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denitrifying bacterium
Pseudomonas stutzeri YC-34
from chromium-rich wastewater
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Sining Huang, Lixia Ke* and Pei Hong*

College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of

Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui

Province and Ministry of Education, Anhui Normal University, Wuhu, China

The impact of high concentrations of heavy metals and the loss of

functional microorganisms usually a�ect the nitrogen removal process in

wastewater treatment systems. In the study, a unique auto-aggregating

aerobic denitrifier (Pseudomonas stutzeri strain YC-34) was isolated with

potential applications for Cr(VI) biosorption and reduction. The nitrogen

removal e�ciency and denitrification pathway of the strain were determined

by measuring the concentration changes of inorganic nitrogen during

the culture of the strain and amplifying key denitrification functional

genes. The changes in auto-aggregation index, hydrophobicity index, and

extracellular polymeric substances (EPS) characteristic index were used to

evaluate the auto-aggregation capacity of the strain. Further studies on

the biosorption ability and mechanism of cadmium in the process of

denitrification were carried out. The changes in tolerance and adsorption

index of cadmium were measured and the micro-characteristic changes on

the cell surface were analyzed. The strain exhibited excellent denitrification

ability, achieving 90.58% nitrogen removal e�ciency with 54 mg/L nitrate-

nitrogen as the initial nitrogen source and no accumulation of ammonia

and nitrite-nitrogen. Thirty percentage of the initial nitrate-nitrogen was

converted to N2, and only a small amount of N2O was produced. The

successful amplification of the denitrification functional genes, norS, norB,

norR, and nosZ, further suggested a complete denitrification pathway from

nitrate to nitrogen. Furthermore, the strain showed e�cient aggregation

capacity, with the auto-aggregation and hydrophobicity indices reaching

78.4 and 75.5%, respectively. A large amount of protein-containing EPS was

produced. In addition, the strain e�ectively removed 48.75, 46.67, 44.53,

and 39.84% of Cr(VI) with the initial concentrations of 3, 5, 7, and 10

mg/L, respectively, from the nitrogen-containing synthetic wastewater. It

also could reduce Cr(VI) to the less toxic Cr(III). FTIR measurements and

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.961815
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.961815&domain=pdf&date_stamp=2022-08-05
mailto:klixia@ahnu.edu.cn
mailto:peihong@ahnu.edu.cn
https://doi.org/10.3389/fmicb.2022.961815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.961815/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fmicb.2022.961815

characteristic peak deconvolution analysis demonstrated that the strain had

a robust hydrogen-bonded structure with strong intermolecular forces under

the stress of high Cr(VI) concentrations. The current results confirm that the

novel denitrifier can simultaneously remove nitrogen and chromium and has

potential applications in advanced wastewater treatment for the removal of

multiple pollutants from sewage.

KEYWORDS

strain YC-34, auto-aggregation, extracellular polymeric substances (EPS), nitrogen

removal, Cr(VI) stress

Introduction

Biological wastewater treatment processes are the most

widely used methods for the removal of organic and inorganic

pollutants from wastewater treatment technologies (Cai et al.,

2020; Nguyen et al., 2021; Uluseker et al., 2021). The advanced

nitrate removal is performed by denitrifying functional

microbiota, which is the critical process to achieve the standard

discharge of nitrogen. The direct addition of functional bacteria

to the biological treatment system remains one of the most

common methods (Laothamteep et al., 2022; Ma et al., 2022).

