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Quantitative gene expression analysis plays an important role in identifying
differentially expressed genes in various pathological states, gene expression regu-
lation and co-regulation, shedding light on gene functions. Although microarray is
widely used as a powerful tool in this regard, it is suboptimal quantitatively and
unable to detect unknown gene variants. Here we demonstrated effective detection
of differential expression and co-regulation of certain genes by expressed sequence
tag analysis using a selected subset of cDNA libraries. We discussed the issues of
sequencing depth and library preparation, and propose that increased sequencing
depth and improved preparation procedures may allow detection of many expres-
sion features for less abundant gene variants. With the reduction of sequencing cost
and the emerging of new generation sequencing technology, in-depth sequencing of
cDNA pools or libraries may represent a better and powerful tool in gene expression
profiling and cancer biomarker detection. We also propose using sequence-specif ic
subtraction to remove hundreds of the most abundant housekeeping genes to in-
crease sequencing depth without affecting relative expression ratio of other genes,
as transcripts from as few as 300 most abundantly expressed genes constitute about
20% of the total transcriptome. In-depth sequencing also represents a unique ad-
vantage of detecting unknown forms of transcripts, such as alternative splicing
variants, fusion genes, and regulatory RNAs, as well as detecting mutations and
polymorphisms that may play important roles in disease pathogenesis.

Key words: cDNA sequencing, sequencing depth, expressed sequence tag, sequence-specif ic
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Introduction

High-throughput cDNA sequencing involves selecting
clones from a cDNA library at random and perform-
ing automated sequencing read of their insert libraries
(1 ). In 1992, a database called dbEST was estab-
lished to serve as a collection of expressed sequence
tags (ESTs) (2 ). In the last one and half decade,
millions of clones derived from various sources have
been sequenced and deposited into dbEST. As of May
2008, there are more than eight million EST entries of
human origin, and 50 million total entries in dbEST
from various species (http://www.ncbi.nlm.nih.gov/
dbEST/dbEST summary.html).

The sources of ESTs include tissues of different
developmental stages and different physiological and
pathological states, which have the potential to be
used to answer many important biological questions.

For example, for the human libraries, about half of
them were generated from normal tissues and an-
other half from tumor tissues or cultured tumor cell
lines. So they provide opportunities for detecting
cancer-related differential gene expression, alternative
splicing events, and other rare forms of transcripts.
Indeed, EST sequences have been used to estimate
mRNA abundance in various tissues (3 , 4 ), to detect
tissue-specific genes (5 ), and to draw inference on
differential gene expression (4 , 6 ).

In principle, the number of mRNAs of a particular
gene in a library is roughly proportional to the abun-
dance of this mRNA in the transcriptome of the tis-
sue used to prepare the library, given that the library
was not treated in any way to significantly change
the relative abundance of different transcripts, and
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the libraries have certain sequencing depth relative
to the size of the transcriptome of the source tis-
sue. However, there are problems with the way that
ESTs were generated, which prevented them from be-
ing fully used for gene expression analysis. A ma-
jor purpose of the early stages of EST sequencing
was to discover new genes. Various methods were in-
vented to reduce repeated sequencing of known abun-
dant genes and to increase the probability of gene
discovery. Normalization and subtraction of different
libraries, or libraries undergone different treatment,
were used to increase the chance of detecting new
genes or differentially expressed genes (7–9 ). Cer-
tain libraries underwent PCR amplification process,
which could change relative gene abundance due to
uneven amplification. Some libraries were generated
by random priming (10 ), which may amplify certain
genes several magnitudes more efficiently than oth-
ers due to primer annealing preference, amplification
efficiency, or potential secondary structure of some
mRNAs. Fractionation of the cDNA pool and other
preparation processes may also change the ratio of
different transcripts. The number of sequenced clones
of various cDNA libraries ranges from a few hundreds
to tens of thousands. Relative to the size of the tran-
scriptome, libraries are seriously under-sampled and
even for the bigger libraries, it is estimated that only
about 60% of expressed genes in an tissue or cell line
get represented (8 ).

