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A B S T R A C T   

Introduction: The fast pandemic of coronavirus disease 2019 (COVID-19) has challenged clinicians with many 
uncertainties and ambiguities regarding disease outcomes and complications. To deal with these uncertainties, 
our study aimed to develop and evaluate several artificial neural networks (ANNs) to predict the mortality risk in 
hospitalized COVID-19 patients. 
Material and methods: The data of 1710 hospitalized COVID-19 patients were used in this retrospective and 
developmental study. First, a Chi-square test (P < 0.05), Eta coefficient (η > 0.4), and binary logistics regression 
(BLR) analysis were performed to determine the factors affecting COVID-19 mortality. Then, using the selected 
variables, two types of feed-forward (FF) models, including the back-propagation (BP) and distributed time delay 
(DTD) were trained. The models’ performance was assessed using mean squared error (MSE), error histogram 
(EH), and area under the ROC curve (AUC-ROC) metrics. 
Results: After applying the univariate and multivariate analysis, 13 variables were selected as important features 
in predicting COVID-19 mortality at P < 0.05. A comparison of the two ANN architectures using the MSE showed 
that the BP-ANN (validation error: 0.067, most of the classified samples having 0.049 and 0.05 error rates, and 
AUC-ROC: 0.888) was the best model. 
Conclusions: Our findings show the acceptable performance of ANN for predicting the risk of mortality in hos-
pitalized COVID-19 patients. Application of the developed ANN-based CDSS in a real clinical environment will 
improve patient safety and reduce disease severity and mortality.   

1. Introduction 

Since March 11, 2020, the coronavirus disease 2019 (COVID-19) 
pandemic has remained a worldwide public health concern [1]. With the 
widespread outbreak of COVID-19, the healthcare systems of many 
countries have failed to meet the growing needs of patients for diagnosis, 
treatment, and care [2,3]. Due to the weakness of many healthcare in-
dustries in dealing with the overwhelming demands during the 
pandemic, the need to use advanced intelligence and computing tech-
nologies has increased [4,5]. In addition, due to the lack of a definitive 
and approved treatment and the increasing number of infected cases and 
deaths, artificial intelligence (AI) techniques have become essential to 
identifying and triaging patients and predicting disease severity and 
outcome detection [6–8]. Using AI-based prediction models for the early 

prognosis of the illness and forecasting patients’ clinical deterioration 
can diminish the adverse outcomes of the COVID-19 pandemic [9,10], 
maintain treatment efficiency, and improve resource utilization [11]. 

Machine learning (ML) is a branch of AI that can play an essential 
role in the prognosis, diagnosis, and treatment of various diseases, 
especially chronic and complex conditions [12,13]. ML techniques 
extract applied knowledge to support decision-making by exploring 
cumulative datasets [14,15]. The ML process involves several phases, e. 
g., data gathering, visualization, and extracting applicable and infor-
mative patterns from massive raw datasets. It combines computational, 
statistical, and database sciences [16]. By training valid and qualitative 
predictive models, ML techniques are critical to effective triaging and 
improvement of treatment outcomes [17]. 

Artificial neural networks (ANN), as a subclass of ML, are adaptive, 
tutorial, and computational functions that mimic the structure and 
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behavior of neurons in the human brain [18,19]. This method can be 
trained to discriminate and classify intricate patterns of diseases through 
an iterative learning process. Once proper training is executed, ANNs 
can predict with higher accuracy than traditional statistical models. Due 
to their ability to detect multifaceted nonlinear relations among pre-
dictors and outcomes, ANNs have been effectively applied in clinical 
decision support systems (CDSS) [20–24]. Thus, the current study first 
selected the most influential variables on COVID-19 mortality at the 
time of admission, then compared different ANN architectures, and 
finally established a CDSS based on the best-selected ones to predict 
COVID-19 mortality. 

2. Materials and methods 

2.1. Study design and setting 

This was a retrospective and developmental study conducted in 
2022. The records of 1980 COVID-19 patients were analyzed. The pa-
tients had been referred to the Ayatollah Taleghani Hospital (COVID-19 
hub center), southwest of Khuzestan Province, Iran, from August 2021 to 
January 2022. Of these, 1221 and 759 cases were female and male, 
respectively. 

The methodology of this study is shown in Fig. 1 in brief. Its included 
dataset preparation, feature selection, model development, and 
evaluation. 

2.2. Predictor and outcome variables 

A total of 58 features were selected and classified into four main 
categories: demographic, clinical manifestations, epidemiological, and 
hospitalization indicators (see Table 1). The output variable was life 
status characterized by two values: surviving (code 0) and deceased 
(code 1). 

2.3. Dataset preprocessing 

The dataset was normalized before ANN implementation. This step 
was performed to achieve maximum performance and have a more 
straightforward ANN implementation. For this purpose, the normaliza-

tion process was carried out in three phases: 

1) Scrutinizing the database for outliers, duplicates, or a high percent-
age of missing values: Two Health Information Management experts 
(M− SH and H–KA), in consultation with two Infectious Diseases 
specialists, screened all the data samples. Outlier values were deleted 
from the dataset by the authors. Case records with more than 60% 
missing values were also excluded from the analysis.  

2) Replacing the missing values for the case records with less than 60% 
missing data: 

The simple K-means algorithm with specific Euclidean distances of K 
= 1, 3, and 5 was used to impute the missing values. In this method, the 
missing values are filled with the same feature value belonging to the 
nearest case. This closest case is very similar to the cases having missing 
values in terms of all attribute values. The algorithm uses the value of 
the feature belonging to this case to fill the missing value for the 
incomplete data case. Moreover, imputation was evaluated via the root 
mean square error (RMSE) in different algorithm iterations.  