However, this method yields slow results due to the low

initial concentration of functional bacteria compared to native

microorganisms, which may result in the loss of functional

bacteria (Chen et al., 2015). Auto-aggregation refers to the

inter-cellular interaction of bacteria spontaneously gathering

to facilitate the attachment of functional microorganisms to

the biofilm (Adav et al., 2008; Hong et al., 2020). For biofilm

formation, a better option may be to immobilize EPS-producing

bacteria on a carrier and then add the bioimmobilized carrier

to the reactor (Zhao et al., 2018; Hong et al., 2021). This

approach may reduce the loss of functional bacteria and

increase the initial concentration of EPS-producing bacteria,

thus facilitating biofilm development. Till now, a few aerobic

denitrifiers with auto-aggregation ability have been reported,

such as, Klebsiella sp. TN-10, Enterobacter sp. strain FL,

and Methylobacterium gregans DC-1 (Wei et al., 2016; Fan

et al., 2019; Hong et al., 2019). Therefore, the acquisition and

application of auto-aggregating strains could have a major

impact on accelerating biofilm formation and shortening the

start-up time of biofilm reactors.

On the other hand, many municipal wastewater treatment

plants are responsible for treating some industrial wastewater

and domestic wastewater (Luhar et al., 2021). However, the rapid

industrial development has increased the risk of excessive heavy

metals discharge from wastewater treatment plants (Wang et al.,

2018). The excessive concentration of heavy metal ions may

lead to the unstable performance of the wastewater treatment

system, lowering the efficiency of the denitrification process

(Ochoa-Herrera et al., 2009; Zhou et al., 2021). Among the

heavy metals, chromium is one of the most common ones,

which is found in wastewater from industries such as steel

manufacturing, electroplating, leather tanning, pulp production,

landfills, etc. (Truskewycz et al., 2018; Tsybulskaya et al.,

2019). Hexavalent chromium easily enters the cytoplasmic

matrix through the cell membrane of denitrifying bacteria,

which changes the conformation of enzymes and blocks the

necessary functional groups of microorganisms, leading to a

decrease in the denitrification capacity of bacteria (Colussi et al.,

2009; Konovalova et al., 2009). Currently, the inhibitory effect

of metal cadmium on denitrification has been alleviated by

supplementing bio-promoters such as biotin, cytokinin, and L-

cysteine (Wang et al., 2015, 2021; Zhou et al., 2021). However,

the addition of exogenous substances may require the creation

of new compounds containing the relevant structural units and

increase the cost of the denitrification process (Palanivel et al.,

2020; Wen et al., 2022). In comparison, heavy metal removal

by denitrifying bacteria themselves is a clean, environmentally

friendly, and efficient removal strategy (Peng et al., 2019; Hong

et al., 2022).

The denitrification process is catalyzed by four enzymes:

nitrate reductase (Nar/Nap), nitrite reductase (Nir), nitric oxide

reductase (Nor), and nitrous oxide reductase (Nos), encoded by

the genes nar/nap, nir, nor and nos, respectively. N2O, as an

intermediate metabolite, is the third most powerful greenhouse

gas after CO2 and CH4 (Uraguchi et al., 2009). The application

of denitrifying bacteria with complete denitrification pathways

to reduce N2O has become a hot research topic for controlling

greenhouse gas emissions from agricultural soils and water

bodies (Perez-Garcia et al., 2017; Harris et al., 2021). The release

of large amounts of nitrous oxide from denitrifying bacteria

would hinder their denitrification applications (Tallec et al.,

2008; Miyahara et al., 2010; Shoun et al., 2012). Therefore, such

denitrifying bacteria are explored to develop environmentally

friendly nitrogen transformation methods.

To reduce functional microbial loss and unstable nitrogen

removal under high concentration chromium stress, a novel

strain of auto-aggregating denitrifying bacteria, Pseudomonas
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stutzeri YC-34, was screened and obtained in this study. Firstly,

the nitrate reduction capability, nitrogen balance, and nitrogen-

removal genes of strain YC-34 were analyzed. Secondly, the

aggregation property and mechanisms of this strain were

revealed by EPS content and spectroscopic measurements,

aggregation and hydrophobicity index tests. Thirdly, the

tolerance of the strain to Cr(VI) was analyzed, and its potential

application was evaluated by experimentally investigating the

influence of Cr(VI) on nitrogen removal and EPS production.

