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Abstract

Background

Opioid misuse and deaths are increasing in the United States. In 2017, Ohio had the second

highest overdose rates in the US, with the city of Cincinnati experiencing a 50% rise in opioid

overdoses since 2015. Understanding the temporal and geographic variation in overdose

emergencies may help guide public policy responses to the opioid epidemic.

Methods and findings

We used a publicly available data set of suspected heroin-related emergency calls (n =

6,246) to map overdose incidents to 280 census block groups in Cincinnati between August

1, 2015, and January 30, 2019. We used a Bayesian space-time Poisson regression model

to examine the relationship between demographic and environmental characteristics and

the number of calls within block groups. Higher numbers of heroin-related incidents were

found to be associated with features of the built environment, including the proportion of

parks (relative risk [RR] = 2.233; 95% credible interval [CI]: [1.075–4.643]), commercial (RR

= 13.200; 95% CI: [4.584–38.169]), manufacturing (RR = 4.775; 95% CI: [1.958–11.683]),

and downtown development zones (RR = 11.362; 95% CI: [3.796–34.015]). The number of

suspected heroin-related emergency calls was also positively associated with the proportion

of male population, the population aged 35–49 years, and distance to pharmacies and was

negatively associated with the proportion aged 18–24 years, the proportion of the population

with a bachelor’s degree or higher, median household income, the number of fast food res-

taurants, distance to hospitals, and distance to opioid treatment programs. Significant spa-

tial and temporal heterogeneity in the risks of incidents remained after adjusting for

covariates. Limitations of this study include lack of information about the nature of incidents
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after dispatch, which may differ from the initial classification of being related to heroin, and

lack of information on local policy changes and interventions.

Conclusions

We identified areas with high numbers of reported heroin-related incidents and features of

the built environment and demographic characteristics that are associated with these events

in the city of Cincinnati. Publicly available information about opiate overdoses, combined

with data on spatiotemporal risk factors, may help municipalities plan, implement, and target

harm-reduction measures. In the US, more work is necessary to improve data availability in

other cities and states and the compatibility of data from different sources in order to ade-

quately measure and monitor the risk of overdose and inform health policies.

Author summary

Why was this study done?

• Opioid-related overdose has become one of the most common causes of death in the

United States.

• Information about the spatiotemporal pattern of overdose emergencies may be useful in

guiding policy responses to the opioid crisis.

What did the researchers do and find?

• We used publicly available data on emergency medical calls to map incidents of sus-

pected heroin-related incidents to census block groups in Cincinnati between August 1,

2015, and January 30, 2019.

• We developed a spatiotemporal statistical model that assessed the association between

the number of suspected overdose incidents and demographic, socioeconomic, and

environmental characteristics in census block groups.

• We identified features of the built environment and demographic characteristics associ-

ated with a higher numbers of heroin-related calls in areas of the city of Cincinnati.

What do these findings mean?

• Understanding the spatiotemporal risk of suspected heroin-related overdose and block

group characteristics could inform the design and targeting of public health interven-

tions in the future.

• Greater access to real-time emergency medical services data would help researchers and

policymakers better understand the risk of suspected heroin-related overdose.
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Introduction

Drug overdoses claimed over 70,000 lives in the United States in 2017 [1], representing the

leading cause of death among Americans under 50 years old [2]. Two-thirds of the drug over-

dose deaths involved opioids, including heroin, fentanyl, fentanyl analogs, morphine, codeine,

hydrocodone, and oxycodone [1]. In 2016, opioid overdoses represented 1 in 65 deaths in the

US and 1 in 5 deaths among adults aged 25–34 years [3]. The years of life lost from opioid-

related deaths is greater than those associated with hypertension, HIV and/or AIDS, and pneu-

monia [3]. In both 2016 and 2017, the state of Ohio had the second highest rate of overdose

deaths in the country [4]. Hamilton County, which includes Cincinnati and its close suburbs,

reported 240 opioid-related fatal overdoses (414 total overdoses) in 2015, rising over 50% to

373 opioid-related fatal overdoses (529 total overdoses) in 2017 [5].