3) Choosing the most important factors affecting COVID-19 mortality 
using the feature selection (FS) process: 

Abbreviations 

1- COVID-19 Coronavirus disease 2019 
2- AI Artificial intelligence 
3- ML: Machine learning 
4- CDSS Clinical decision support systems 
5- ANN Artificial neural network 
6- BLR Binary logistic regression 
7- BP Back-propagation 
8- DTD Distributed time delay 
9- FF Feed-forward 
10- MSR Mean squared error 
11- RMSE Root mean square error 
12- AUC Area under the ROC curve  

Fig. 1. The study’s roadmap.  
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FS means reducing the dataset features in data preprocessing [25]. 
This process was undertaken in order to 1- reduce the dataset dimension 
for a better understanding of the data, 2- enhance the data mining al-
gorithm’s performance, 3- prevent algorithm overfitting, 4- accelerate 
algorithm development, and 5- simplify data visualization [26–29]. This 
study used the Chi-square test and Eta coefficient method to determine 
the best factors affecting mortality in COVID-19 patients. The P < 0.05 
was considered for significant relationships between determinant fac-
tors and mortality among COVID-19 patients. For the Eta, a coefficient of 
more than 0.4 was considered the most critical factor. We applied the 
multivariate analysis of binary logistic regression (BLR) to determine the 
factors having a computational correlation with the dependent variable; 
we used the multivariate analysis of BLR with the forward LR method. 
We also considered the variable entering the model at P < 0.05 as the 
highly hybrid correlated factor predicting COVID-19 mortality to form 
the ANN model. 

2.4. Implementing the artificial neural network 

ANN is the abstraction of the human brain structure and attempts to 
mimic its performance [30]. It consists of three layers: the input layer, 
the calculation or hidden layer, and the output layer [31,32], (see 
Fig. 2). Each layer includes neurons in ANN and performs different tasks 
in its layers [33]. The input layer receives elements such as data, images, 
or signals from the environment and turns them into normalized pieces 
suitable for mathematical calculations in the output layer. The calcu-
lation process occurs in the hidden layer(s) which has the highest 
number of neurons and performs the calculation operation through 
proper communication between neurons. In the output layer, the neu-
rons receive the results of the processing layer calculations and present 
them to the user [34–36]. In the ANN, there are weights between the 
neurons to transfer information between nodes in the computation 
process [37]. Based on the adjusted weight during ANN training, the 
computation process results in previous nodes reaching the common 
next node to continue the process in the next node and present the re-
sults [38,39]. Another critical parameter in ANN is the activation 
function that describes neurons’ processing results in the spanned 
amounts in nonlinear connections between neurons. This function in-
creases the nonlinear learning in ANN and makes it amplified for a so-
phisticated computational process [40]. In this study, we used the 
feed-forward (FF) ANN in MATLAB 2013-a to train and test our algo-
rithm based on the dataset of COVID-19 patients. FF, also known as 
multi-layered perceptron (MLP), is the most understandable and popular 
ANN configuration adaptable with the non-linearity forward connection 
between neurons [41]. To simulate the non-linearity connection be-
tween neurons, we used the tansig activation function method because 
of its rapid performance during the training process [42]. The Levenberg 
Marquardt (LM) algorithm with its high running speed was applied in 
MATLAB to train the ANN and adjust the weight connected with the 
neurons during this process [43]. We also set the training iterations to 
1000 and the training time to unlimited due to the high speed of the LM 
algorithm. 

2.5. Evaluating the artificial neural network 

This study used the two FF types of back-propagation (BP) and 
distributed time delay (DTD) to implement the model predicting COVID- 
19 mortality. In evaluation phases, performance was assessed in two 
steps. First, we separately implemented each FF-type of the ANN. To 
compare and evaluate each ANN configuration, the confusion matrix 
metrics (Table 2) such as the accuracy (Equation (1)) and F-score 
(Equation (2)) were assessed. The true positive (TP) and true negative 
(TN) are deceased and surviving cases correctly classified by model. The 
false negative (FN) and false positive (FP) are the same cases incorrectly 
classified. 70% of the COVID-19 sample was used to train and 30% to 
test the ANN algorithms by default. We also split our dataset into 50% 
and 50% of train and test samples, 60% of train samples and 40% of test 
samples, 80% of train samples and 20% of test samples to better 
investigate dataset splitting to build the predictive model. We set the 
number of neurons in the input and output layers to the number of input 
and output research variables. To determine the number of nodes in the 
hidden layer, we started from one neuron, added one neuron, and 
compared each ANN step to obtain the best configuration. After 
achieving the best structure of each FF-type of the ANN, in the second 
step, we compared the selected design of the FF to assess the validation 
process of two FF types of the ANN during fitting and achieve the best 
model predicting COVID-19 mortality. In this step, we used the mean 
squared error (MSE) and area under the ROC curve (AUC-ROC) to 
compare the various FF types. We investigated the capability of classi-
fying the selected model using the confusion matrix and the error his-
togram diagram. 

Table 1 
Characteristics associated with COVID-19 mortality.  

