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Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global
public health challenge. In the United States (US), state governments have
implemented various non-pharmaceutical interventions (NPIs), such as physi-
cal distance closure (lockdown), stay-at-home order, mandatory facial mask in
public in response to the rapid spread of COVID-19. To evaluate the effective-
ness of these NPIs, we propose a nested case-control design with propensity
score weighting under the quasi-experiment framework to estimate the aver-
age intervention effect on disease transmission across states. We further develop
a method to test for factors that moderate intervention effect to assist preci-
sion public health intervention. Our method takes account of the underlying
dynamics of disease transmission and balance state-level pre-intervention char-
acteristics. We prove that our estimator provides causal intervention effect
under assumptions. We apply this method to analyze US COVID-19 incidence
cases to estimate the effects of six interventions. We show that lockdown
has the largest effect on reducing transmission and reopening bars signifi-
cantly increase transmission. States with a higher percentage of non-White
population are at greater risk of increased Rt associated with reopening
bars.

K E Y W O R D S

COVID-19, difference-in-difference, heterogeneity of treatment effect, infectious disease modeling,
non-pharmaceutical interventions, quasi-experiments

1 INTRODUCTION

Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global health crisis that has brought tremendous
challenges to humanity. Countries around the world have introduced mitigation measures and non-pharmaceutical
interventions (NPIs) to respond to the crisis before vaccines are widely available. Within the United States (US),
there is tremendous heterogeneity in terms of when mitigation strategies were implemented and lifted across states
and a varying-degree of combinations of containment, social distancing, and lockdown (ie, physical distance closures
including closure of schools and businesses). Decisions for implementing these strategies partially rely on essential
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statistics and epidemiological models that characterize the course of COVID-19 outbreak. However, despite numer-
ous disease forecast models proposed in literature,1 there is a lack of methods to evaluate intervention effects that are
robust and generalizable to accurately account for the heterogeneity between populations. There is no study on pre-
cision NPIs that tailor interventions to states according to states’ characteristics (eg, demographics, percent of high
risk populations susceptible to COVID-19 infection) rather than a national strategy that assigns the same NPIs to all
states. In addition, states showed heterogeneous effects after implementing NPIs. Some states controlled spread after
implementing NPIs while others did not. It is desirable to explore drivers of this heterogeneity. Thus, it is imminent
to study average treatment effect and heterogeneity of treatment effect (HTE) to inform health policy on COVID-19
responses.

One essential component of evaluating an NPI is to identify a proper outcome measure. During COVID-19 pandemic,
daily cases and deaths are reported in each state in the US. However, it is well known that there are a large number of
pre-symptomatic cases accounting for about 40% of transmissions CDC;2 and there has been a shortage of accurate poly-
merase chain reaction (PCR) tests especially during the early phase of the pandemic. In addition to lagged reports, the
observed cases do not fully reflect how the epidemic evolves in real time, so simply using reported cases or deaths as
outcomes may lead to suboptimal decisions. In contrast, mechanistic-based epidemiological models are more likely to
capture the true underlying dynamics of COVID-19 epidemic and provide the time-varying effective reproduction number
(Rt) as an outcome measure. In particular, our earlier work3 proposed to combine nonparametric statistical curve fitting
with infectious disease epidemiological models of the transmission dynamics. This model accounts for pre-symptomatic
transmission of COVID-19 and provides estimates of infection rates and reproduction numbers. These quantities, when
modeled as time-varying, can effectively capture the underlying dynamics that govern the disease transmission, leading
to better prediction performance, and thus are the appropriate measures to be targeted by an intervention. For example, a
reproduction number below one indicates that the disease epidemic is shrinking and under control. We use time-varying
reproduction number, denoted by Rt (see Equation (2) in Section 2.1), as the outcome measure of the intervention
effect.

To estimate intervention effects on COVID-19 (eg, change of reproduction number before and after an intervention),
we consider methods that use natural experiment designs to allow drawing causal inference under assumptions. Since
different states implemented interventions at different time points, the effects of mitigation strategies can be treated as
quasi-experiments where subjects receive distinct interventions before or after the initiation of the intervention. The
longitudinal pre-post intervention designs including regression-discontinuity design4 and difference in difference (DID)
regressions are frequently used in practice to analyze quasi-experiments data.5,6 Regression-discontinuity design defines
a cutoff point to determine which intervention is assigned and estimates intervention effects by comparing observations
with values just above and below the cutoff point. DID estimates the intervention effect by examining the interac-
tion term between time and intervention group (ie, treated or untreated group) in a regression model. It allows valid
inference assuming that outcome trends are parallel in treated and untreated group and local randomization holds
(ie, whether a subject falls immediately before or after the initiation date of an intervention may be considered ran-
dom, and thus the “intervention assignment” may be considered to be random). When the first assumption does not
hold, synthetic control7 is proposed to weight observations so that pre-intervention average effects are similar between
groups.

Several recent works have investigated the intervention effects of COVID-19 mitigation strategies. Process-based infec-
tious disease models are used to simulate counterfactual outcomes under different manipulations of model parameters
and assumptions on the intervention effects, such as assuming a 75% reduction in outside household contacts after imple-
menting social distancing of the entire population, and a 50% increase in household contact rates among student families
after the closure of schools and universities.8,9 These models may be useful to simulate disease outcomes under hypo-
thetical scenarios of interventions, but do not estimate intervention effects based on observed data. Auger et al10 and
Rader et al11 evaluated the associations between the interventions and outcomes (ie, cases, deaths, and Rt) by regres-
sion models. Davies et al12 and Flaxman et al13 assessed the intervention effects by modeling the basic reproduction
number R0 or Rt as intervention dependent. These approaches included state-level characteristics as covariates in the
model, but did not investigate the causal effects. Cho14 considered synthetic control and DID approach by fitting linear
regression with reported cases and deaths as outcomes, but did not take account of the dynamic feature of the disease
transmission (eg, Rt).