To date, most research on the trends in opioid-related events such as overdose incidents,

prescription opioid dispensation, and mortality has focused on the disparities between demo-

graphic groups [6, 7] or the spatial disparities among larger geographic areas, at the level of

counties [8–10] or of local government areas (LGAs) [11]. Small area analysis of overdose mor-

tality has been carried out mostly using hospital data [8, 12, 13] or data from medical examiner

records [14]. Such data, however, are usually subject to delays in reporting and sometimes mis-

classification of causes of death [15, 16]. In order to effectively deploy policies and strategies

for prevention, it is important to understand the spatial and temporal distributions of overdose

risk in a timely manner. For example, naloxone is effective at reversing suspected opioid over-

dose [17], and early administration of the drug is critical for preventing fatal events. Thus, it is

important to identify areas with high risks for deploying medical service teams or locating

publicly available naloxone kits. Other interventions for people who use drugs, including out-

reach programs for opioid agonist treatment programs and syringe exchange to prevent HIV

transmission could also be more efficiently deployed with better data on the timing and loca-

tion of overdoses [18].

In most cases, states and emergency medical service (EMS) agencies have time limits within

which patient care records must be submitted (24–72 hours), offering more timely informa-

tion about suspected overdoses. EMS dispatch datasets usually also have high spatial resolu-

tion, with global positioning system (GPS) locations or addresses in the call records, making

them a valuable resource for understanding when and where each overdose incident happens

[19] and for developing opioid use harm-reduction programs [20]. Recently, Carter and col-

leagues [21] compared spatial concentration of EMS calls, opioid overdose deaths, and crimes

in Marion County, Indiana, in order to guide police interventions. Dworkis and colleagues

[22] studied the spatial clustering of 700 EMS calls in Cambridge, Massachusetts, that involved

opioid overdose to identify clusters amenable to publicly deployed naloxone sites. Dodson and

colleagues [23] conducted a similar analysis in Pittsburgh, Pennsylvania, to target pharmacies

for naloxone distribution. EMS calls labeled by the dispatcher as related to overdose or opioids

may not represent all such incidents, and calls to EMS may be incorrectly labeled by dispatch-

ers as heroin-related based on information obtained from the caller. Despite potential incom-

pleteness, information from EMS calls is often the most timely and readily available data to

local governments for real-time response [24, 25]. Currently, counties in 48 of 50 US states

already use EMS data as part of the federal Overdose Detection Mapping Application Program

(ODMAP) system, relied on by law enforcement, public health, and public safety officials

around the country to guide response to overdose [26]. Statistical analysis of the publicly avail-

able EMS data, combined with information on demographic and neighborhood characteris-

tics, could further provide a better quantitative and qualitative understanding of local overdose

risk for public health experts and frontline service providers.

Suspected heroin-related overdose incidents in Cincinnati, Ohio: a spatiotemporal analysis
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In this paper, we present a spatiotemporal analysis of the locations of reported heroin-

related incidents associated with EMS dispatches in the city of Cincinnati, Ohio. We investi-

gated the spatial and temporal variability as a function of economic and demographic covari-

ates, accessibility of medical facilities, and features of the built environment. We employed a

hierarchical Bayesian discrete space-time regression model at the census block group level to

account for spatial and temporal correlation that cannot be explained by geographic and

demographic covariates.

Materials and methods

Additional details describing the data and methods are available in S1 Appendix. The analyses

here were not prespecified. Our analytic approach used methods widely employed in spatial

epidemiology and selection of covariates was based on their association with overdose or sub-

stance use in the literature. This study is reported as per the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) guidelines [27] in S1 STROBE Checklist.

Cincinnati EMS data

EMS response data related to heroin overdose were obtained from the City of Cincinnati’s

computer-aided dispatch (CAD) database [28]. The EMS data are publicly available and cap-

ture all responses by the Cincinnati Fire Department to reported heroin overdose incidents.

