermoforming temperature strongly influences the
measured angles, because the greater fluidity of the matrix allows the fibers to move more
freely, causing larger variations with respect to the starting angles, nominally equal to 90°.

The materials examined were very similar from the point of view of composition,
texture and mechanical properties, but they had different surface optical characteristics, in
particular, very different matrix colors; this aspect is a crucial point in the measurement
method, because it can favor, or, in contrast, make it difficult, to identify the features of
interest in the image.

Measurements were carried out on flat sheets to determine the variability on the
starting material, and then on a semi-spherical object, which is a reference standard shape,
to verify the effect of thermoforming.

Furthermore, analysis of the uncertainty contributions showed that the application of
the method is more critical in the case of TEPEX, because the dark matrix submerges and
hides part of the fibers, making the determination of the edges less accurate.

Evaluation of the uncertainty contributions of the angle measurement enabled the
determination of limits of the method, which is a mandatory result for the next phase,
providing a comparison and validation of the outputs of the FE simulation, for the same
semi-spherical shape, which will be the subject of future work.
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