Here we have chosen a subset of cDNA libraries
(non-normalized libraries with at least 5,000 se-
quenced clones) that better reflect gene expression
profiles, and have detected significant patterns of
differential gene expression, expression correlation,
and rare forms of transcripts of certain abundant
genes. We propose that with increased sequenc-
ing depth, and using technologies such as sequence-
specific subtraction of a small fraction of the most
abundantly expressed housekeeping genes, cDNA li-
brary sequencing could provide a more accurate and
quantitative method for extracting gene expression in-

formation for less abundant genes, thus shed light on
the function and regulation of the genes and their roles
in disease pathogenesis.

Results

Differential gene expression related to

cancer

Various comparisons have been done to detect genes
that are differentially expressed in tumors of a partic-
ular tissue origin (4 , 11 ). However, due to the lack of
quality libraries for a given tissue, any comparison this
way may be underpowered. On the other hand, there
are common features to tumors of different tissue ori-
gins, such as lack of differentiation, dysregulation in
cell cycle control, genome instability, and evasion of
apoptosis. These commonalities could very well be
reflected in gene expression patterns. Here using a
subset of non-normalized libraries with at least 5,000
sequenced clones, which can be divided into groups
of normal tissues, tumor tissues, and cultured tumor
cells (Table 1, see Materials and Methods for details),
we have analyzed the expression of some abundantly
expressed genes as well as genes that are known to
be involved in cancer (Figure 1). The analysis re-
sults were also compared with results from libraries of
uncharacterized preparation, normalization and sub-
traction.

In Figure 1, we demonstrated differential expres-
sion of certain genes either using data directly down-
loaded from UniGene or by EST sequence analysis of
our own. It is worth noting that for most of these
genes, there is an apparent up-regulation in tumor
cell lines, and an intermediate up-regulation in tumor
tissues. It is consistent with the notion that the can-
cer cell lines have undergone selection processes and
are probably clones from the fastest growing cancer
cells. As shown in Figure 1B, the differential expres-
sion of BIRC5 among the three groups is much more
significant when analyzed using non-normalized li-

Table 1 Non-normalized libraries used in the analysis of this study

Tissue origin of libraries No. of Total sequence Library size (total entries)

libraries entries Minimum Maximum Median

Normal bulk tissue 43 429,781 5,235 23,703 9,180

Normal cell line 12 124,308 6,462 18,479 9,541

Tumor bulk tissue 23 261,446 5,385 25,235 8,430

Tumor cell line 64 908,856 5,178 41,936 11,945

Total 142 1,724,391 5,178 41,936 10,583
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Figure 1 Differentially expressed genes detected by EST analysis using 130 non-normalized libraries. The libraries

were grouped according to their tissue origin as “normal tissue (normal bulk)”, “cancer tissue (neoplasia bulk)”, and

“cultured cancer cell line (neoplasia cell)”. Differential gene expression was analyzed by their detected copy num-

bers per 10,000 sequenced clones in each library. A. Differential expression for ACTB, GAPDH, RPS2, EEF1G,

RAC1, and MALAT1. Comparisons showed significant P values calculated by unpaired nonparametric t-test with

Welch’s correction: non-muscle beta actin (ACTB) between normal bulk and neoplasia bulk, P=0.04; between nor-

mal bulk and neoplasia cell, P=0.011; glyceraldehyde-3-phosphate dehydrogenase (GAPDH ) between normal bulk

and neoplasia bulk, P=0.0016; between normal bulk and neoplasia cell, P<0.0001; between neoplasia bulk and neo-

plasia cell, P=0.0002; ribosomal protein S2 (RPS2 ) between normal bulk and neoplasia bulk, P=0.0022; P<0.0001

between normal bulk and neoplasia cell as well as between neoplasia bulk and neoplasia cell; eukaryotic translation

elongation factor 1 gamma (EEF1G) between normal bulk and neoplasia bulk, P=0.0004; between neoplasia bulk and

neoplasia cell, P<0.0001; ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1,

RAC1 ) between normal bulk and neoplasia bulk, P=0.0034; between normal bulk and neoplasia cell, P=0.0013; be-

tween neoplasia bulk and neoplasia cell, P=0.043; metastasis associated lung adenocarcinoma transcript 1 (non-protein

coding) (MALAT1 ) between normal bulk and neoplasia bulk, P=0.0084; and between normal bulk and neoplasia cell,