An incident is classified as heroin-related by the dispatcher if the situation is described by the

caller as involving heroin or opiates, or the caller describes behavior related to heroin use (e.g.,

injection using a syringe) [28, 29]. Cincinnati EMS calls labeled as suspected "heroin-related"

incidents by dispatchers may include incidents related to overdose or poisoning with other

non-heroin or non-opioid substances. For simplicity in what follows, we use the term "heroin-

related incidents" when referring to the outcome of interest. Almost all incidents were associ-

ated with GPS locations assigned by the Cincinnati Office of Performance and Data Analytics,

which anonymizes locational data by randomly offsetting the original coordinate values to

within approximately 100 yards in any direction [29].

We extracted all EMS call records labeled as "heroin-related" during the period of August 1,

2015, to January 31, 2019. In order to understand the association between the distribution of

heroin-related incidents and spatial covariates, we mapped all incidents to the census block

groups of Cincinnati using the GPS locations. A small number of block groups fall partially

outside the city boundary or within neighboring jurisdictions. For this analysis, we used 280

block groups with at least 50% area within the city boundary. The discretization into block

groups allowed us to relate the number of incidents to demographic and socioeconomics

covariates at a high spatial resolution. We also conducted a sensitivity analysis by including

both heroin-related incidents and incidents labeled as "overdose/poisoning (ingestion)" as the

outcome and summarized the results in S1 Appendix.

Covariates

We gathered information on population in each block group from the 2013 to 2017 estimates

of the American Community Survey [30]. These covariates include the population size, per-

centage of the population by gender, age group, race, and education, median household

income, per capita income, percentage of households below poverty level, and median home

values. We also calculated the change in median home values from the 2009 to 2013 estimates

of the American Community Survey. A small number of these covariates are missing in the

analysis because of small sample size within block groups. For each block group, we calculated

measures of accessibility to health facilities, including minimum distance from the the

Suspected heroin-related overdose incidents in Cincinnati, Ohio: a spatiotemporal analysis
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geographic centers of each block group to hospitals [31], pharmacies [31], federally qualified

health centers (FQHCs) [31], buprenorphine prescribing physicians, and Substance Abuse

and Mental Health Services Administration (SAMHSA) Opioid Treatment Programs (OTPs)

[32]; and the distance to the closest fire department [33]. Environmental variables have also

been found to be associated with drug use and overdose [34–36]. In order to characterize

block groups by features of their built environment relevant to the risk of overdose, we calcu-

lated the proportion of areas covered by quarter-mile buffer areas from bus stops, the propor-

tion of park areas using the publicly available GIS data set from the city of Cincinnati [37], and

the number of fast food restaurants from the Cincinnati Bell directory [38]. We also obtained

zoning maps of the land development code from the city of Cincinnati [37] and calculated the

proportion of areas covered by 9 categories of zoning districts, including single-family hous-

ing, multifamily, and institutional residential, office, commercial, urban mixed use, downtown

development, manufacturing, riverfront, and planned development. A detailed list of covari-

ates is presented in S1 Appendix. Fig 1 shows the spatial variation of selected key covariates.

The complete list of covariates and their distributions can be found in S1 Appendix. We also

obtained time-varying covariates including monthly counts of crime incidents per resident in

each area from the Cincinnati open data portal [39] and monthly average temperature and

total precipitation to account for seasonal variation [40].

Analytic approach

We model monthly counts of incidents by block groups using a Bayesian space-time model

that is widely used in disease mapping and spatial epidemiology [42, 43]. We model the num-

ber of incidents yit in block group i during month t as independently Poisson distributed,

given the mean number of incidents λit,

yit �
ind: PoissonðlitÞ; ð1Þ

and the logarithm of the average number of incidents is modeled as

logðlitÞ ¼ xTitbþ ai þ φt þ dit; ð2Þ

where xit is the vector of covariates for block group i at time t and β is a vector of fixed effect

regression parameters. The covariate vector, xit, includes both time-varying and spatially vary-

ing variables described above. The natural logarithm of the rate λit was modeled as the sum of

effects from covariates and effects of block groups, time, and interaction terms. The random

effects approximate the additional variation not explained by the covariates. In this analysis,

we treat log population as a covariate; an analysis with population size as a multiplicative offset

is presented in S1 Appendix.