NO. Variable category Variable name 

1 Demographic factors Age (year), Height (cm)1, Weight (Kg)2, 
Blood type (AB+, AB− , O+, O− , A+, A− , B+, 
B− ), Sex (male, female) 

2 Hospitalization factors Length of hospitalization (Day), ICU 
hospitalization (Yes, No) 

3 Clinical manifestations, 
including symptoms and signs 

Contusion (Has, Does not have), Headache 
(Has, Does not have), Body temperature, 
Fever (Has, Does not have), Dyspnea (Has, 
Does not have), Loss of taste (Has, Does not 
have), Rhinorrhea (Has, Does not have), 
Muscular pain (Has, Does not have), 
Cardiac disease (Has, Does not have), Loss 
of smell (Has, Does not have), Lung 
consolidation (Has, Does not have), Cough 
(Has, Does not have), Gastrointestinal 
manifestation (GI) (Has, Does not have), 
Chill sensation (Has, Does not have), other 
underlying diseases (Has, Does not have), 
pneumonia (Has, Does not have), Nausea 
(Has, Does not have), Vomiting (Has, Does 
not have), Blood pressure (Has, Does not 
have), Diabetes (Has, Does not have), Sore 
throat (Has, Does not have) 

4 Therapy Oxygen therapy (Has, Does not have) 
5 Laboratory data Hypersensitive troponin (ng/L)3, White cell 

count (Cells/mL)4, Erythrocyte 
sedimentation rate (mm/hr)5, C-reactive 
protein (mg/L)6, Alkaline phosphatase 
(Units/L)7, Prothrombin time (s)8, 
Activated partial thromboplastin time (s)8, 
Lactate dehydrogenase (Units/L)7, Blood 
glucose (mg/dL)9, Serum albumin (g/ 
dL)10, Alanine aminotransferase (units/L)7, 
Aspartate aminotransferase (units/L)7, 
Total bilirubin (mg/dL)9, Blood urea 
nitrogen (mg/dL)9, Blood potassium (mEq/ 
L)11, Blood phosphor (mg/dL)9, Blood 
magnesium (mEq/L)11, Blood sodium 
(mEq/L)11, Blood calcium (mg/dL)6, 
Absolute neutrophil count (103Cells/μL)12, 
Absolute lymphocyte count (103 Cells/ 
μL)12, Platelet count (Cells/μL)12, 
Hemoglobin rate (g/dL)10, Hematocrit (L/ 
L)13, Red cell count (mc/mL)13, Blood 
creatinine (mg/dL)9 

6 Epidemiological factors Smoking (Yes, No), Alcohol addiction (Has, 
Does not have) 

1- Centimeters, 2- Kilograms, 3- Nanograms per liter, 4- Cell per microliter, 5- 
Millimeters per hour, 6- Milligrams per liter, 7- Units per liter, 8- Seconds, 9- 
Milligrams per deciliter, 10- Grams per deciliter, 11- Milliequivalents per liter, 
12- Number of cells per microliter, 13- Million cells per microliter. 
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Accuracy=
TP + TN

TP + TN + FN + FP
(1)  

F − Score =
2(TP)

2(TP) + FP + FN
(2)  

3. Results 

After applying the exclusion criteria such as non-hospitalized 
COVID-19 cases, patients who were less than 18 years of age, incom-
plete case records (missing more than 60%), and admission time before 
January 9, 2020, or after January 20, 2021, 270 patient records were 
excluded. Out of the 1710 eligible records, 1121 (63.6%) and 589 
(34.4%) records belonged to surviving and deceased cases, respectively, 
with a mean age of 61.62 +

−
17.6 years. Evaluation of the simple K-means 

clustering algorithm in imputing the missing values for different itera-
tions (up to 15 epochs) of the algorithm and specific K = 1, K = 3, and K 

= 5 is shown in Figs. 3–5. 
Based on Figs. 3 and 4, for K = 1 and K = 3, the simple K-means 

gained the error value rates between RMSE of 1–3. In K = 5, these in-
terval amounts were increased to 0.5–3 for 15 iterations. The results of 
clustering the cases and filling missing values by the simple K-means 
showed no significant difference between the actual and predicted 
values by the algorithm [0.5–3], which indicated the desirable perfor-
mance of the algorithm. 

The results of selecting each variable that had a significant rela-
tionship with COVID-19 mortality at P < 0.05 or Eta>0.4 are presented 
in Table 3. 

Based on the information represented in Table 3, 31 variables had a 
significant relationship with COVID-19 mortality at P < 0.05 or η > 0.4. 
They were then considered as the important factors affecting mortality. 

Fig. 2. The overall schema of ANN configuration.  

Table 2 
Confusion matrix.  

Real Model + – 

+ True Positive (TP) False Negative (FN) 
– False Positive (FP) True Negative (TN)  

Fig. 3. The RMSE of simple K-means in K = 1 for 15 epochs.  

Fig. 4. The RMSE of simple K-means in K = 3 for 15 epochs.  

Fig. 5. The RMSE of simple K-means in K = 5 for 15 epochs.  
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The 18 variables of blood calcium (η = 0.25), blood phosphor (η = 0.12), 
blood magnesium (η = 0.01), blood sodium (η = 0.17), blood potassium 
(η = 0.12), total bilirubin (η = 0.11), blood albumin (η = 0.26), pro-
thrombin time (η = 0.25), C-reactive protein (P = 0.201), height (η =
0.16), weight (η = 0.14), blood type (P = 0.155), sex (P = 0.123), 
headache (P = 0.244), gastrointestinal manifestation (P = 0.10), muscle 
pain (P = 0.36), chill sensation (P = 0.55), fever (P = 0.48), body 
temperature (η = 0.163), pneumonia (P = 0.115), diabetes (P = 0.12), 
smoking (P = 0.06), alcohol consumption (P = 0.11), red cell count (η =
0.12), hematocrit (η = 0.113), hemoglobin rate (η = 0.153), and serum 
albumin (η = 0.121) with P > 0.05 or η < 0.4 were excluded from the 

study. After entering the significant variables into the BLR model, we 
obtained the results shown in Table 4. 