In this article, we propose a novel method to assess the effect of NPIs using estimated Rt obtained from the reported
daily cases from each state in US. Compared to existing literature, our work has several new aspects as follows. First, since
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COVID-19 outbreak may occur at different times in each state, calendar time may not be a good measure of the stage
of epidemic. To create a meaningful time horizon that reflects each state’s epidemic course when comparing interven-
tion effects, we align states by transforming calendar time to time since the first reported case. Second, we use a nested
case-control design (eg, treating the implementation of an intervention as an event)15 and propensity score weighting to
estimate intervention effect. Specifically, for each state that has implemented an intervention at a given time point, we
define a set of control states as those which have not yet implemented the intervention. Therefore, a state that implements
a policy at a later time can serve as control for other states that have acted earlier. This design would allow observations
from different time periods in the same state to serve in both treated and untreated groups, so that the longitudinal data
from 50 states can be efficiently used. Third, to balance treated and untreated groups, we construct propensity scores using
pre-intervention characteristics including state-level social demographic variables (eg, social vulnerability index [SVI],
state’s average age and race distribution) as well as time-varying characteristics of the epidemic (eg, pre-intervention
case rate, hospitalization, Rt). We prove that our estimator yields the causal effect of an intervention under assumptions
(eg, consistency and no-unobserved confounder). Lastly, we further estimate heterogeneity of treatment effect (HTE)
using estimating equations that include important hypothesized moderators such as age, race, and level of poverty. The
developed method is applied to analyze US COVID-19 data to estimate the effects of six NPIs. We show that the lock-
down during spring of 2020 had the largest effect on reducing Rt and reopening bars led to significant increase of disease
transmission.

2 METHOD FOR EVALUATING INTERVENTION STRATEGIES

2.1 Outcome measure for estimating NPI effects

To estimate the time-varying infection rate or reproduction number as an outcome for assessing NPIs, we adopt a previ-
ously developed method, survival-convolution model,3 over days since the reported first case. This model is inspired by
the epidemiological susceptible-exposed-infective-recovered (SEIR) model, but has fewer assumptions and model param-
eters, and demonstrate adequate prediction performance among an ensemble of models in the CDC forecast task (https://
www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html).

To be specific, let Ni(t) be the number of individuals in the ith state who are newly infected by COVID-19 at time t.
We assume that the virus transmits from one individual to another at the same rate at a given time t to investigate
the population-level disease transmission. In this population, the duration of an individual remaining infectious in the
epidemic is from a homogeneous distribution at any calendar time t (in days). Let S(m) be the proportion of persons
remaining infectious after m days of being infected. We assume that individuals will not infect others once they are out
of transmission chain due to any possible reasons (eg, prior infection, testing positive and quarantine, or out of infec-
tious period). Since the total number of individuals who are newly infected at time (t −m) is Ni(t −m) and assuming the
infection rate at t to be ai(t), then

Ni(t + 1) = ai(t)
∞∑

m=0
Ni(t −m)S(m + 1). (1)

The details of derivations are provided in the Supporting Information Web Appendix A.
Equation (1) gives a convolution update for the new daily cases using the past days’ number of cases. This equation

considers three important quantities to characterize COVID-19 transmission: the initial date, t0, of the first (likely unde-
tected) case in the epidemic, the survival function of time to out of transmission chain (ie, not infect others), S(m), and
the infection rate over calendar time, ai(t). Wang et al3 estimated ai(t) as a piece-wise linear function with knots placed
at intervention dates and every 2 to 3 weeks, and approximated the survival function S(m) based on previous literature.16

Similarly, we computed ai(t) as piece-wise linear function, placing knots at the state-specific intervention dates and every
2 weeks between interventions and modeled S(m) as an exponential distribution. To estimate both t0 and ai(t), Wang et al3

proposed to minimize a squared loss between the square-root transformed reported daily new cases and predicted new
cases from model (1).

Note that ai(t) is time-varying because the infection rate depends on how many close contacts one infected individual
may have at day t, which is affected by NPIs (eg, stay-at-home order, lockdown) and saturation level of the infection in

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
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the whole population. With the number of new infections Ni(t) estimated from survival-convolution model in (1), the
effective reproduction number 17 is defined as

Rit =
Ni(t)∑∞

k=0wkNi(t − k)
, (2)

which is the number of secondary infections caused by a primary infected individual in a population at time t while
accounting for the entire incubation period of the primary case. Thus, Rit measures temporal changes of the disease
transmission. Here, wk is the probability mass function of the distribution of serial intervals for SARS-CoV-2 (a Gamma
distribution), which is obtained from Nishiura et al18 and Scire et al.19

2.2 Average intervention effect and assumptions

For the ease of presentation, we focus on a particular intervention (lockdown, for instance) in this section. Our goal is
to estimate the overall average effect of the intervention across states. To define the causal estimand, we introduce the
following notations to define a time-specific intervention effect. For any time period Δ > 0 such that the probability of
two states implementing the intervention within Δ days is zero, we let Y (1)

i (t + Δ; t) denote the potential change of the
reproduction number between t and (t + Δ), had the intervention been applied at time t and had there been no other
interventions between time t and t + Δ. Let Y (0)

i (t + Δ; t) be the same potential outcome when there was no intervention
at time t. Correspondingly, the time-specific intervention effect is defined as

𝛾(Δ, t) = E[Y (1)
i (t + Δ; t) − Y (0)

i (t + Δ; t)].