The spatial term for the ith block group, αi, is a spatially structured random effect that fol-

lows the Besag, York, and Mollié (BYM) model [44]. The random effect can be further decom-

posed into an intrinsic conditional autoregressive term [45] in which the value at a particular

location depends on the values at neighboring locations, plus independent location-specific

error. Because the EMS call data consist of only locations within Cincinnati, we treat the block

groups within the 2 enclaved regions as missing data in our analysis, so that the structure of

the surrounding regions are properly accounted for. The temporal trend φt is modeled by the

sum of 2 terms: an autoregressive model of order 1, which is a random process that depends

linearly on its previous value and a stochastic term, and an unstructured independent temporal

noise term. Finally, the space-time interaction term δit is modeled as an independent noise

term for each block and time period to account for local “shocks” that deviate from the average

level and trend.

Suspected heroin-related overdose incidents in Cincinnati, Ohio: a spatiotemporal analysis
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Posterior distributions of parameters and the modeled incident counts ŷit conditional on

the observed data are obtained by fitting this hierarchical Bayesian model [46] using the inte-

grated nested Laplace approximation method implemented with the R-INLA package [47] in

the R statistical programming environment [48]. Additional details on model specification

and comparison can be found in S1 Appendix.

Ethical approval

Public use data sets, such as the EMS data captured by the Cincinnati Fire Department on

overdose incidents, are prepared with the intent of making them available for the public. These

data are not individually identifiable or maintained in a readily identifiable form. We did not

merge any of the data sets in such a way that individuals might be identified and did not

enhance the public data set with identifiable or potentially identifiable data. Thus, this work

does not constitute human subjects research and does not require ethical approval.

Results

During the study period, there were a total of 6,264 incidents within the block group bound-

aries. Fig 2 shows the locations of all heroin-related overdose incidents and the monthly totals.

The spatial distribution of incident locations exhibit strong heterogeneity. Several apparent

spikes are evident, including 3 major peaks in September 2016, March 2017, and July 2018.

The spikes are corroborated by local news reports of rising overdose deaths published around

the same time [49–55]. Fig 3 shows the cumulative number of incidents by time and block

groups, with the block groups showing the highest number of cumulative incidents indicated

on the map.

Posterior distributions of the fixed effects β are summarized in Fig 4. Several demographic

and socioeconomic covariates of residents are strongly associated with the number of heroin-

related incidents (i.e., 95% CIs that exclude 0). The number of heroin-related incidents is posi-

tively associated with population size, proportion of male population, and the proportion of

residents aged 35 to 49, and negatively associated with the proportion of residents aged 18 to
24, the proportion of residents with a bachelor’s degree or higher, and median household

income. Features of the built environment, including the proportion of parks, commercial,

Fig 1. Summary of a subset of time-invariant covariates by block groups. Gray areas indicate that no reliable estimates are available from American Community

Survey. Geographic boundary files were downloaded from the US Census, TIGER, Geodatabase [41].

https://doi.org/10.1371/journal.pmed.1002956.g001
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manufacturing, and downtown districts and the number of fast food restaurants, exhibit

strong positive associations with the number of heroin-related calls. Higher numbers of her-

oin-related incidents are associated with shorter distances to OTP, shorter distances to hospi-

tals, and longer distances to pharmacies; all 4 OTPs and several hospitals are located within the

center of the city where the number of heroin-related incidents is higher. Higher temperature

is also found to be positively correlated with the number of heroin-related calls.