The research might provide useful information for the

development of biotechnological relevant microorganisms to

control integrated contamination.

Materials and methods

Culture mediums

Enrichment medium (EM, g/L): KNO3 5.0, sodium

succinate dibasic hexahydrate11.1, KH2PO4 1.0,

Na2HPO4·12H2O 7.03, MgSO4·7H2O 0.13, NH4Cl 0.2,

trace element solution 2mL, pH 7.0.

Bromothymol Aroma Blue solid medium (BTB, g/L): KNO3

1.0, trisodium citrate dehydrate 5.3, KH2PO4 0.6, FeSO4·7H2O

0.03, CaCl2 0.1, MgSO4·7H2O 0.6, 1% bromothymol aroma blue

1mL, agar 20, pH 7.0.

Nitrogen removal medium (NR, g/L): sodium succinate

dibasic hexahydrate11.1, KH2PO4 0.1,MgSO4·7H2O0.1, KNO3

0.36, trace element solution 2mL, pH 7.0 (simulation of

synthetic wastewater).

Contents of trace element solution (g/L): FeCl2·4H2O

1.8, CoCl2·6H2O 0.25, NiCl2·6H2O 0.01, CuCl2·2H2O 0.01,

MnCl2·4H2O 0.70, ZnCl2 0.1, H3BO3 0.5, Na2MoO4·2H2O,

NaSeO3·5H2O 0.01 (Qing et al., 2018).

Enrichment cultures and isolation of
aerobic denitrifiers

Seed sludge was collected from the Huwanwei wastewater

treatment system, located in Hefei, China (117◦15’79.81′′E,

31◦70′68.10′′N). Five milliliter of the seed sludge was added

to a 250mL triangular flask containing 100mL of EM and

incubated in a shaker at 30◦C and 120 r/min for 24 h. Then,

5mL of culture medium was transferred to a fresh sterile

EM medium and the enrichment was repeated for three

rounds. The last obtained culture medium was sequentially

diluted in a gradient from 10−1 to 10−7. 0.2mL of the

diluted samples were added to BTB and incubated at 30◦C

in an incubator until the appearance of single colonies. Single

blue colonies were selected, purified by multiple scribing,

and stored at 4◦C in the refrigerator. Each single purified

colony was examined separately using NR, which used nitrate

as the only nitrogen source. After comparing the NO−

3 -

N removal rates, the most efficient colony was labeled YC-

34 and cultured in NR for further studies. All media were

disinfected at 121◦C for 20m and all tests were performed in

three repetitions.

Determination of denitrification-related
indices of the strain

Gene amplification

Two milliliter suspension of YC-34 was transferred to 100-

mL NR in a 250-mL triangular flask and incubated at 30◦C

and 120 rpm. After a 24 h culture in NR, a bacterial genomic

DNA extraction kit (BK2021081230, DiscoverBeads company,

China) was used following the manufacturer’s instructions to

extract DNA from the strain suspension. The primers and

amplification steps for 16S rRNA and denitrification genes are

shown in Table 1. PCR products were sequenced by the I-

congene Biotechnology company (Wuhan, China) and then

analyzed using the BLAST tool of the NCBI database. A

phylogenetic tree of the 16S rRNA was constructed by MEGA

software (version 6.0). Strain YC-34 has been submitted to the

China Center for Type Culture Collection (CCTCC) (Wuhan,

China) with the accession number of CCTCCM 20211100).

Nitrogen removal test

Two milliliter culture suspension of strain YC-37 was

added to a 250-mL triangular flask containing 100mL NR

and incubated in an incubator shaker (120 rpm) at 30◦C.