In other words, we consider a hypothetical scenario where at time t, each state imposes the intervention and the other
scenario where there is no such intervention at t and before. Then 𝛾(Δ, t) is the expected difference between the change
of the reproduction number Δ days after time t. A negative value of 𝛾(Δ, t) implies that the intervention at time t can
slow down the spread of the virus. However, since very few states impose the intervention on the same day since disease
outbreak, estimating 𝛾(Δ, t) for each t is not feasible. Instead, we define an average intervention effect (ATE) as the average
of 𝛾(Δ, t) over all possible intervention times, that is,

𝛾(Δ) ≡
∫

𝛾(Δ, t)dFT(t),

where FT(⋅) is the distribution of the intervention time T. Hence, 𝛾(Δ) can be viewed as an overall evaluation of the
intervention effect over all states. We are interested to estimate 𝛾(Δ) using empirical data.

For each state i, we set time zero to be its first reported case and let Yi(t + Δ; t) be the change of reproduction num-
ber between (t + Δ) and t (ie, Rit+Δ − Rit), where the reproduction numbers are estimated as Section 2.1. Let Xi be the
state-specific characteristics including a constant of one. Let Ti denote the intervention time and let Ti = ∞ if the state has
never implemented this intervention. Let FT(t) denote the distribution of Ti, assumed to have a support on  . To estimate
𝛾(Δ) from observed data, we require the following assumptions:

(a) Suppose no other intervention occurs between t and t + Δ. We assume when Ti = t (ie, there is an intervention at t),
Y (1)

i (t + Δ; t) = Yi(t + Δ; t).
(b) Suppose no other intervention occurs between t and t + Δ and the intervention of interest has not been imposed

before t, we assume Y (0)
i (t + Δ; t) = Yi(t + Δ; t).

(c) Assume no unobserved confounders: conditional on Ti ≥ t, Ti = t is independent of Y (a)
i (t + Δ; t), a = 0, 1 given Xi

and Hi(t), where Hi(t) denotes the observed epidemic history by time t.

Assumptions (a) and (b) are equivalent to the consistency assumption in causal inference. Both (a) and (b) also imply
that there are no delayed effects from any other previous interventions prior to time t. This is plausible since the inter-
ventions do not occur frequently and the effects can decline rapidly, as seen by multiple resurges in this pandemic.
Furthermore, even though the previous intervention may affect the infection rate at time t, since the potential outcome



3824 XIE et al.

of interest is the change of the infection rate or reproduction number since time t, the effect on this change can be much
smaller. Assumption (c) is the no-unobserved confounder assumption in causal inference literature. If all relevant epi-
demic history and other information associated with implementing an intervention at time t are collected as Hi(t) and Xi,
this assumption holds. In our application, we will explore a list of candidate variables as (Xi,Hi(t)) and identify a subset
data-adaptively.

Next, we justify why the assumptions enable us to estimate 𝛾(Δ). First, under assumption (c), we have

𝛾(Δ, t) = E
[

I(Ti = t)
P(Ti = t|Ti ≥ t,Hi(t),Xi)

{
Y (1)

i (t + Δ; t)
}]

− E
[

I(Ti > t + Δ)
P(Ti > t + Δ|Ti ≥ t,Hi(t),Xi)

{
Y (0)

i (t + Δ; t)
}]

. (3)

Second, since P(Ti > t|Ti ≥ t,Hi(t),Xi) = P(Ti > t + Δ|Ti ≥ t,Hi(t),Xi) for any t in the support of FT(t), according to
assumptions (a) and (b), the right-hand side is further equal to

𝛾(Δ, t) = E
[

I(Ti = t)
P(Ti = t|Ti ≥ t,Hi(t),Xi)

{Yi(t + Δ; t)}
]

− E
[

I(Ti > t + Δ)
P(Ti > t|Ti ≥ t,Hi(t),Xi)

{Yi(t + Δ; t)}
]
. (4)

Therefore, if we posit a model for the intervention time Ti given Hi(t) and Xi, an inverse probability weighted estimator
based on (4) can be used to estimate 𝛾(Δ, t). Equation (4) further provides a way to consistently estimate 𝛾(Δ) by simply
averaging the estimated 𝛾(Δ, t) over all empirical intervention times from all states.

2.3 Inference procedure for the ATE

The main idea for estimation is to create a separate set of control states for “case states” that implemented an intervention
at a given time point and then aggregate over case states. To balance pre-intervention differences between states, we will
construct propensity scores for case states that intervened at different time points, since eligible control states may differ.
Specifically, in the first step, we estimate the propensity scores, P(Ti = t|Hi(t),Xi) in (4), by fitting a logistic regression
model,

logit {P(Ti = t|Ti ≥ t,Hi(t),Xi)} = (Hi(t),Xi)T𝛽,

where Xi contains all prognostic variables for the intervention at the baseline such as demographic distributions and SVI
index, and Hi(t) can be the average cases and deaths in the past week(s) before time t. To estimate 𝛽, we solve the following
estimating equation

n∑

i=1
∫

(Hi(t),Xi)TI(Ti ≥ t)
[

I(Ti = t) −
exp{(Hi(t),Xi)T𝛽}

1 + exp{(Hi(t),Xi)T𝛽}

]
d̂FT(t) = 0,

where ̂FT(t) denotes the empirical distribution of the intervention times. In detail, if we use Xij to denote (Hi(Tj),Xi) and
𝛿ij = I(Ti = Tj), we can estimate 𝛽 by solving

n∑

i=1

∑

j∈S(i)
Xij

{
𝛿ij −

exp{XT
ij 𝛽}

1 + exp{XT
ij 𝛽}

}
= 0,

where S(i) is a set of state i and all other eligible control states (eg, states that have not implemented an intervention by
Ti; similar to a nested case-control design when treating implementation of an intervention as the event). Once we obtain
the estimate for 𝛽, denoted by ̂𝛽, the propensity score for state i at its intervention time t is given by

p̂i(t) =
exp{(Hi(t),Xi)T ̂𝛽}

1 + exp{(Hi(t),Xi)T ̂𝛽}
.
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In the second step, using the estimated propensity scores, according to (4) for t ∈  and by the definition of the ATE 𝛾(Δ),
we estimate 𝛾(Δ) explicitly as