Marginal posterior distributions for the spatial and temporal effects are summarized in Fig

5. The posterior means of the spatial random effects are highly structured with positive values

in the southwest part of the city and negative values on the east side. The strong spatial hetero-

geneity in the posterior of the spatial random effect suggests that there may be spatial variables

beyond those included in this analysis that contribute to the imbalance in the number of her-

oin-related incidents between the east and west side of Cincinnati. The temporal random

effects capture the main trends in the number of heroin-related incidents over time. We again

Fig 2. Heroin-related calls to emergency medical services in Cincinnati, Ohio, from August 2015 to January 2019. (A) Locations of incidents over the study. There are

2 enclaved areas in the map, consisting of 3 cities or villages surrounded by the city of Cincinnati (Norwood, St. Bernard, and the village of Elmwood Place). EMS data for

these 2 areas are not available. Geographic boundary files were downloaded from the US Census, TIGER, Geodatabase [41]. (B) number of incidents by month. EMS,

emergency medical service.

https://doi.org/10.1371/journal.pmed.1002956.g002
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see the 3 peaks in heroin-related incidents as shown in Fig 2. The unstructured space-time ran-

dom effects capture the local deviations from the trends for each area and time period. Fig 6

shows the posterior means of these shocks that are local in space and time, which may be visu-

ally assessed to help identify residual hot spots. The modeled incident counts ŷit are summa-

rized in Fig 7. The regions with darker colors are associated with higher risks. In addition,

compared with the first surge in heroin-related incidents, the later 2 correspond to areas with

elevated risks that are spatially more clustered in the west and southwest parts of the city.

Additional results under different model and data specifications can be found in S1 Appendix.

Discussion

In this analysis, we identified areas with a high number of calls labeled as heroin-related inci-

dents by EMS dispatchers in the city of Cincinnati, along with sociodemographic variables and

features of the built environment associated with these counts. We used a Bayesian spatiotem-

poral analysis to associate the reported number of heroin-related incidents to covariates at the

level of census block groups. We identified significant associations between the number of her-

oin-related calls and demographic characteristics of residents and features of the built environ-

ment. We found that spatial and temporal heterogeneity remain after adjusting for all

measured covariates.

This study has a few limitations. First, we studied overdose incidents classified as heroin-

related at the time of dispatch. The conclusion on the scene may be different but recoding does

not occur on site. In addition, more general classifications for dispatches, for instance, coded

as overdose or person down, may also be heroin-related. Though we evaluated the sensitivity

to potential misclassification and found no significant bias, more efforts in linking data sets

collected from different sources could potentially provide more complete counts of heroin-

related overdose incidents. Second, the spatiotemporal analysis conducted is ecological in

nature and cannot be interpreted as characterizing individual-level risk factors for overdose.

In addition, people affected by overdose in a given geographic area may not actually reside

there. However, the results of such studies may guide localized interventions that target small

areas with high overdose incident frequency. Third, a major source of temporal variation may

be changes in local policy, enforcement, and intervention responses to the increasing rates of

overdose. Fourth, although the method can be used for short-term prediction of heroin-related

Fig 3. Summary of incidents labeled as heroin-related by block group and month. (Left) Total number of incidents by month. (Right) Total number of incidents by

block group. Geographic boundary files were downloaded from the US Census, TIGER, Geodatabase [41].

https://doi.org/10.1371/journal.pmed.1002956.g003
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overdose activities, the model may not provide reliable predictions for when and where the

sharp increase in overdoses will happen with the available data. More timely dissemination of

information on drug toxicology from hospital and police seizure data may help predict such

spikes. However, postmortem drug screening and large-scale seizures of drug shipments may

not reflect the complex dynamics of street-level drug supply. Although being able to predict

transient increases in overdoses may be important, predicting where overdoses are most likely

to happen over time may offer ways to prevent these increases in the first place and may be the

more critical public health task. For instance, with widespread dissemination of fentanyl test

strips, in areas of high risk of overdose, people who inject drugs (PWID) could determine the

composition of their drug supply, which may guide safer use. Finally, the classification of calls

as heroin-related may not capture overdose incidents related to nonmedical prescription of

opioids [56], which are estimated to contribute from a quarter to a half of overdoses in the US

in 2016 [57].