P=0.0098. B. Differential expression of BIRC5 analyzed by libraries of different preparations. For baculoviral IAP

repeat-containing 5 (survivin) (BIRC5 ) in uncharacterized libraries, between normal bulk and neoplasia cell, P=0.0067;

between neoplasia bulk and neoplasia cell, P=0.017. For normalized/subtracted libraries, between normal bulk and

neoplasia cell, P=0.0065; between neoplasia bulk and neoplasia cell, P=0.0090. For non-normalized libraries between

normal bulk and neoplasia cell, P<0.0001; between neoplasia bulk and neoplasia cell, P<0.0001.
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braries. While the same trend is observed, the data
are less consistent when the expression of this gene
is compared among three tissue origins in uncharac-
terized libraries (with unknown preparation process)
and normalized/subtracted libraries. This reflected
the effect of library preparation on gene expres-
sion profiling and comparison. There are reports
that RAC1b, the splicing variant form of RAC1,
is involved in various cancers (12 , 13 ). Using the
57-nucleotide sequence from the insertion exon of
RAC1b, we searched dbEST for entries correspond-
ing to this variant and examined its expression in the
142 selected non-normalized libraries. From Table 2,
we can clearly see that the six Rac1b ESTs detected in
these libraries were all neoplasia origin, a result con-
sistent with the reports showing that the variant form
is involved in important tumor growth processes.

Detection of co-regulation of gene ex-

pression and rare forms of gene expres-

sion

Since ESTs are capable of expression profiling for
abundant genes, it should be able to detect genes
that are co-expressed or co-regulated for these genes.
Here we examined whether there is an expression cor-
relation between ACTB and ACTG1, the two non-
muscle cytoskeletal actins. The two actins co-exist
in most cell types as components of the cytoskeleton,
and as mediators of internal cell motility. They form
dimers to be functional, and therefore an expression
correlation is assumed. As shown in Figure 2, there
is very good expression correlation between the two
genes as analyzed by ESTs in the 142 libraries. Not
surprisingly, the expression correlation between the
two genes is most convincing when analyzed by the
selected non-normalized libraries, with a less correla-
tion observed in the normalized/subtracted libraries
while no correlation is found in the uncharacterized
libraries. Similarly, high expression correlation is also

observed between KRT8/18, two genes known to in-
teract and are involved in many cancer types (Figure
2D) (11 ).

Compared with microarrays and SAGE (serial
analysis of gene expression), EST sequencing has the
unique advantage of detecting transcripts of rare and
unknown forms, such as alternative splicing, fusion
genes, and other RNA species, given that the prepara-
tion process of cDNA library was not excluding those
forms. We examined alternative splicing forms for
CD44, a gene that is known to be present in many
different splicing forms and involved in metastasis of
cancer. Indeed, ESTs are capable of detecting vari-
ous CD44 alternative splicing forms (data not shown).
With increased sequencing depth of cDNA libraries,
more rare forms of transcripts of different genes could
be detected and have the potential to be used as di-
agnosis and prognosis markers.

Evaluation of sequencing depth and

false negative detection of expressed

genes

The possibility of using ESTs to analyze gene expres-
sion profile has been proposed before (3 , 10 ). How-
ever, variations in library preparations and more im-
portantly, serious under-sampling regarding the se-
quenced clones per library relative to the size of to-
tal transcriptome, prevented usage of ESTs as a real
quantitative measure for gene expression profiling.
The question then is what would be the targeted se-
quencing depth to make cDNA sequencing a desirable
method for accurately measuring of gene expression
in a quantitative manner. Let’s assume the process of
picking clones for sequencing is truly random. Then
representation of a gene of given expression level in a
library of certain size follows a binomial distribution
with parameters P and N , where P is the probability
of observing x number of tags for a gene, randomly
sampling from total N cDNA clones. The expression

Table 2 Expression of RAC1b variant form detected in the 142 non-normalized libraries

Library name Tissue Histology Total sequenced RAC1b detection Library origin

clones (copies)