𝛾̂(Δ) =
∑n

i=1 ∫ I(Ti = t)∕p̂i(t)Yi(t + Δ)d̂FT(t)
∑n

i=1 ∫ I(Ti = t)∕p̂i(t)d̂FT(t)

−
∑n

i=1 ∫ I(Ti > t + Δ)∕(1 − p̂i(t))Yi(t + Δ)d̂FT(t)
∑n

i=1 ∫ I(Ti > t + Δ)∕(1 − p̂i(t))d̂FT(t)
,

where for the convenience of notation, we use Y (t + Δ) to denote Y (t + Δ; t) in subsequent exposition. Removing the
denominators in the above expression does not necessarily invalidate the consistency of the estimator, but can lead to sub-
stantial efficiency gain as shown in survey sampling literature (eg, using standardized weights may improve efficiency).
Specifically, to calculate covariates for state i at state j’s intervention day, let tj(i) be the intervention day for state i, let

Xi,j(i) = (Hi(tj(i)),Xi)T , and define p̂i =
exp{XT

i,j(i)
̂

𝛽}

1+exp{XT
i,j(i)

̂

𝛽}
. Then in the second step, we estimate 𝛾(Δ) by

𝛾̂(Δ) =
∑n

i=1
∑

j∈S(i) dij𝛿ij∕q̂ij
∑n

i=1
∑

j∈S(i) 𝛿ij∕q̂ij
−
∑n

i=1
∑

j∈S(i) dij(1 − 𝛿ij)∕(1 − q̂ij)
∑n

i=1
∑

j∈S(i)(1 − 𝛿ij)∕(1 − q̂ij)
,

where dij is the change in reproduction number (ie, Yi(ti(j(i) + Δ), or Ri,tj(i)+Δ − Ri,tj(i)), 𝛿ij is the change in intervention status
at time j for state i, and

q̂ij =
exp{XT

ij
̂

𝛽}

1 + exp{XT
ij
̂

𝛽}
, i = 1, … ,n, j ∈ S(i).

Note p̂i = q̂i,j(i).
The following theorem gives the asymptotic distribution for 𝛾̂(Δ).

Theorem 1. Under assumptions (a) to (c) and assuming that (Hi(t),X) is linearly independent with positive probabil-
ity for some t in  and that H(t) has a bounded total variation in  ,

√
n(𝛾̂(Δ) − 𝛾(Δ)) converges to a mean-zero normal

distribution.
The asymptotic variance in Theorem 1 is given in the proof in the Appendix. A consistent estimator for the variance

can be given by a plug-in estimator. Specifically, the proof of Theorem 1 implies that
√

n(̂𝛽 − 𝛽) is asymptotically nor-
mal, where 𝛽 is the true parameter value in the propensity score model, and the asymptotic variance can be consistently
estimated by

(∑n
i=1ViV T

i

)
∕n, where

Vi =

[
n−1

n∑

i=1

∑

j∈S(i)
XijXT

ij q̂ij(1 − q̂ij)

]−1 {∑

j∈S(i)
Xij(𝛿ij − q̂ij)

}
.

Finally, through the linear expansion given in the proof of Theorem 1, If we let

Ai =
∑

j∈S(i)
dij𝛿ij∕q̂ij, Bi =

∑

j∈S(i)
𝛿ij∕q̂ij

and

Ci =
∑

j∈S(i)
dij(1 − 𝛿ij)∕(1 − q̂ij), Di =

∑

j∈S(i)
(1 − 𝛿ij)∕(1 − q̂ij)

and A,B,C, and D be their respective average values, then the asymptotic variance for 𝛾̂(Δ) can be estimated as 𝜎2 =
n−2∑n

i=1(Ui − ̄U)2, where
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Ui =
Ai

n−1∑n
k=1Bk

− Ci

n−1∑n
k=1Dk

−
n−1∑n

k=1Ak

(n−1∑n
k=1Bk)2

Bi +
n−1∑n

k=1Ck

(n−1∑n
k=1Dk)2

Di

−

[∑n
k=1

∑
j∈S(k) dkj𝛿kj(1 − q̂kj)XT

kj∕q̂kj
∑n

k=1Bk

−
∑n

k=1Ak
(∑n

k=1Bk
)2

( n∑

k=1

∑

j∈S(k)
𝛿kj(1 − q̂kj)XT

kj∕q̂kj

)]
Vi

−

[∑n
k=1

∑
j∈S(k) dkj(1 − 𝛿kj)q̂kjXT

kj∕(1 − q̂kj)
∑n

k=1Dk

−
∑n

k=1Ck

(
∑n

k=1Dk)2

( n∑

k=1

∑

j∈S(k)
(1 − 𝛿kj)q̂kjXT

kj∕(1 − q̂kj)

)]
Vi

+ 1∑n
k=1Bk

dii

qii
−

∑n
k=1Ak

(∑n
k=1Bk

)2
1

qii

−
∑n

k=1(1 − 𝛿ki)∕(1 − qki)dki
∑n

k=1Dk
+

∑n
k=1Ck

(∑n
k=1Dk

)2

( n∑

k=1
(1 − 𝛿ki)∕(1 − qki)

)
.