Based on the information given in Table 4, 13 variables of vomiting 
(P < 0.001), oxygen therapy (P < 0.001), loss of taste (P < 0.001), loss of 
smell (P < 0.001), rhinorrhea (P < 0.001), white cell count (P = 0.014), 
platelet count (P = 0.005), absolute neutrophil count (P < 0.001), 
erythrocyte sedimentation rate (P = 0.003), pleural fluid (P < 0.001), 
ICU hospitalization (P < 0.001), length of hospitalization (P = 0.002), 
and age (P < 0.001) were entered into the forward LR of the BLR at 13 
steps at P < 0.05. Comparing the Log-likelihood (LL) size of the 13th step 
and 1st step demonstrated that the LL rate of BLR in the 13th step (3.57) 

Fig. 6. Different performance criteria of two selected ANN modes (1–10 neurons from left to right).  

Fig. 7. Different performance criteria of two selected ANN modes (1–10 neurons from left to right).  

Fig. 8. Different performance criteria of two selected ANN modes (1–10 neurons from left to right).  
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was reduced compared to the 1st step (LL = 216.347) by entering these 
variables. With this reduction, the BLR capability for predicting COVID- 
19 mortality in the 13th step markedly increased more than in the 1st 
step. Therefore, we considered these 13 highly correlated variables for 
developing the ANN predicting COVID-19 mortality. To compare 
different ANN configurations of BP and DTD, we presented the perfor-
mance results of adding 10 neurons to the ANN hidden layer using the 
accuracy, F-score, and AUC-ROC. The results of the different datasets 
partitioning up to 10 nodes in the hidden layer are depicted in Table 5. 

Based on the results shown in Figs. 6–9, we observed that by using 
80% of the data to train the ANN and 20% for the test, the performance 
was enhanced compared to other data splitting types. The BP of this 
ANN type in this state of data splitting with TPR = 0.994, FPR = 0.022, 
TNR = 0.977, FNR = 0.005, and precision = 0.994 had the best per-
formance for predicting the mortality of COVID-19 patients. Fig. 10 
displays the selected configurations of each FF type with the best total 
performance. 

The results of comparing the two selected architectures of FF during 
training, testing, and validation to assess the ANN’s validation during 
ANN training are given in Figs. 11 and 12 by investigating the MSE and 
error histogram diagram. 

Evaluating the validation process of the BP-ANN (left side of Fig. 11) 
showed this rate reached less than 10− 1 during the training and fitting of 
the ANN. In the 9th step of ANN fitting iterations for BP, we obtained the 
validation rate as the best (validation = 0.055). Moreover, measuring 
the validation process during the training of the DTD type of the ANN 
showed that the validation rate dropped to 10− 1 during ANN fitting. The 
precise value of validation in the 4th step of the ANN fitting was 0.089. 
Therefore, comparing the two selected architectures of the ANN 
demonstrated that the BP-ANN achieved a lower error rate than the DTD 
during the ANN fitting using the validation evaluation in the MSE dia-
gram. The results of evaluating the two selected configurations of the 
ANN using the error histogram diagram with 20 bins showed that the 
BP-ANN (left side) classified the 250 training and less than 100 valida-
tion and test samples of the study in the bin = − 0.049 and approxi-
mately 30 samples in the bin = 0.05 (the bins near-zero error). The DTD 
categorized about 110 training, 25 validation, and 20 test samples in bin 
= − 0.053 and about 50 training, less than 10 validation, and 10 test 
samples in bin = 0.036. The rest cases were also located in other bins 
during the DTD fitting. Comparing the two modes of FF using the error 
histogram diagram showed that the BP-ANN had a lower error rate than 
the DTD during the fitting of the two ANN methods. Fig. 13 depicts the 
comparison of the two selected configurations of the ANN in 80% of data 
for the model train and 10% for the test, and 10% for validation using 
the ROC curve in each state of training, validation, and test modes in 
each form of training, validation, and test modes. The vertical and 
horizontal vertices present true-positive rates (TPR) and false-positive 

rates (FPR). 
Based on Fig. 13, in the training mode, the BP algorithm with 

AUC-train = 0.926 had a slightly better performance than the DTD with 
AUC-train = 0.896. In the validation mode of ANN, the BP with AUC- 

validation = 0.873 obtained better capability than the DTD with AUC-va-

lidation = 0.791, but in the test mode, DTD with AUC-test = 0.881 gained 
slightly better ability than BP with the AUC-test = 0.853. In general, the 
BP with the AUC = 0.901 had better potential in categorizing deceased 
and surviving COVID-19 cases than DTD with AUC = 0.866. Based on 
the comparison of the two selected ANN architectures during the fitting 
process using the MSE, error histogram, and ROC curve, we concluded 
that the BP architecture of the FF obtained better performance in clas-
sifying the training, validation, and test samples. Based on the BP of the 
FF, we designed the CDSS user interface for COVID-19 mortality 
(Fig. 14). The users, such as physicians, entered the 13 essential factors, 
and then the CDSS suggested the predictive results about the high or low 
risk of mortality of the COVID-19 patients. 