NIH MGC 70 pancreas neoplasia 16,633 1 cell line

NIH MGC 15 colon neoplasia 14,224 1 cell line

NIH MGC 98 brain neoplasia 12,808 1 cell line

NIH MGC 42 pancreas neoplasia 10,751 1 cell line

NIH MGC 101 lung neoplasia 9,166 1 cell line

NCI CGAP GU1 uncharacterized tissue neoplasia 5,550 1 bulk
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Figure 2 Expression correlation between ACTB and ACTG1 and between KRT8/18. A. Correlation between ACTB

and ACTG1 in the uncharacterized libraries. There is no significant expression correlation between the two genes

detected (correlation coefficient r2=0.0086, P=0.43). B. Correlation between ACTB and ACTG1 among the normal-

ized/subtracted libraries. The correlation is significant with r2=0.47 and P<0.0001. C. Correlation between ACTB

and ACTG1 among the non-normalized libraries. The correlation is significant with r2=0.56 and P<0.0001. D. Ex-

pression correlation between KRT8 and KRT18 in non-normalized libraries. The correlation is significant with r2=0.57

and P<0.0001.

level for a gene is t, and t assumes 0.01 when the gene
constitutes one percent of all the transcripts in a tran-
scriptome. Since the expression level t is considerably
small compared with N , the binomial distribution can
be approximated by Poisson distribution. Therefore,
the probability of having x tags for a given gene in a
library of total size N , with gene expression level of
t, where λ = Nt, is:

P (x) = (e−λλx)/x!
For negative representation, x = 0, then P (0) =

1/eλ. In Figure 3, we showed the relationship of false
negative detection (expressed genes not being repre-
sented) with the total number of sequenced clones in
a library for different gene expression levels. It is
obvious that when expression levels are low, such as
lower than 1 copy in 50,000 transcripts, the probabil-
ity of its being detected in libraries of current sizes is
extremely low. Similarly, for libraries with less than
10,000 sequenced clones, the probability of false nega-

tive is high for probably majority of expressed genes.
In Table 3, we showed the targeted library sizes

when a certain false negative detection level is con-
sidered acceptable. With the sequencing cost goes
down rapidly, sequencing of larger number of cDNAs
from a certain tissue could become reality in the near
future. If hundreds of thousands, or even millions
of clones can be sequenced for a given tissue or cell
line, extremely valuable expression information can
be extracted and analyzed, thus shed light on gene
functions and cellular activities.

Increasing sequencing depth by

sequence-specific subtraction

NCBI grouped most EST entries to UniGene clus-
ters according to their chromosomal locations (14 ).
In UniGene build 210, there are 123,687 clusters
for human (http://www.ncbi.nlm.nih.gov/UniGene/
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Figure 3 Probability analysis of false negative detection in relationship with library sizes and gene expression levels.

The analysis is based on library sizes (x-axis, to the power of 10) and gene expression levels at 1 copy of mRNA in

1,000, 10,000, 50,000, and 1 million total transcripts, using Poisson distribution as described in Results. The y-axis

stands for the probability of false negative detection—undetected when the gene is really expressed.

Table 3 Targeted library sizes for certain false negative rates for various expression levels

Expression level Targeted library sizes

(copy number in transcriptome) P (0)=30% P (0)=20% P (0)=10% P (0)=5%

1/100 120 160 230 300

1/1,000 1,200 1,600 2,300 3,000

1/10,000 12,000 16,000 23,000 30,000

1/100,000 120,000 160,000 230,000 300,000

1/1,000,000 1,200,000 1,600,000 2,300,000 3,000,000

UGOrg.cgi?TAXID=9606). The clusters have a wide
range of different numbers of sequence entries from
one entry to nearly 50,000 entries. It is easily seen
that a group of most abundantly expressed genes con-
stitute a significant portion of the transcriptome. We
ranked the UniGene clusters according to the number
of sequence entries they have and plotted the por-
tion of UniGene clusters from the most abundant ones
with the portion of their entries in the total UniGene
sequences (Figure 4). It can be seen that sequences
from 2.3% of most abundant UniGene clusters consti-
tuted 53% of all the sequence entries. Similarly, en-
tries from 300 most abundant genes constituted about
20% of the total entries. Some most abundant genes
such as EEF1A1, GAPDH, and ACTB were each se-
quenced more than 25,000 times. Thus here we pro-
pose that, if a process of sequence-specific subtraction
is used to subtract the most abundant transcripts, se-
quencing depth can be significantly increased without
increasing the cost or affecting the relative expression
ratio of other genes. The sequence-specific subtrac-
tion could also be done in a tissue-specific fashion.
For libraries of liver origin, we found that transcripts
from albumin constituted around 10% of all the tran-