Samples were collected every 6 h to measure the OD600 value

and the concentrations of TN, NH+

4 , NO
−

2 and NO−

3 . Under

sterile conditions, 2mL of the pre-incubated strain suspension

was inoculated into a 250mL serum bottle containing 100mL

NR. A blank control without inoculation of the bacterial

solution was also set up. The serum bottles were aerated with

99.99% pure oxygen, tightly plugged with rubber sealing plugs,

and placed in an incubator for 48 h at 30◦C. The nitrogen

balance was calculated by measuring the starting and final

nitrogen content. The starting NO−

3 -N content was the initial

TN concentration. The final nitrogen measurement indices

included TN, NH+

4 N, NO
−

2 N, NO
−

3 N, organic nitrogen (Org-

N), intracellular nitrogen, and gaseous nitrogen concentration.

The Org-N concentration was determined by subtracting the

NO−

3 -N, NH
+

4 -N, and NO−

2 -N concentrations from the final

TN concentration. In addition, the headspace gas sample

in the serum bottle was withdrawn and assayed for N2O

and N2 content using GC-MS (Agilent, USA). The bacteria

were freeze-dried. The intracellular nitrogen percentage was

determined by an elemental analyzer (FLASH 2000, Thermo

Fisher Scientific) and the intracellular nitrogen content was

calculated by combining the weight of the bacteria.
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Factors a�ecting nitrogen removal

NR was used as the tested medium, and the culture

conditions were consistent with those described above. The

medium composition and condition were adjusted accordingly

to the tested variables. Influencing variables included the carbon

source, carbon: nitrogen (C/N) ratio (changing the quantity

of nitrogen content while maintaining a fixed quantity of

carbon content), pH, temperature, and dissolved oxygen (DO,

controlled by changing rotation speed). The carbon-based

resources (sodium succinate, trisodium citrate, sucrose, sodium

acetate, and seignette salt), C/N proportions (5, 10, 15, 30, and

60), pH (5, 7, and 9), temperature (25, 30, and 35◦C) and

rotational speed (90, 120, and 150 rpm) were chosen as the

dependent variables. All testing media were cultured for 30 h,

and OD600 and NO−

3 were measured.

Determination of indicators related to
strain aggregation

Samples were taken periodically during the culture

process of strain YC-34 in NR to determine indicators

related to aggregation. Auto-aggregation and hydrophobicity

indices were determined, and EPS extraction was performed

with reference to Hong et al. (2019). Briefly, the auto-

aggregation index was determined by spectrophotometry

after static precipitation, while the hydrophobicity index

was measured by spectrophotometry after hexadecane

adsorption. Furthermore, EPS was extracted by the cation

exchange resin method. The sum of polysaccharides and

proteins represented EPS content, which was measured by

anthrone colorimetry and the Lowry method separately

(Eboigbodin and Biggs, 2008). EPS was treated with freezing

intervention and then ground with infrared grade KBr powder,

made into disks. Subsequently, Fourier transform infrared

spectroscopy (FTIR) was used for measurement (Nicolet Nexus,

Thermo, USA).

Determination of cadmium
biosorption-related indicators

Bulk tests were conducted in an aseptic NR medium

to investigate the ability of strain YC-34 to remove NO−

3

in the presence of Cr(VI). According to reports, wastewater

with Cr(VI) usually contained <10 mg/L (Das et al.,

2016; Sharma and Malaviya, 2016). Therefore, the initial

cadmium concentration in the culture medium was adjusted

to 0, 3, 5, 7, and 10 mg/L by adding the corresponding

concentrations of potassium dichromate to the NR medium.

Pre-cultured YC-34 was incubated (1%, v/v) in an NR

medium containing different concentrations of Cr(VI) at
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FIGURE 1

The phylogenetic tree of Pseudomonas stutzeri strain YC-34 and related strains.

30◦C and 120 rpm. After 48 h of culture, the content and

composition of EPS, OD600, and TN were measured, and

the nitrate and Cr(VI) content were determined. The 1,5-

Diphenylcarbazide spectrophotometric method was used to

mearsure the concentration of Cr(VI) (He et al., 2015)

while the total Cr concentration was determined by atomic

absorption spectrometry (AA-7003, EWAI, Beijing, China).