4. Discussion 

The adoption of ML-based CDSSs to support clinical decisions about 
COVID-19 is on the rise [10]. Such technologies can improve treatment 
outcomes for patients with COVID-19 [10,11]. Proactive prediction of 
COVID-19 mortality using ML models can help promote the survival 
chances of hospitalized patients [11,44]. This study aimed to predict 
mortality among hospitalized COVID-19 patients based on the best 
configuration of the ANNs. To this end, we used the data of 1710 hos-
pitalized COVID-19 patients to achieve the most important factors 
affecting COVID-19 mortality. 

To detect the most important predictive factors influencing COVID- 
19 mortality, we applied the chi-square test and Eta coefficient as uni-
variate and BLR as multivariate analysis. Using the univariate analysis, 
31 features were selected as the most influential factors on COVID-19 
mortality at P < 0.05 and η > 0.4. After using the BLR, 13 variables 
were determined as the most critical predictors for COVID-19 mortality. 
To develop the model, we used two architectures of ANN, including the 
BP and DTD of the FF. 

The results indicated that the design of 13–10-1 (10 neurons in the 
hidden layer) with TP = 586, FN = 3, FP = 25, and TN = 1096 associated 
with the BP, and 13-10-1 (10 neurons in DTD’s hidden layer) with TP =
578, FN = 11, FP = 71, and TN = 1050 belonging to the DTD presented 
the best ability in each architecture. Thus, the BP-ANN with an AUC of 
0.901 was considered the best ANN architecture to predict COVID-19 
mortality. 

In previous studies, different ML methods were trained to predict 
COVID-19 outcomes such as disease progression and deterioration [45, 
46], ICU hospitalization [46–50], and mortality [47,48,51–56]. The 

Fig. 9. Different performance criteria of two selected ANN modes (1–10 neurons from left to right).  
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most important of these algorithms can be listed as ANN [57–64], 
ensemble models (boosting algorithms) [65–69], decision trees, in 
particular random forests (RF) [6,58,61,70,71], support vector machine 
(SVM) [58,61], and Naive Bayes (NB) [72]. According to the literature, 
the ANN model [57–64] has the greatest performance in predicting 
COVID-19 mortality. The results of other reviewed studies also showed 
that ensemble ML (hybrid) models [65–69] and RF [58,61,70,71] 

Table 3 
The essential variables at P < 0.05 or Eta>0.4  

Variable name Variable 
type 

Variable 
feature 
With code 

Variable 
frequency or 
mean (SD) 

P-value or Eta 
coefficient 

Cough Nominal No (0) 
Yes [1] 

No (779) 
Yes (931) 

<0.001 

Contusion Nominal No (0) 
Yes [1] 

No (729) 
Yes (981) 

<0.001 

Nausea Nominal No (0) 
Yes [1] 

No (983) 
Yes (798) 

0.001 

Vomiting Nominal No (0) 
Yes [1] 

No (839) 
Yes (871) 

0.001 

Oxygen therapy Nominal No (0) 
Yes [1] 

No (926) 
Yes (784) 

<0.001 

Dyspnea Nominal No (0) 
Yes [1] 

No (830) 
Yes (880) 

0.001 

Loss of taste Nominal No (0) 
Yes [1] 

No (758) 
Yes (952) 

<0.001 

Loss of smell Nominal No (0) 
Yes [1] 

No (930) 
Yes (780) 

<0.001 

Rhinorrhea Nominal No (0) 
Yes [1] 

No (789) 
Yes (921) 

<0.001 

Sore throat Nominal No (0) 
Yes [1] 

No (739) 
Yes (971) 

0.001 

Other underlying 
diseases 

Nominal No (0) 
Yes [1] 

No (660) 
Yes (1050) 

<0.001 

Cardiac disease Nominal No (0) 
Yes [1] 

No (829) 
Yes (881) 

0.001 

Blood pressure Nominal No (0) 
Yes [1] 

No (850) 
Yes (860) 

0.001 

White cell count Numeric – 9223.52 
(6223) 

0.9 

Platelet count Numeric – 212318.59 
(658.2) 

0.9 

Absolute 
lymphocyte count 

Numeric – 21.54 (8.432) 0.6 

Absolute neutrophil 
count 

Numeric – 75.22 (4.3) 0.6 

Blood urea nitrogen Numeric – 53.52 (6.663) 0.6 
Aspartate amino 

transferase 
Numeric – 55.5 (12.3) 0.6 

Alanine 
aminotransferase 

Numeric – 48.32 (5.2) 0.7 

Blood glucose Numeric – 135.40 (41.2) 0.7 
Lactate 

dehydrogenase 
Numeric – 604.22 (41.6) 0.9 

Activated partial 
thromboplastin 
time 

Numeric – 28.6 (6.7) 0.9 

Alkaline 
phosphatase 

Numeric – 255 (150.9) 0.7 

Erythrocyte 
sedimentation 
rate 

Numeric – 33.24 (19.3) 0.7 

Hypersensitive 
troponin 

Nominal Negative 
(0) 
Positive 
[1] 

Negative 
(1224) 
Positive (486) 

0.001 

Lung consolidation Nominal No (0) 
Yes [1] 

No (437) 
Yes (1273) 

<0.001 

Pleural fluid Nominal No (0) 
Yes [1] 

No (410) 
Yes (1300) 

<0.001 

ICU hospitalization Nominal No (0) 
Yes [1] 

No (875) 
Yes (935) 

<0.001 

Length of 
hospitalization 

Numeric – 4.83 (3.2) 0.6 

Age Numeric – 58.8 (7.6) 0.6  

Table 4 
The results of entering the variables into the BLR.  