scripts (Table 4). Thus sequence-specific subtraction
for albumin alone could increase sequencing depth sig-
nificantly for their libraries.

Discussion

A deep understanding of the genes expressed in
different tissues, developmental stages, and pathologi-
cal states is a vital step towards understanding of their
biological functions. cDNA library sequencing (EST),
SAGE, and microarrays have all been widely used
to help the understanding of gene expression with
different advantages and disadvantages. There are
many issues for microarrays and the information ex-
tracted from microarray experiments is probably not
proportional to the scale of experiments performed so
far using this technology. SAGE usually has more se-
quencing depth than EST libraries. However, the ac-
curacy of using a SAGE tag to reflect expression of the
corresponding gene is compromised by tag-sharing by
different genes, and generation of more tags by a given
gene due to internal priming, alternative polyadeny-
lation or alternative splicing.
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Figure 4 Percentage of sequence entries in the total transcriptome by the most abundant genes. The x-axis stands

for the portion of UniGene clusters ranked by abundance from the most abundant to the least abundant clusters. The

y-axis stands for the cumulative portion of total UniGene entries constituted by the most abundant UniGene clusters.

The inset is the full scale of the same figure.

Table 4 Albumin sequences in libraries of liver origin*

Library name Total sequenced Detected albumin Portion of Library Library protocol

clones sequences albumin (%) histology

LIVER2 6,715 2,336 34.79 normal uncharacterized treatment

TLIVE2 8,656 2,202 25.44 neoplasia uncharacterized treatment

human hepatoblastoma cDNA 7,898 280 3.55 neoplasia uncharacterized treatment

Stratagene liver (#937224) 8,417 1,022 12.14 normal non-normalized

Homo sapiens FETAL LIVER 10,027 907 9.05 normal non-normalized

NIH MGC 76 11,960 1,046 8.75 normal non-normalized

GLC 19,285 1,272 6.60 normal uncharacterized treatment

GKC 17,736 1,146 6.46 neoplasia uncharacterized treatment

779 (synonym: hncc1) 10,690 682 6.38 normal uncharacterized treatment

*Including libraries with 5,000 sequenced clones or more, and tissues only (no libraries from cell lines).

cDNA library sequencing is a simple method that
has the best potential in many aspects. With the
prospect of dramatically reduced sequencing cost, it
becomes realistic to sequence hundreds of thousands
or even millions of clones or just cDNA molecules
for a give tissue or cell line. So if the issues in li-
brary preparation and sequencing depth are solved,
cDNA pool/library sequencing could be the most ac-
curate and most quantitative method of gene expres-

sion profiling. It also has the unique advantage of
detecting rare forms of transcripts, such as rare al-
ternative splicing forms, fusion gene transcripts, and
non-coding RNA species such as microRNAs. It can
also be used to detect mutations, polymorphisms, and
RNA editing events if relevant process can be adopted
to ensure sequencing quality (15 ).

From the current dbEST, irrespective of library
preparation, there are 370 libraries sequenced so far
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with more than 5,000 sequenced clones. This mag-
nitude is not nearly comparable to the scale of mi-
croarrays that have been performed. In this study
we focused our analysis on the 142 non-normalized li-
braries supposedly better reflecting relative gene ex-
pression levels. Even with the limited scale, analy-
sis of differential expression and expression correla-
tion still revealed significant information as we have
demonstrated here. This probably only reflected a
tip of the iceberg that cDNA sequencing is capable of
detecting in terms of gene expression information.