Therefore, the 95%-confidence interval for the ATE is [𝛾̂(Δ) − 1.96
√
𝜎

2
, 𝛾̂(Δ) + 1.96

√
𝜎

2].

Remark 1. Since we may have a small number of states with an NPI when fitting the propensity score, the model can
be either saturated or overfitted when the dimension of Xi and Hi(t) increases. We perform a screening step to obtain a
parsimonious model for estimating the propensity scores.

Remark 2. The estimand 𝛾(Δ) depends on the window size,Δ, between the intervention time t and effect time (t + Δ). We
can vary different window sizes so as to obtain the estimated intervention effects over days since the intervention. This
can be useful to study how long it might take for an intervention to become effective.

2.4 Estimation of HTE by regression

A similar procedure can be applied to study the effect in a subgroup of states which share similar characteristics of Zi and
moderation effects of Zi (here Zi is a subset of Xi). To estimate which factors in Zi may moderate the intervention effect,
we use a regression model by assuming

E[Y (1)
i (t + Δ; t) − Y (0)

i (t + Δ; t)|Zi] = 𝜃TZi.

Thus, testing the significance of 𝜃 identifies significant factors that moderate intervention effect, a.k.a, HTE, which may
lead to precision public health policy that targets states with certain characteristics.

Specifically, the estimator for 𝜃 can be obtained by solving

n∑

i=1
Zi

[

∫

{
Yi(t + Δ)

(
I(Ti = t)

p̂i(t)
− I(Ti > t + Δ)

1 − p̂i(t)

)
− 𝜃TZi

}
I(Ti ≥ t)d̂FT(t)

]
= 0,

or equivalently,

n∑

i=1
Zi

[
∑

j∈S(i)

{
dij

(
𝛿ij

q̂ij
−

1 − 𝛿ij

1 − q̂ij

)
− 𝜃TZi

}]
= 0.

When Zi = 1, the derived estimator is asymptotically equivalent to 𝛾̂(Δ) studied before. Let ̂𝜃 denote the estimator. Our
next theorem states the asymptotic covariance of ̂𝜃.
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Theorem 2. Under the assumptions in Theorem 1, if we further assume E[ZiZT
i ] is nonsingular, it holds

√
n(̂𝜃 − 𝜃) = E

[
ZZT

∫

I(T ≥ t)dFT(t)
]−1

×
[

Z
(

∫

{
Y (t + Δ)

(
I(T = t)

p(t)
− I(T > t + Δ)

1 − p(t)

)
− 𝜃TZ

}
I(T ≥ t)dFT(t)

)

− ̃E[̃Z
∫

̃Y (t + Δ)
(

I(̃T = t)
1 − p(t)

p(t)
+ I(̃T > t + Δ)

p(t)
1 − p(t)

)

× (̃H(t), ̃X)TI(T ≥ t)dFT(t)]S𝛽
]
+ op(1),

where ̃E[⋅] denotes the expectation with respect to ̃Y and ̃T, and S
𝛽

is the influence function for ̂

𝛽 given in the proof of
Theorem 1. Consequently,

√
n(̂𝜃 − 𝜃) converges weakly to a mean-zero normal distribution.

The proof for Theorem 2 uses the same linear expansion argument as in the proof for Theorem 1 so is omitted. As a
result of Theorem 2, the variance for ̂𝜃 can be consistently estimated by the following sandwich estimator, ̂Ψ = Σ−1

1 Σ2Σ−1
1 ,

where

Σ1 =
n∑

i=1

∑

j∈S(i)
ZiZT

i

and Σ2 =
∑n

i=1WiW T
i with

Wi = Zi

[
∑

j∈S(i)

{
dij

(
𝛿ij

q̂ij
−

1 − 𝛿ij

1 − q̂ij

)
− ̂𝜃TZi

}]

−

[
n−1

n∑

k=1
Zk

∑

j∈S(k)
dkjXT

kj

(
𝛿kj

1 − q̂kj

q̂kj
+ (1 − 𝛿kj)

q̂kj

1 − q̂kj

)]
Vi.

Therefore, to test whether the lth component of 𝜃 is zero at a significance level of 𝛼, we reject the null if |̂𝜃l|∕
√
̂Ψll is

larger than the (1 − 𝛼∕2)-quantile of the standard normal distribution, where ̂𝜃l is the lth component of ̂𝜃 and ̂Ψll is the
lth diagonal element of ̂Ψ.

3 SIMULATION STUDIES AND ANALYSIS OF US COVID-19 DATA

We evaluated our method in two simulation settings with sample size of 50 (states) and Rt decreasing 0.15, 0.2 per day
after implementing the intervention. For each simulated dataset, we compared the estimated ATE with the approach of
using calendar time as the time scale. In all settings, our method had smaller root mean squared errors (RMSEs) than
the approach of using calendar time. We present details of the simulation studies in the Supporting Information Web
Appendix B.

We applied our method to analyze US COVID-19 data. Since the first reported case in Washington on January 22,
2020, COVID-19 spread rapidly across US, especially in the northeast. During mid-March to early April, states issued
lockdown orders (physical distance closures) after the national emergency was declared on March 13, 2020. Large
declines in the number of daily new reported cases and deaths were seen in April and May after lockdown orders. How-
ever, a second surge of COVID-19 arrived in June after reopening, primarily in the southern and western states. From
November 2020 to early 2021, US has experienced a third surge of COVID-19 while the mass vaccination started to take
place.