Model if Term Removed 

Variable Model Log- 
Likelihood 

Change in − 2 
Log-Likelihood 

df Sig. of the 
Change 

Step 
1 

ICU 
hospitalization 

− 216.347 199.209 1 .000 

Step 
2 

Pleural fluid − 116.742 131.975 1 .000 
ICU 
hospitalization 

− 123.828 146.145 1 .000 

Step 
3 

Absolute 
neutrophil count 

− 50.755 19.260 1 .000 

Pleural fluid − 109.997 137.745 1 .000 
ICU 
hospitalization 

− 93.544 104.838 1 .000 

Step 
4 

Vomiting − 41.125 22.932 1 .000 
Absolute 
neutrophil count 

− 42.350 25.382 1 .000 

Pleural fluid − 105.400 151.482 1 .000 
ICU 
hospitalization 

− 83.648 107.979 1 .000 

Step 
5 

Vomiting − 136.164 22.659 1 .000 
Absolute 
neutrophil count 

− 38.497 27.325 1 .000 

Pleural fluid − 99.083 148.496 1 .000 
ICU 
hospitalization 

− 79.791 109.913 1 .000 

Length of 
hospitalization 

− 29.659 9.649 1 .000 

Step 
6 

Vomiting − 31.591 21.789 1 .000 
Loss of taste − 24.835 8.276 1 .000 
Absolute 
neutrophil count 

− 33.224 25.055 1 .000 

Pleural fluid − 89.802 138.210 1 .000 
ICU 
hospitalization 

− 73.150 104.906 1 .000 

Length of 
hospitalization 

− 25.903 10.413 1 .000 

Step 
7 

Vomiting − 27.255 21.951 1 .000 
Loss of taste − 20.757 8.955 1 .000 
Loss of smell − 20.697 8.835 1 .000 
Absolute 
neutrophil count 

− 28.461 24.364 1 .000 

Pleural fluid − 81.758 130.959 1 .000 
ICU 
hospitalization 

− 65.344 98.131 1 .000 

Length of 
hospitalization 

− 21.648 10.737 1 .000 

Step 
8 

Vomiting − 19.608 16.955 1 .000 
Loss of taste − 16.899 11.535 1 .000 
Loss of smell − 17.389 12.515 1 .000 
Rhinorrhea − 16.279 10.296 1 .000 
Absolute 
neutrophil count 

− 23.352 24.441 1 .000 

Pleural fluid − 76.071 129.880 1 .000 
ICU 
hospitalization 

− 55.328 88.394 1 .000 

Length of 
hospitalization 

− 16.641 11.021 1 .000 

Step 
9 

Vomiting − 15.966 18.051 1 .000 
Loss of taste − 12.084 10.288 1 .000 
Loss of smell − 13.482 13.083 1 .000 
Rhinorrhea − 12.862 11.843 1 .000 
Absolute 
neutrophil count 

− 17.749 21.618 1 .000 

Pleural fluid − 71.503 129.125 1 .000 
ICU 
hospitalization 

− 47.948 82.016 1 .000 

Length of 
hospitalization 

− 12.410 10.940 1 .000 

Age − 11.131 8.382 1 .000 
Step 

10 
Vomiting − 10.197 17.564 1 .000 
Oxygen therapy − 6.940 11.049 1 .000 
Loss of taste − 7.432 12.032 1 .000 
Loss of smell − 8.983 15.135 1 .000 
Rhinorrhea − 8.524 14.218 1 .000 

− 11.581 20.330 1 .000 

(continued on next page) 
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algorithms are the most widely used and effective models for predicting 
COVID-19 mortality. So far, most efforts have targeted the application of 
ANNs and their comparison with other techniques for mortality pre-
diction in patients with COVID-19. Accordingly, Gao et al. (2020) con-
ducted a retrospective study on the data of 2520 hospitalized COVID-19 
patients. The result showed that the ANN model with an AUC of 0.9760 
was the most successful algorithm for mortality prediction [51]. Vaid 
et al. (2020) analyzed the data of 4029 positive COVID-19 patients. 
Their results showed that the MLP-ANN classifier gained the best per-
formance to predict COVID-19-related mortality [73]. The results of one 
study conducted by Zhao et al. (2020) on 313 COVID-19 patient data 
showed that the ANN achieved the best performance in predicting 
mortality with an AUC of 0.75 [74]. Asteris et al. (2022) trained four ML 

techniques on the data of 10,237 patients, and finally implemented and 
evaluated the ANN model to predict mortality in COVID-19 patients 
with an accuracy of 89.47% [75]. The ANN model developed by Lin 
et al. (2021) predicts the mortality risk of COVID-19 patients with an 
AUC of 0.96 [76]. Adib et al. (2021) also compared three ML models’ 
performance for mortality analysis of pregnant women with COVID-19. 
The results showed the ANN technique yields significantly higher pre-
diction performance (precision of 100% and accuracy of 95%) [77]. 
Accordingly, Naseem et al. (2021) applied several ML methods for 
predicting mortality in confirmed COVID-19 patients. They found that 
the deep neural network (DNN), with an accuracy of 99.53% and AUC of 
88.5%, gained the highest performance [78]. Similarly, Xiaoran et al. 
(2020) proposed a DNN model based on the clinical data of 5766 in-
dividuals to predict the likelihood of ICU admission and mortality 
among hospitalized COVID-19 patients with an AUC of 0.780 [79]. 
Furthermore, Hoon et al. (2020) implemented a DNN-based prediction 
model with a database containing the data of 361 COVID-19 patients to 
predict the mortality of COVID-19 patients. The developed model pro-
vided 100% sensitivity, 91% specificity, and 92% accuracy [80]. Alsu-
waiket et al. (2020) proposed an ANN-based prediction method to 
predict COVID-19 mortality, and the proposed model attained appro-
priate performance with an MAE of 0.053 and an MSE of 0.032 [81]. In 
addition, Sankaranarayanan et al. (2021) compared the performance of 
four ANN models on 1025 patients’ data to predict the mortality risk 
among hospitalized COVID-19 patients. The most successful perfor-
mance was obtained by using the recurrent neural network (RNN) with 
an AUC-ROC of 0.938 [82]. Schiaffino et al. (2021) also assessed the 
performance of four ANN models using a dataset (n = 1541) to predict 
COVID-19 mortality. The model developed with the MLP-ANN yielded 
the best performance in predicting mortality in COVID-19 cases (AUC =
0.844) [83]. Finally, Karthikeyan et al. (2021) designed an ANN-based 
model for predicting COVID-19-related mortality with an AUC of 0.90 
[11]. 