Transcription profiles are used for molecular clas-
sification of cancers, as well as prediction of prog-
nosis and tumor progression (16 , 17 ). In this study
we have chosen some genes known to be involved in
various cancers and tested whether EST data can
reflect differential expression of these genes in can-
cer. BIRC5 (Survivin) is a member of the inhibitor
of apoptosis protein family, and is known to be ele-
vated in many human cancer tissues. It is involved
in inhibition of apoptosis and regulation of mitosis
in many tumor types (18 , 19 ). In a study on all the
UniGene clusters, we have identified BIRC5 as a gene
that is on the top of the list of up-regulated genes in
tumor and tumor cell lines (unpublished data). This
is consistent with the result here using EST analysis,
which found that this gene is up-regulated in many
tumor cell lines regardless of their origin, and proba-
bly up-regulated in tumor tissues as well. Similarly,
RAC1b is known as a tumor-specific splicing variant
form of RAC1, with an insertion of 19 amino acids
next to the switch II region of RAC1. It was found
to be elevated in colorectal cancer at various stages of
tumor progression (12 ). It is involved in promoting
cellular transformation (13 ) and proliferation (20 ).
Quite convincingly, RAC1b was only detected in 6 li-
braries from the 142 libraries used and all of them
were neoplasia origin.

Metastasis associated lung adenocarcinoma tran-
script 1 (MALAT1, GeneID: 378938, UniGene cluster:
Hs.642877), also known as nuclear enriched abundant
transcript 2 (NEAT2 ) or Pro1073, is a non-coding
RNA with undefined function. The UniGene cluster
corresponding to this gene (Hs.642877) has a total of
16,287 EST entries according to UniGene build 210,
which put it among the top 15 most abundantly ex-
pressed genes in human genome. The gene was pro-
posed to be functioning in mRNA metabolism and
was demonstrated to have an intimate association
with SC35 nuclear speckles in both human and mouse
cells (21 ). However, EST data suggest a potential

down-regulation of this gene in tumor and tumor cells,
something worth further investigation for a gene with
such an abundant expression but unclear function.

In this study we only analyzed differential gene
expression between normal tissue and tumor tissue or
cells, irrespective of tissue type or other biological in-
formation due to lack of power for detailed analysis. If
more libraries of enough sequencing depth can be gen-
erated, more detailed comparison can be performed to
gain information on the genes expressed from different
tumor types and stages. On the other hand, certain
changes in gene expression could be common to most
of the tumors or tumor cell lines. From this anal-
ysis, it seems that RAC1, RAC1b, and BIRC5 are
up-regulated in a variety of tumor types. The in-
termediate change of some of the genes analyzed in
tumor tissues, with higher expression than in normal
tissues but lower expression level than in tumor cell
lines, probably reflected the heterogeneity of tumor
tissues.

An interesting finding of our analysis is the vari-
ability of expression level of the most abundant
and ubiquitously expressed genes, such as GAPDH,
ACTB, and ACTG1 (Figure 1). mRNAs of these
genes have been used as internal controls when com-
paring message levels between different tissues or
different treatment. The fact that messages of those
genes vary greatly both between tissues and by other
biological processes (such as malignancy) calls for cau-
tion when using these genes as controls.

Regulation and co-regulation of genes often has
functional implications (22 ) and can be used to iden-
tify unknown members of the same signal transduc-
tion pathways (23 ). Although much efforts have been
spent to detect co-expressed genes (24 , 25 ), we still do
not fully understand gene expression correlation pat-
terns in various physiological and pathological states.
cDNA sequencing is capable of providing an accurate
and quantitative way of finding gene orders. Detec-
tion of co-expressed genes by more in-depth cDNA li-
brary sequencing may shed new light on protein inter-
action, signal transduction pathways, and transcrip-
tional regulation.