The Cr(III) was evaluated by subtracting Cr(VI) from the

total Cr (An et al., 2020). After fixing in aqueous 2.5%

glutaraldehyde for 12 h and gradient dehydration with different

concentrations of ethanol, the cells were observed under a

scanning electron microscope (SEM, Hitachi, Japan) (Hong

et al., 2019).

Analytical methods

The concentrations of TN, NH+

4 -N, NO
+

3 -N, and NO−

2 -

N were measured with reference methods described in the

Chinese national standards (NY525-2012). The amide I region

(1,700–1,600 cm−1) of the FTIR data was analyzed to extract

information regarding protein secondary structures (Jia et al.,

2017). In addition, secondary derivative spectroscopy and

deconvolution spectroscopy of the amide I region and type of

hydrogen bonding in the region of 3,000–3,800 cm−1 were

performed using Peakfit software (version 4.12). SPSS 19.0

software (IBM SPSS, Armonk, NY, USA) was used for all

data processing and statistical analyses. Line and bar charts

were drawn using Origin 2021 (Origin Lab, Northampton,

MA, USA).

Results and discussion

Identification and characterization of
YC-34

After multiple cycles of enrichment in EM and plate scribing

on BTB solid medium, the auto-aggregation denitrifier YC-34

was obtained. The strain was off-white, convex, and opaque, with

a smooth, moist, and thick surface on BTB. PCR amplification

results revealed that the whole length of the 16S rRNA sequence

of YC-34 was∼1,375 bp (GenBank number: MZ855228). YC-34

was found to be highly associated with Pseudomonas sp. strain

SM12 (GenBank number: MT356167), with 99% similarity.

Phylogenetic analysis based on 16S rRNA gene sequencing

indicated that YC-34 had a close relationship with Pseudomonas

stutzeri (Figure 1). Therefore, strain YC-34 was identified as a

Pseudomonas stutzeri strain.

Analysis of nitrogen-removal
characteristics

The nitrogen removal characteristics of strain YC-34 were

analyzed by using nitrate as the single nitrogen source (Figure 2).

From 0 to 60 h, NO−

3 -N was reduced from the original

54.12–5.10 mg/L with an elimination efficiency of 90.58%.

Moreover, the accruals of nitrite and ammonia were almost

zero during the whole incubation period. Pseudomonas stutzeri

strains were previously reported as aerobic denitrifying bacteria

with the ability to accumulate nitrite (Zhu et al., 2012; Hong
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et al., 2021). However, nitrite enrichment inhibits the functions

of microorganisms in the nitrogen, phosphorus, and sulfate

removal process, such as anaerobic ammonium oxidation

bacteria, methanogenic archaea, and sulfate-reducing bacteria

(Auguet et al., 2016; Wang et al., 2019). Therefore, due to its

efficient nitrate-nitrogen removal and minimal accumulation of

ammonia-nitrogen and nitrite, strain YC-34 showed excellent

denitrification performance.

The N conversion pathway for strain YC-34 was explored by

N balance. The N balance data are shown in Table 2. Comparing

the initial and final nitrogen concentrations, 31.1% of the

original nitrate was transformed into intracellular nitrogen,

17.8% was converted into organic nitrogen, 8.5% was turned

into N2O, and 30.0% was transformed into N2. As described

by Huang et al. (2015), the denitrification procedure requires

the participation of multiple enzymes. The related genes napA,

nirS, norR and nosZ were amplified and were found to be

877, 310, 1,001, and 1,051 bp, respectively (Figure 3). The

genes corresponded to four enzymes (NAP, NIR, NOR, and

NOS). NAP played an essential role in the conversion of

NO−

3 to NO−

2 (Zhu et al., 2012). The napA gene is often

used as a functional marker to identify aerobic denitrifying

bacteria (Feng et al., 2018; Lang et al., 2019; Zhang et al.,

2019). The amplification of the nirS gene indicates that

FIGURE 2

The nitrate removal and cell growth performance of YC-34

strain.