In the present study, given the superiority of the ANN model, we 
attempted to identify the most effective configuration to predict COVID- 
19 mortality. Hence, the current retrospective study aimed to develop 
and validate two ANN models based on 13 variables to predict mortality 
among hospitalized COVID-19 patients. Based on the findings, the BP- 
ANN obtained the best performance with an AUC-ROC of 0.901. 
Implementing a CDSS interface based on the best ANN configuration 
creates more added value. 

FS is an effective prerequisite to improving the performance of ML 
models. The selected variables were used as inputs to the ML models. In 
the reviewed studies [11,17,44,74,83–87], the most important clinical 
factors for COVID-19 mortality prediction were old age, chronic un-
derlying diseases, oxygen saturation, loss of taste/smell, pleural fluid, 
ICU hospitalization, length of stay (LOS), lymphocyte count, CRP rate, 
and D-dimer level. In the current study, after feature selection, the 
variables of age, vomiting, oxygen therapy, loss of taste, loss of smell, 
rhinorrhea, white-cell count, platelet count, absolute neutrophil count, 
erythrocyte sedimentation rate, pleural fluid, ICU hospitalization, and 
length of hospitalization were introduced as the top predictors. We 
applied nominated features as inputs to train different ANN models for 
the mortality prediction of COVID-19 patients. The ANN algorithm 
implementation in previous studies and our study demonstrated optimal 
performance for most indicators. 

5. Limitations and implications 

The CDSS designed herein seems to predict the mortality risk of 
hospitalized COVID-19 patients with acceptable accuracy. However, the 
implementation of the proposed system has several limitations that must 
be addressed. The most significant limitation of the present study was 
the retrospective and single-center nature of the selected dataset. The 
dataset contained inconsistent, erroneous, and abnormal data fields, 
affecting the quality of modeling and limiting the comprehensiveness 

Table 4 (continued ) 

Model if Term Removed 

Variable Model Log- 
Likelihood 

Change in − 2 
Log-Likelihood 

df Sig. of the 
Change 

Absolute 
neutrophil count 
Pleural fluid − 65.568 128.304 1 .000 
ICU 
hospitalization 

− 40.117 77.403 1 .000 

Length of 
hospitalization 

− 6.783 10.734 1 .000 

Age − 6.475 10.119 1 .000 
Step 

11 
Vomiting − 7.137 17.168 1 .000 
Oxygen therapy − 4.804 12.502 1 .000 
Loss of taste − 4.415 11.725 1 .000 
Loss of smell − 6.159 15.213 1 .000 
Rhinorrhea − 5.221 13.337 1 .000 
Absolute 
neutrophil count 

− 8.051 18.997 1 .000 

Erythrocyte 
sedimentation rate 

− 1.416 5.726 1 .000 

Pleural fluid − 60.513 123.920 1 .000 
ICU 
hospitalization 

− 38.927 80.749 1 .000 

Length of 
hospitalization 

− 3.528 9.951 1 .000 

Age − 4.725 12.344 1 .000 
Step 

12 
Vomiting − 3.057 15.997 1 .000 
Oxygen therapy − 1.216 12.314 1 .000 
Loss of taste − 1.902 13.687 1 .000 
Loss of smell − 3.445 16.772 1 .000 
Rhinorrhea − 1.574 13.031 1 .000 
Platelet count − 8.552 6.988 1 .000 
Absolute 
neutrophil count 

− 5.947 21.776 1 .000 

Erythrocyte 
sedimentation rate 

− 9.360 8.604 1 .000 

Pleural fluid − 59.973 129.829 1 .000 
ICU 
hospitalization 

− 35.363 80.609 1 .000 

Length of 
hospitalization 

− 0.095 10.073 1 .002 

Age − 1.038 11.959 1 .001 
Step 

13 
Vomiting − 2.386 16.588 1 .000 
Oxygen therapy − 1.159 12.135 1 .000 
Loss of taste − 1.695 13.205 1 .000 
Loss of smell − 2.814 17.444 1 .000 
Rhinorrhea − 1.766 13.348 1 .000 
White-cell count − 5.059 1.933 1 .001 
Platelet count − 7.992 7.801 1 .005 
Absolute 
neutrophil count 

− 1.093 20.003 1 .000 

Erythrocyte 
sedimentation rate 

− 9.572 8.960 1 .003 

Pleural fluid − 1.511 128.839 1 .000 
ICU 
hospitalization 

− 1.126 80.067 1 .000 

Length of 
hospitalization 

− 9.026 9.868 1 .002 

Age − 1.257 12.331 1 .000  
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and generalizability of data. Therefore, an attempt was made to mini-
mize this challenge by referring to the responsible physician. In addi-
tion, to solve the problem of incomplete fields, the cases with more than 
60% missing data were excluded from the analysis. In other instances, 

empty values were replaced with the values predicted by the simple K- 
means algorithm with specific values of K. The selected dataset lacks 
some essential variables, such as imaging data. However, as our study 
aimed to predict mortality at the time of admission, the available clinical 
and administrative data were sufficient. Finally, we only used two ANN 
algorithms in different configurations. In the future, the performance of 
our proposed model can be enhanced if more ML techniques are tested 
on larger, prospective, and multicenter datasets. Finally, future studies 
should concentrate on more external validations to improve the 
modeling quality and alleviate the bias. 