Using ESTs for expression analysis has been pro-
posed before (3 , 24 ). However, how well can ESTs
reflect gene expression information is very controver-
sial. For example, an earlier study analyzed 1,573
libraries, and even the known most abundant, ubiq-
uitous housekeeping genes were only detected in less
than one-third of the libraries used (24 ). This demon-
strates the importance of sequencing depth in faith-
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fully reflecting gene expression information, as well
as the methods used in library preparation. In addi-
tion to the 142 libraries we used in most analysis,
there are 61 normalized libraries, 10 subtracted li-
braries, and 152 libraries with uncharacterized treat-
ment containing more than 5,000 sequenced clones.
We found that for the non-normalized libraries, there
is a correlation coefficient of 0.56 between the expres-
sion of ACTB and ACTG1 (Figure 2). The trend is
similar for the normalized and subtracted libraries,
with a correlation coefficient of 0.47. However, there
is no significant correlation between the two genes
when analyzed by the uncharacterized libraries. It
is unclear how normalization process would change
the relative expression level of less abundant tran-
scripts. The maintained correlation of ACTB and
ACTG1 in normalized libraries could be due to the
fact that the two genes are equally abundant, as the
method is designed to create libraries containing equal
representation of all sequences (7 ). We compared the
expression level of ACTB and ACTG1 in libraries of
different treatment. It seems that normalization and
subtraction did significantly reduce the detection level
of these abundant genes, with little effect on their rel-
ative ratio. However, the libraries with uncharacter-
ized treatment seem to have significantly changed the
relative ratio of the genes (Table 5).

It has been realized that much larger portion of
genomes are transcribed than anticipated from whole
genome annotations, and non-protein-encoding tran-
scripts comprise a substantial fraction of the human
genome (26–28 ). More and more studies indicate the
important biological roles of non-coding RNAs (29 ).
Due to the short length and lack of polyA tail for such
small RNA molecules, they are missed by most cDNA
library preparation processes as a result of fractiona-
tion in selecting larger molecules and cDNA synthesis
using poly-dT primers. Modification in the cDNA
library preparation process, or sequencing of cDNA
pools without library preparation could result in in-
clusion of these species and allow evaluation of their

expression level in various biological states, as well as
correlation with the expression level of other protein
coding genes (30 , 31 ). cDNA library sequencing also
provides a unique advantage in detecting alternative
splicing forms (32 , 33 ). In addition, other transcripts
such as fusion genes from splicing (34 ) or chromo-
somal translocation, variants reflecting somatic mu-
tations or RNA editing (15 ), could also be detected
through in-depth sequencing.

It was estimated that the number of genes ex-
pressed in a cell lies between 10,000 and 15,000 (35–
37 ), and the total transcripts in a single cell was es-
timated to be between 300,000 (35 , 38 ) to a few mil-
lion (39 , 40 ). Patanjali et al estimated that the copy
numbers of expressed genes could vary from a single
copy to 200,000 copies per cell (7 ), while Galau et al
estimated that one-third of the mRNA in a single cell
type is made up of species present at only 1–10 copies
per cell (41 ). Accordingly, it is safe to say that the
majority of genes express at a level below one copy per
10,000 transcripts. Future gene expression detection
methods should be made capable of detecting species
at this expression level in a high-throughput format.
To reach this goal, sequencing of hundreds of thou-
sands to millions of clones in a pool/library would
be necessary. The need of much increased sequencing
depth is also pointed by Zhu et al (40 ) and Stern et
al (42 ).

SAGE data also point to the need for more se-
quencing depth for detecting low abundant genes
(42 ). At the range of 100,000–150,000 total tags se-
quenced in a library, the number of unique tags is in
the range of 30,000–40,000. The two SAGE libraries
containing about 400,000 sequenced tags have about
80,000 unique tags. It is shown that the fraction of
new tags identified approaches zero only when library
size approaches 650,000 total tags (43 ). These anal-
yses on SAGE data indicate that there are probably
large numbers of low abundant genes that express at
a level that can only be detected with much increased
sequencing depth.

Table 5 Median expression levels of ACTB and ACTG1 as reflected by libraries of different

preparation process

Library type Expression level (copy number/10,000 sequenced clones)

ACTB ACTG1

Non-normalized library 24.65 19.43

Normalized library 1.97 1.06

Subtracted library 0 0

Uncharacterized library 19.85 0.16
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Sequence-specific subtraction is an attracting
method to increase the sequencing depth without
changing the relative expression level of genes. The
UniGene data analysis result (Figure 4) is consistent
with analysis on SAGE libraries, which indicates that
the most highly expressed 623 genes accounted for
nearly one-half of the mRNA content (43 ). Sequence-
specific subtraction can be more beneficial for partic-
ular tissues, such as subtraction of albumin transcript
in liver libraries (Table 4).