We consider six state-wide NPIs: lockdown (date defined as the first physical distance closure), stay-at-home order,
mandatory facial masks, reopening business, reopening restaurants, and reopening bars. In our analysis, 48 states that
have implemented an intervention after their first reported case were included. States issued lockdown orders between
March 9 and April 3, 2020; 39 states placed stay-at-home order between March 19 and April 7; and 37 states mandated
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facial masks in public between April 8 and November 20. Between April 20 and June 8, 49 states issued reopening busi-
ness order; 46 states issued reopen restaurant order between April 24 and July 3; and 44 states issued reopen bar order
between May 1 and July 3. We aligned states by transforming calendar time to time since the first reported case. Figure 1
aligns states in two different ways: aligning by calendar dates (Figure 1A), and aligning by days since the first reported
case (Figure 1B). The two alignments differ, for example, many states implemented lockdown on March 16 but they were
at different days since their first reported case. The latter alignment provides more variability between states and more
meaningful measure as the stage in the pandemic. Figure 1B shows that stay-at-home order followed quickly after lock-
down, and intervention times for other NPIs vary considerably across states. The intervention time of lockdown was
between (0, 54) days since the first reported case, stay-at-home was between (6, 65) days, and mandatory facial masks was
between (34, 263) days. Reopening economy policies had a wider range of times between states. The gap time between
implementing two different interventions also vary across states. We leverage these heterogeneity to match a “case state”
with “control states” without interventions.

We fitted survival-convolution models for each state, using the daily incidence cases reported at Johns Hopkins
University Center for Systems Science and Engineering (JHU CSSE20) from the date of the first observed case as early
as January 22, 2020 to February 16, 2021. This model successfully captured the epidemic trends of COVID-19 inci-
dence cases in 50 states (Figure 2). The fitted curves captured surges in large states such as New York, California,
Florida, Texas, as well as smaller states including Maine, Wyoming, and the Dakotas. From the estimated new infec-
tions, we derive Rt using Equation (3). We show the estimated Rt over the epidemic course in the Web Appendix
Figure S1.
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F I G U R E 2 Observed (7-day moving average; red curve) and fitted (black curve) incidence COVID-19 cases from February 2020 to
March 2021 in US states

To visualize observed changes in Rt after each NPI, we present Rt differences between 7 days post intervention and 1
day before intervention in Figure 3. A darker cool color indicates a larger decrease in Rt and a darker warm color indicates
a larger increase. The states that did not implement certain NPIs are colored in gray. We see that Rt in many states in the
northeast and west decreased sharply 7 days after lockdown. For most states that had placed stay-at-home orders, Rt also
decreased after the orders. As a comparison, not all states showed a reduction in Rt after facial mask mandates. Reopening
business presents some degree of heterogeneity. Among the three reopening interventions, reopening bars had the largest
increase in Rt. These results show the observed changes in the states that had initiated NPIs, but lacks a control group.
We will use the methods developed in Section 2 to formally estimated intervention effects by a DID estimator under the
nested case-control design.

Our goal is to formally quantify the impacts of NPIs and separate intervention effect from a natural decrease or increase
trend in the absence of intervention using the inversely weighted DID estimator developed in Section 2. We estimated the
ATE 𝛾(Δ), change in Rt afterΔ days of implementing the intervention. In our analysis, we evaluated lockdown’s effect up
to 6 days, stay-at-home orders up to 11 days, and other interventions up to 14 days. Lockdown and stay-at-home orders
had shorter evaluation period because they were enacted at relatively short time interval. A greater Δ would not satisfy
assumption (b) since other interventions may be introduced during a longer interval. We only regarded the states with
intervention time Tj > Ti + Δ as eligible “control states” for state i. State-specific characteristics were included as covari-
ates to construct propensity scores to account for differences between states. Given the associations between state-level
characteristics and COVID-19 transmission and NPIs,10,21,22 the candidate covariates were the demographic characteris-
tics including the percentage of White, the percentage of Latino, the percentage of male, the percentage of age 65 and over,
the percentage of male at age 65 and over, CDC SVI variables23 including the percentage of below poverty, the percent-
age of unemployed, the percentage of no high school diploma, the percentage of speaking English “less than well,” the
percentage of housing in structures with 10 or more units, the percentage of mobile homes, the percentage of more peo-
ple than rooms at household level, the percentage of no vehicle, the percentage of in institutionalized group quarters, the
percentage of civilian non-institutionalized population with a disability, the percentage of single parent households with
children under 18, and per capita income. The time-varying covariates including average Rt, average daily new reported
cases, average daily new reported deaths, average rate of positive tests, and average percentage of total inpatient beds uti-
lized by patients who have probable or confirmed COVID-1924 during 1 week prior to the intervention. We standardized
the unemployment variable by the state’s population of aged 17 to 65, and standardized the other SVI variables except
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F I G U R E 3 Difference in Rt between 7 days post intervention and 1 day before intervention for each NPI in US states. Dark gray color
indicates that a state had not implemented an NPI. (A) Lockdown, (B) stay at home, (C) facial mask mandate, (D) reopen business, (E)
reopen restaurants, and (F) reopen bars

for per capita income by state’s total population. The time-varying covariates were also standardized by state’s population
and multiplied by 100 000. A different set of propensity scores was constructed for each Δ because eligible control states
could change. We selected the top 10 covariates based on Spearman rank correlation for each intervention separately and
the covariates with a large proportion of missing were excluded.