heme c in strain YC-34 is responsible for electron transport

from the electron donor cytochrome c551, while heme d1 is

responsible for nitrite binding and reduction to nitric oxide

(Baker et al., 1997). The enzymes NOR and NOS are encoded

by the norR and nosZ genes, respectively, which promote

the production of N2O and N2, respectively (Zhang et al.,

2012). The nitrate-nitrogen removal pathway of strain YC-

34 was like the reported strains, Pseudomonas stutzeri strain

XL-2; Pseudomonas stutzeri KY-37; Pseudomonas oligotrophica

JM10B5aT (Zhao et al., 2018; Hong et al., 2022; Zhang et al.,

2022). Combined with the nitrogen balance and denitrification

gene amplification, strain YC-34 exhibited a complete N

pathway: Nitrate→ Nitrite→ Nitric coxide→ Nitrous oxide

→ Nitrogen.

E�ects of di�erent influencing factors on
the denitrification performance of YC-34

Carbon source

As shown in Figure 4A, sodium succinate, trisodium

citrate, and sucrose were tested for strain YC-34 growth

with a NO−

3 elimination efficiency of 93.08, 58.72, and

42.51%, respectively. Sodium succinate might be the

optimal carbon source, which consisted of the carbon

using of Bacillus methylotrophicus strain L7 (Zhang et al.,

2012).

FIGURE 3

The amplification results of nirS, norR, nosZ, and napA genes (M:

DL 2000 DNA marker).

TABLE 2 The N balance of strain YC-34 after 48h cultivation.

Initial N (mg) Final N (mg) Error

NO−

3 -N NO−

2 -N NH+

4 -N Org-N Intracellular N N2O N2

2.17± 0.008 0.07± 0.005 UN 0.003 0.48± 0.009 0.84± 0.011 0.28± 0.015 0.81± 0.005 7.8%

UD, Undetectable.

Error%= 100× (Initial N-Final N)/Initial N.
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FIGURE 4

The e�ects for denitrification capacity by the conditions of carbon source (A), C/N ratio (B), temperature (C), pH (D), and DO (E).

C/N ratio

Aerobic denitrifiers usually require a C/N ratio of about

9–10 (Ren et al., 2021). The removal of nitrate by Halomonas

AlkaliphileHRL-9 with a C/N ratio of 20 was significantly higher

than that of 10 (Ren et al., 2019). As displayed in Figure 4B, YC-

34 could adapt to C/N ratios ranging from 5 to 60. As the ratio

gradually increased from 5 to 60, the utilization of NO−

3 initially

presented an increasing trend followed by a decreasing trend.

YC-34 reached its peak efficiency (97.37% NO−

3 removal) at a

C/N ratio of 15.

Temperature

YC-34 could maintain efficient nitrogen removal from 25

to 35◦C (Figure 4C). The maximum removal capacity of NO−

3

reached 90.43% at 30◦C, which was similar to the Marinobacter

strain NNA5 (Liu et al., 2016). Moreover, the OD600 of the strain

is higher than that of other temperatures under the condition of

30◦C. This indicated that YC-34 might be a mesophilic strain.

pH

Figure 4D presented the NO−

3 removal properties of YC-34

under the initial pH of 5, 7, and 9 with a maximum removal

value of 66.30, 91.10, and 80.82%, respectively. The optimal pH

condition of YC-34 was similar to that ofAcinetobacter sp. YT03,

which maintained a high nitrogen removal capacity at a pH of 7

(Li et al., 2019). This indicated that the optimum pH for YC-34

growth was neutral.

Shaking speed

An increase in shaking speed represents an increase in

DO. The denitrification rate of strain Acinetobacter sp. YT03

was reported to increase as the rotation speed increased.