Microarrays are limited by the prior knowledge of
RNA species and are usually unable to distinguish al-
ternative spliced forms or alternative promoter usage
(28 ). It remains an open question how well array
data can be quantified to reflect detailed expression
level information, while fold changes of any range can
be extracted in detail for cDNA sequencing data if
sequencing depth is significantly increased. In sum-
mary, in-depth cDNA library sequencing stands for a
very promising method in revealing valuable expres-
sion information to help our understanding of many
biological and pathological processes.

Materials and Methods

cDNA library information was downloaded from
the Cancer Genome Anatomy Project (http://cgap.
nci.nih.gov/Info/CGAPDownload) and processed by
an in-house Perl program. This includes information
on tissue origin, library preparation, pathology and
histology of the tissues or cell lines, total number of
sequenced clones for the library, etc. Out of a total
of more than 8,000 libraries, we have chosen 142 li-
braries generated by non-normalized preparation and
with more than 5,000 sequenced clones for most of
the analysis presented here (Table 1). Among these
libraries, 43 were derived from normal tissues (nor-
mal bulk), 23 were generated from tumor tissues (neo-
plasia bulk), and 64 were originated from tumor cell
lines (neoplasia cell). There are also 12 libraries gen-
erated from cell lines of normal origin, and they were
used for the expression correlation analysis but not
the analysis on differential gene expression. In addi-
tion to the 142 libraries with non-normalized treat-
ment, there are 61 normalized libraries, 10 subtracted
libraries, and 152 libraries with uncharacterized treat-
ment containing more than 5,000 sequenced clones.
Differential expression (BIRC5 ) and expression cor-
relation (between ACTB and ACTG1 ) from the non-
normalized libraries were compared with those from

normalized/subtracted libraries or uncharacterized li-
braries.

The EST sequences for the genes in this study
were extracted either by searching dbEST human by
a standalone program using blastn program or by di-
rect download of corresponding UniGene cluster se-
quences from NCBI for that particular gene. For
the former, the most complete cDNA sequences for
the given gene in question were extracted from NCBI
and were used as templates in the subsequent similar-
ity searches. Human EST sequences in dbEST were
searched using the template sequences and standalone
blastn program for sequences that generate high se-
quence similarities to the template (44 ). In the mean-
time, paralogous genes for the gene in question were
also used to search dbEST and the entire blast search
results were compared by an in-house Perl program
to eliminate EST sequences that showed better align-
ment to the paralogous genes than to the gene in
question. EST sequences that align with the corre-
sponding templates in a stretch of 100 bp or below,
or sequences that generate longer stretch of align-
ment but with low (less than 95%) sequence simi-
larity were further analyzed by aligning the EST se-
quences with human genome sequences to find the
chromosomal regions that best align with the ESTs.
Information from relative sequence similarity to the
corresponding template and to its paralogous genes
or the chromosomal location that best align with
the EST entry was used to distinguish a real pos-
itive sequence tag from a mismatch. The method
was used to get the EST entries for RAC1, Albumin,
BIRC5/Survivin, and MALAT1/Pro1073 ; the semi-
manual method allows extraction of more sequences
than those from UniGene for the corresponding genes.
For other abundant genes usually with many paralogs,
direct extraction of sequence entries from UniGene
was used. Corresponding library information for the
verified ESTs was retrieved using an in-house Perl
program. Differential expression of the selected genes
among normal tissues, neoplasia tissues, and neopla-
sia cell lines was analyzed using nonparametric t-test
with Welch’s correction for unequal variance. Expres-
sion level correlation between ACTB and ACTG1 and
between KRT8/18 was done using linear regression.

The 57-nucleotide sequence in the extra exon of
RAC1b cDNA was used as template in searching hu-
man EST sequences and matched sequences were fur-
ther evaluated for their authenticity as RAC1b splic-
ing variant. Then information on their tissue and
library origin was extracted using an in-house Perl
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program.
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