Web Appendix Tables S3 to S8 show the propensity score estimates of each intervention. The states with higher aver-
age pre-intervention Rt, larger average daily new cases, and larger average daily new deaths, fewer persons who speak
English “less than well,” higher Latino population, higher institutionalized population, and higher percentage of crowded
household were more likely to enact the lockdown order. For stay-at-home order, states with larger average daily new
cases and smaller population of no high school diploma were more likely to implement this NPI. The states with larger
average daily new cases were more likely to require wearing facial masks, and the states with larger average daily new
cases and deaths and fewer mobile homes were less likely to reopen bars.
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T A B L E 1 Average intervention effects of the six NPIs

Lockdown Stay-at-home Mask mandate Reopen businesses Reopen restaurants Reopen bars

Day Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Δ = 1 −0.176 (0.022) −0.006 (0.036) −0.005 (0.004) 0.022 (0.005) 0.018 (0.004) 0.020 (0.005)

Δ = 2 −0.334 (0.043) 0.027 (0.033) −0.008 (0.007) 0.033 (0.012) 0.018 (0.007) 0.032 (0.006)

Δ = 3 −0.489 (0.092) 0.027 (0.035) −0.010 (0.010) 0.036 (0.017) 0.018 (0.012) 0.044 (0.009)

Δ = 4 −0.562 (0.056) 0.010 (0.042) −0.011 (0.014) 0.041 (0.024) 0.019 (0.018) 0.058 (0.011)

Δ = 5 −0.603 (0.057) −0.015 (0.048) −0.014 (0.020) 0.055 (0.027) 0.013 (0.026) 0.071 (0.014)

Δ = 6 −0.759 (0.161) −0.064 (0.048) 0.001 (0.024) 0.058 (0.036) 0.011 (0.033) 0.082 (0.017)

Δ = 7 - −0.133 (0.051) −0.016 (0.030) 0.060 (0.046) 0.006 (0.042) 0.095 (0.020)

Δ = 8 - −0.113 (0.079) −0.017 (0.032) 0.035 (0.062) 0.004 (0.049) 0.105 (0.022)

Δ = 9 - −0.150 (0.080) 0.006 (0.022) 0.023 (0.077) −0.005 (0.065) 0.120 (0.024)

Δ = 10 - −0.198 (0.236) 0.009 (0.023) 0.028 (0.084) −0.027 (0.086) 0.132 (0.026)

Δ = 11 - −0.233 (0.159) 0.017 (0.026) 0.034 (0.092) −0.033 (0.096) 0.144 (0.029)

Δ = 12 - - 0.020 (0.028) 0.049 (0.102) −0.045 (0.108) 0.154 (0.031)

Δ = 13 - - 0.022 (0.024) 0.064 (0.110) −0.047 (0.118) 0.160 (0.032)

Δ = 14 - - 0.023 (0.026) 0.067 (0.119) −0.073 (0.140) 0.170 (0.034)

Note: “-” indicates the effect was not applicable at Δ day.

The ATEs of the six NPIs are shown in Table 1 and Figure 4. Enacting lockdown significantly decreased Rt immediately
after its implementation, with an average effect of−0.759 (95% CI,−1.075 to−0.443) 6 days after. The effect of stay-at-home
order reached −0.133 (95% CI, −0.233 to −0.033) 7 days post-intervention. Reopening bars significantly increased Rt. The
average effect of reopening bars was an increase of 0.095 (95% CI, 0.056 to 0.134) after 7 days and reached 0.17 (95%
CI, 0.103 to 0.237) after 14 days. The ATE of reopening business was positive but not significant. The ATE of reopening
restaurants and mask mandates was not significant.

We further assessed HTE to identify whether any factor moderates the intervention effects of lockdown, stay-at-home,
and reopening policies. Our candidate moderators included the percentage of age 65 and over, the percentage of White,
the percentage of male, and the percentage below poverty. We did not find any significant moderator. The estimated HTE
for race (percentage of White race) was marginally significant for reopening bars (Web Appendix Figure S2 shows the
estimated HTE and confidence interval of race on reopening bars).

4 DISCUSSION

In this work, we propose a nested case-control design and propensity score weighting approach to evaluate impact of
NPIs on mitigating COVID-19 transmission. Our method aligns states by transforming calendar time to time since the
first reported case and allows each state to serve in both treated and control group during different time periods. Our
estimator provides causal intervention effect under assumptions and we further identify the factors that moderate inter-
vention effect. Our analysis shows that mobility restricting policies (lockdown and stay-at-home orders) have a large effect
on reducing transmission. However, public health officials should be cautious about imposing them due to the social
and economic costs. The effect of mask mandate was not significant. However, this result should be interpreted with
care because mask mandate may not directly increase the adoption of mask wearing behavior in the public.11 Using self
reported mask wearing data may be more effective in evaluating the effect of masking. Reopening bars had a significant
effect on increasing transmission and was more problematic than other reopening other types of business. The evidence
can assist public health officials in making decisions.

In our model, we assume NPIs will become effective immediately (ie, within a relatively small period Δ) after
being implemented. When NPIs have lagged or delayed effects, methods developed for dynamic treatment regimes
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may be more appropriate to examine effect of a sequence of interventions. We investigated each intervention sepa-
rately in this work and did not consider interaction between interventions given the sample size (50 states). To evaluate
more detailed intervention packages and interaction between NPIs, county-level data can be useful to increase sam-
ple size. Assuming intervention effects to be additive, we can use the estimated treatment effect to determine the
optimal sequence of the treatment effects and timing for controlling disease outbreak. We did not account for trans-
mission between asymptomatic individuals due to a lack of reliable antibody testing data, and we assume that the
transmissions occur within a state. Our assumptions might be violated if there are interference effects between neigh-
boring states and there might be other potential confounders that are not adjusted for in the propensity score model.
As an extension, for county-level analysis we can borrow spatial information from counties that are similar and adja-
cent to each other to account for the transmission from region to region. Other extensions to our method include
using survival analysis to estimate the propensity scores for Ti or adopting a doubly robust method to improve the
IPW DID estimator. There may be other hidden factors predictive of propensity scores. To uncover these factors, we
can use additional data sources, such as social and behavioral data captured from Facebook. We can combine infor-
mation from multiple sources using data linkage techniques. The current framework can be extended to study the
effect of vaccination policies and NPIs implemented in universities and health care organizations when more data is
available.
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APPENDIX. PROOF OF THEOREM 1