As the rotation speed was increased from 50 rpm to 250

rpm, the nitrogen removal rate reached the maximum value

of 93.9% at 250 rpm (Li et al., 2019). The strain YC-34

showed a similar performance to Acinetobacter sp. YT03,

which showed a maximum nitrogen removal efficiency of

90.4% at 150 rpm (Figure 4E). According to the experimental

results, sodium succinate was the most suitable carbon source

for YC-34. The optimum C/N ratio was 15, the suitable

temperature was 30◦C, and the optimum pH was 7. YC-34 also

showed outstanding denitrification performance in suboptimal

factors, which confirmed the strong environmental adaptability

of YC-34.

Analysis of prominent auto-aggregation
features and mechanisms

Auto-aggregation ability and hydrophobicity of
YC-34

As shown in Figure 5A, YC-34 presented a significant auto-

aggregation ability as the auto-aggregation index progressively

rose to 78.4% at 42h. The value was higher than that of

the Enterobacter sp. strain FL and Escherichia coli MG1655

(Eboigbodin and Biggs, 2008; Wang et al., 2018). The surface
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FIGURE 5

Auto-aggregation index (A) and hydrophobicity index (B) of the strain YC-34, Fourier transform infrared spectra (C) and composition (D) of EPS.

TABLE 3 The content of protein secondary structure of strain YC-34.

β-Sheets (%) Random coil (%) α-Helices (%) β-turn (%)

EPS 37.07% — — 62.93%

hydrophobicity of YC-34 gradually increased from 15.0% at 6 h

to 75.5% at 48 h (Figure 5B), which was significantly higher than

that of Sphingomonas sp. YY2 (Lang et al., 2019). These results

were consistent with Bifidobacteria with its hydrophobicity

presenting a positive correlation with aggregation ability

(Collado et al., 2007).

EPS characteristics

As presented in Figure 5C, the protein and polysaccharide

concentrations rose progressively from 12 to 36 h. YCh.... t-Yc-34

was rich in proteins. Figure 5D displays the infrared wavebands

of EPS. The 3,395 cm−1 peaks represented the tensile oscillation

of O-H. The peak of 1,647 cm−1 corresponded to the C=O

stretching oscillation of amide-I, which was identified as the

random coil of protein secondary structure. The peak at 1,402

cm−1 was attributed to the COO-deformation vibration due to

the presence of uronic acid. The wavebands at 800 and 1,200

cm−1 were attributed to the C-H deformation vibration. The

results confirmed that the main components of EPS produced

by YC-34 were proteins and polysaccharides. To investigated the

effect of proteins in the auto-aggregation of YC-34, the primary

structure of proteins was further studied. As shown in Table 3,
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the secondary structures were composed of 37.07% β-sheets and

62.93% β-turns, whereas the α-helix structures and random coil

were not found. There was a higher content of β-turn than β-

sheet. Fewer α-helices in the protein resulted in a “loose” protein

structure, exposing more hydrophobic amino acids, leading

to stronger hydrophobicity. The auto-aggregation ability and

surface hydrophobicity of bacteria were closely related to biofilm

formation (Wang and Li, 2022). Proteins and polysaccharides

in EPS were essential in promoting initial bacterial adhesion

and biofilm development (Zhu et al., 2018). Replenishment of

EPS-producing bacteria in wastewater biofilm treatment systems

may facilitate EPS production, and enhance initial adhesion

and biofilm development, and eventually leading to accelerated

biofilm formation. This would reduce the loss of nitrogen

removal functional bacteria, and serve to achieve enhanced deep

nitrogen removal from wastewater.

Analysis of the e�ect and mechanism of
Cr (VI)-removal by YC-34

Some previous studies have shown that EPS has various

binding and biosorption capacities for different kinds of heavy

metals (Yue et al., 2015). In view of a large amount of EPS

secretion by YC-34, the nitrogen removal characteristics of

YC-34 in response to heavy metal Cr(VI) stress were further

investigated. As presented in Figure 6A, the NO−

3 -N removal

efficiency of YC-34 was 82.6, 81.5, 83.6, 83.0, and 81.8% at initial

Cr(VI) concentrations of 0, 3, 5, 7, and 10 mg/L, respectively.