6. Conclusions 

Timely and accurate prediction of COVID-19 patients’ outcomes, 
especially determining their mortality risk, is critical to optimal use of 
limited hospital resources and supporting clinical decisions. Using the 
ANN-based CDSS developed in our study in real clinical environments 
will promote patient safety and reduce COVID-19 severity and mortality. 

Table 5 
Comparing different configurations of the ANN.  

BP (50% train, 50% test) DTD (50% train, 50% test) 

Configuration TP FN FP TN Configuration TP FN FP TN 
13-1-1 450 139 297 824 13-1-1 428 161 320 801 
13-2-1 477 112 267 854 13-2-1 455 134 311 810 
13-3-1 483 106 233 888 13-3-1 466 123 295 826 
13-4-1 502 87 219 902 13-4-1 473 116 273 848 
13-5-1 527 62 167 954 13-5-1 489 100 261 860 
13-6-1 533 56 144 977 13-6-1 501 88 225 896 
13-7-1 539 50 112 1009 13-7-1 513 76 208 913 
13-8-1 550 39 98 1023 13-8-1 534 55 146 975 
13-9-1 548 41 79 1042 13-9-1 542 47 119 1002 
13-10-1 567 22 61 1060 13-10-1 553 36 95 1026 
BP (60% train, 40% test) BP (60% train, 40% test) 
Configuration TP FN FP TN Configuration TP FN FP TN 
13-1-1 455 134 282 839 13-1-1 436 156 309 812 
13-2-1 481 108 261 860 13-2-1 461 128 300 821 
13-3-1 486 103 225 896 13-3-1 473 116 281 840 
13-4-1 506 83 209 912 13-4-1 480 109 265 856 
13-5-1 529 60 151 970 13-5-1 491 98 249 872 
13-6-1 543 46 126 995 13-6-1 506 83 216 905 
13-7-1 550 39 94 1027 13-7-1 516 73 197 924 
13-8-1 561 28 80 1041 13-8-1 540 49 137 984 
13-9-1 568 21 59 1062 13-9-1 546 43 115 1006 
13-10-1 577 12 51 1070 13-10-1 563 26 85 1036 
BP (70% train, 30% test) BP (70% train, 30% test) 
Configuration TP FN FP TN Configuration TP FN FP TN 
13-1-1 465 124 282 839 13-1-1 450 142 300 821 
13-2-1 490 99 261 860 13-2-1 465 124 288 833 
13-3-1 476 93 225 896 13-3-1 480 109 271 850 
13-4-1 515 74 209 912 13-4-1 490 99 255 866 
13-5-1 539 50 151 970 13-5-1 501 88 241 880 
13-6-1 523 35 126 995 13-6-1 515 74 211 910 
13-7-1 555 34 94 1027 13-7-1 526 63 191 930 
13-8-1 570 19 80 1041 13-8-1 550 39 131 990 
13-9-1 573 16 59 1062 13-9-1 556 33 95 1026 
13-10-1 581 8 51 1070 13-10-1 570 19 81 1040 
BP (80% train, 20% test) BP (80% train, 20% test) 
Configuration TP FN FP TN Configuration TP FN FP TN 
13-1-1 471 118 259 862 13-1-1 459 133 289 832 
13-2-1 495 94 271 870 13-2-1 475 114 278 843 
13-3-1 502 87 205 916 13-3-1 485 104 259 862 
13-4-1 521 68 189 932 13-4-1 496 93 252 869 
13-5-1 541 48 140 981 13-5-1 510 79 238 883 
13-6-1 545 31 116 1005 13-6-1 517 72 206 915 
13-7-1 560 29 80 1041 13-7-1 536 53 184 937 
13-8-1 575 14 61 1060 13-8-1 562 27 120 1001 
13-9-1 578 11 53 1068 13-9-1 546 23 86 1035 
13-10-1 586 3 25 1096 13-10-1 578 11 71 1050 

Based on comparing the different architectures of two selected configurations of the ANN using the confusion matrix, we obtained BP-ANN with the structure of 13–10- 
1 with TP = 586, FN = 3, FP = 25, and TN = 1096. DTD with the design of 13–10-1 with TP = 578, FN = 11, FP = 71, and TN = 11,050 gained the best performance 
compared to other configurations in 80% data for train and 20% data for test. The results of measuring the TPR, FPR, TNR, TPR, and the precision of two selected ANN 
configurations for various dataset splittings are depicted in Figs. 6–9. 

Fig. 10. The best configuration of BP (above) and DTD (below).  
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Still, further external validation studies are required to validate our 
findings. 
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Fig. 11. Comparing the two selected configurations using the MSE.  

Fig. 12. Comparing the two selected configurations using the error histogram.  

Fig. 13. All ROC modes of the two FF of the ANN.  
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