Fig 4. Summary of the posterior means and 95% CIs of the coefficients for the fixed effects. The regression coefficients are exponentiated to represent RRs in

the table. CI, credible interval; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002956.g004
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Understanding the exogenous factors that might spur increased overdose activities in the

city will take further analysis. Several spikes in overdoses apparent in the EMS calls have also

been reported in both local and national news. Immediately after the first uptick in late August

2016, it was reported on September 2nd that Cincinnati officials had obtained more naloxone

kits, planned to push for funding for community-based opioid overdose recognition and

response training programs, and created a quick response team to revisit overdose victims

within 2 weeks [51]. Evidence of carfentanil-laced heroin on the market during this period

subsequently emerged [52]. Compounds of heroin, fentanyl, and carfentanil were also found

to be related to overdose deaths in Cincinnati in 2017 during the second spike [58]. However,

following the later 2 major surges of overdose, the number of overdose incidents decreased at

a much slower pace. A closer examination of the differences among the 3 periods of increased

Fig 5. Posterior means of the autoregressive spatial (αi) and temporal (φt) effects. The random effects are exponentiated to represent RRs. Larger values

correspond to higher log counts of incidents. The error bars indicate 95% posterior CIs. The triangle dots correspond to the 3 major peaks in heroin-related

incidents at September 2016, March 2017, and July 2018. Geographic boundary files were downloaded from the US Census, TIGER, Geodatabase [41]. CI,

credible interval; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002956.g005

Fig 6. Posterior means of the independent space-time interaction effects (δit) for a subset of the time periods. The

random effects are exponentiated to represent RRs. The areas in red have higher risks of heroin-related incidents than

the structured trends over space and time. Geographic boundary files were downloaded from the US Census, TIGER,

Geodatabase [41]. RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002956.g006
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overdose incidents in terms of both the source of surge and the actions taken in response may

reveal useful lessons in understanding and fighting the epidemic.

This analysis provides inferences based on the current state, scope, and availability of data

on heroin-related EMS calls in Cincinnati. EMS data, as well as data from other first respond-

ers, and additional demographic, social, and economic covariates derived from local knowl-

edge of community characteristics may be helpful in further refining responses to the opioid

crisis. To generalize this analysis to other locations will require selection of covariates based on

local knowledge, because the use of opioids and the social, economic, and political context of

this use may differ between urban and rural areas [59] and from country to country [60]. How-

ever, obtaining this information in other locations can be difficult, even though some of it

(e.g., EMS call data) is collected in near real time in most US states via the National EMS Infor-

mation System [61]. Our attempts to obtain geocoded, time-stamped EMS data from several

states and municipalities have been unsuccessful, even under data use and privacy agreements.

This analysis was conducted using data that were available for public use and scrutiny, but

such open data policies are not widely shared by other jurisdictions in the US. Cincinnati has

made the data used for this study available as part of its greater Open Data Cincinnati initiative

[62], and other databases that integrate fire and police calls every 15 minutes are maintained

by the city’s Office of Performance and Data Analytics [33].

Greater access to near-real-time data sources will be important in deepening our under-

standing of the spatiotemporal aspects of overdose. In addition, linking related sources of data,

for instance, EMS data with data on fatal overdoses from medical examiner and coroner’s

offices, with naloxone administration by first responders other than EMS personnel (e.g.,

police, bystanders) in a standardized format would enrich these kinds of analyses and make

their execution easier. The data used in this analysis are primarily operational and administra-

tive records and were not collected for the purpose of overdose surveillance. However, states

like Massachusetts, through Chapter 55 legislation, have begun to link multiple databases to

better understand the opioid epidemics in their jurisdictions, with the explicit goal of allowing

cooperative data analysis with research partners [63]. Making this information more widely

available on a timely basis, linking databases, standardizing formats, and building systems to

allow for analysis such as those performed here, will be vital to inform public health policy and

practice to address the overdose epidemic.

Fig 7. Posterior means of the fitted heroin-related incident counts (ŷ it) for a subset of the time periods.

Geographic boundary files were downloaded from the US Census, TIGER, Geodatabase [41].

https://doi.org/10.1371/journal.pmed.1002956.g007
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