After 48 h of incubation, the total Cr concentrations decreased

to 1.54, 2.62, 3.88, and 6.02 mg/L, respectively (Figure 6B).

Chromium loss might result from the biosorption of YC-34,

with the adsorption efficiency reaching 48.75, 46.67, 44.53,

and 39.84% at 3, 5, 7, and 10 mg/L initial Cr(VI) contents,

respectively. By comparing the reduction traits of Cr(VI) and

total Cr, strain YC-34 showed similar chromium removal

characteristics to strain AL-6, converting hexavalent chromium

to the less toxic Cr(III) (An et al., 2020).

The mechanism of chromium adsorption by strain YC-34

was further explored from the micro-characteristics of the cell

surface. The accumulation of EPS increased with increasing

Cr(VI) concentration, reaching a maximum of 26.32 mg/g

cell dry weight under the initial 10 mg/L Cr(VI) condition

(Figure 6C). The EPS encapsulation of Cr(VI) by strain YC-

34 was observed under SEM (Figure 6D), which was similar to

the results of Zhou et al. (2021). The adsorptive removal of

chromium by strain YC-34 may be achieved through adsorption

sites on EPS (Jin et al., 2014; Pi et al., 2020), while the large

FIGURE 6

Denitrification capacity (A), Cr removal (B), EPS generation (C) under the di�erent concentrations of Cr(VI); morphology of EPS at di�erent Cr(VI)

concentrations of 0, 3, 5, 7, and 10 mg/L under SEM observation (D).
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amount of EPS production helps strains to establish a stable

structure that protects them from hazardous environments

(Miao et al., 2018). Moreover, FTIR measurements and analysis

showed almost no change in the transmittance of the measured

bands of strianYC-34 in the groups with initial Cr(IV) of 0,

3 and 5 mg/L (Figure 7). Cell surface polymers are generally

supported by a hydrogen bonding system, and the higher the

proportion of hydrogen bonds, the stronger the intermolecular

interactions (Cai et al., 2021). Further deconvolution analysis

of FT-IR results in the 3,800–3,000 cm−1 band showed that

the hydrogen bonding types were significantly higher in the

0, 3, and 5 mg/L groups than in the 7 and 10 mg/L groups,

FIGURE 7

FT-IR spectra of strain YC-34 under di�erent Cr(VI) stress (A) and their deconvoluted results for 0 (B), 3 (C), 5 (D), 7 (E), and 10 mg/L (F) at the

region (3,000–4,000 cm−1).

FIGURE 8

The speculative nitrate conversion and Cr(VI) removal mechanism of strain YC-34.
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implying that the intermolecular forces on the bacterial surface

weakened at Cr(IV) concentrations above 5 mg/L. In summary,

considering the nitrogen removal pathway and the extracellular

Cr(IV) adsorption characteristics analysis (Figure 8), the main

removal mechanisms of strain YC-34 facing cadmium stress may

be due to the adsorption of functional groups on the surface.

Conclusion

A novel auto-aggregation aerobic denitrifier (Pseudomonas

stutzeri strain YC-34) was isolated, demonstrating superior

environmental adaptability and the ability to remove Cr(VI)

in synthetic wastewater. YC-34 attained a high NO−

3 -N

removal efficiency of 90.58% and showed fine adaptability to

different culture conditions. Based on nitrogen balance and

denitrification gene amplification analysis, the strain YC-34

presented a complete nitrogen pathway for Nitrate → Nitrite

→ Nitric oxide → Nitrous oxide → Nitrogen. Strain YC-

34 produced a large amount of EPS, especially when exposed

to Cr(VI), which in turn provided more abundant functional

groups and strong hydrogen bonds to adsorb cadmium. These

studies indicated that YC-34 has a superior potential for

simultaneously treating synthetic wastewater contaminated with

nitrogen and Cr(VI).
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