We use Pn to denote the empirical measure associated with n states’ observations and use P to denote its expectation.
First, using the estimating equation for 𝛽, we can easily show that

̂

𝛽 − 𝛽 = (Pn − P)S
𝛽

+ op(n−1∕2), (A1)

where

S
𝛽

=
[

P
∫

(H(t),X)T(H(t),X)I(T ≥ t)p(t)(1 − p(t))dFT(t)
]−1

×
∫

(H(t),X)TI(T ≥ t) {I(T = t) − p(t))} dFT(t),

and we note that the matrix inverse exists due to the linear independence assumption. Thus,
√

n(̂𝛽 − 𝛽) converges to a
mean-zero normal distribution with covariance matrix E[S

𝛽

ST
𝛽

].
Next, we rewrite 𝛾̂(Δ) as

𝛾̂(Δ) =
Pn ∫ I(T = t)∕p̂(t)Y (t + Δ)d̂FT(t)

Pn ∫ I(T = t)∕p̂(t)d̂FT(t)
−

Pn ∫ I(T > t + Δ)∕(1 − p̂(t))Y (t + Δ)d̂FT(t)

Pn ∫ I(T > t + Δ)∕(1 − p̂(t))d̂FT(t)
.

https://svi.cdc.gov
https://healthdata.gov
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Using linear expansion and microscopic arguments, we obtain

𝛾̂(Δ) − 𝛾(Δ) =
(Pn − P) ∫ I(T = t)∕p̂(t)Y (t + Δ)d̂FT(t)

Pn ∫ I(T = t)∕p̂(t)d̂FT(t)

−
P ∫ I(T = t)∕p̂(t)Y (t + Δ)d̂FT(t)

Pn ∫ I(T = t)∕p̂(t)d̂FT(t)P ∫ I(T = t)∕p̂(t)d̂FT(t)
(Pn − P)

∫

I(T = t)∕p̂(t)d̂FT(t)

−
(Pn − P) ∫ I(T > t + Δ)∕(1 − p̂(t))Y (t + Δ)d̂FT(t)

Pn ∫ I(T > t + Δ)∕(1 − p̂(t))d̂FT(t)

+
P ∫ I(T > t + Δ)∕(1 − p̂(t))Y (t + Δ)d̂FT(t)

Pn ∫ I(T > t + Δ)∕(1 − p̂(t))d̂FT(t)P ∫ I(T > t + Δ)∕(1 − p̂(t))d̂FT(t)

× (Pn − P)
∫

I(T > t + Δ)∕(1 − p̂(t))d̂FT(t)

+
P ∫ I(T = t)∕p̂(t)Y (t + Δ)d̂FT(t)

P ∫ I(T = t)∕p̂(t)d̂FT(t)
−

P ∫ I(T > t + Δ)∕(1 − p̂(t))Y (t + Δ)d̂FT(t)

P ∫ I(T > t + Δ)∕(1 − p̂(t))d̂FT(t)
− 𝛾(Δ).

On the other hand, based on assumptions (a) to (c), using the same argument in Section 2, we know

𝛾(Δ) =
P ∫ I(T = t)∕p(t)Y (t + Δ)dFT(t)

P ∫ I(T = t)∕p(t)dFT(t)
−

P ∫ I(T > t + Δ)∕(1 − p(t))Y (t + Δ)dFT(t)
P ∫ I(T > t + Δ)∕(1 − p(t))dFT(t)

.

Thus, the last term in the expansion of 𝛾̂(Δ) − 𝛾(Δ) can be further expanded as a linear functional of (̂𝛽 − 𝛽) and (̂F − F),
where we further plug in the expansion in (A1) and note that (̂F − FT)(t) = (Pn − P)I(T ≤ t).

Finally, since I(T ≥ t), p̂(t), ̂FT(t) and Y (t) have bounded total variations so they are P-Donsker, we conclude

𝛾̂(Δ) − 𝛾(Δ) = (Pn − P)Γ + op(n−1∕2),

where if we define

A =
∫

I(T = t)∕p(t)Y (t + Δ)cFT(t), B =
∫

I(T = t)∕p(t)dFT(t)

and

C =
∫

I(T > t + Δ)∕(1 − p(t))Y (t + Δ)dFT(t), D =
∫

I(T > t + Δ)∕(1 − p(t))dFT(t),

Γ = A
E[B]

− C
E[D]

− E[A]
E[B]2 ∫

I(T = t)
p(t)

dFT(t) +
E[C]
E[D]2 ∫

I(T > t + Δ)
1 − p(t)

dFT(t)

+
̃E
[

I(̃T=T)
p(T)

̃Y (T + Δ)
]

E[B]
− E[A]

E[B]2
̃E
[

I(̃T = T)
p(T)

]

−
̃E
[

I(̃T>T+Δ)
1−p(T)

̃Y (T + Δ)
]

E[D]
+ E[C]

E[D]2
̃E
[

I(̃T > T + Δ)
1 − p(T)

]

−
⎡
⎢
⎢⎣

P ∫ I(T = t) 1−p(t)
p(t)

(H(t),X)TY (t + Δ)dFT(t)

P ∫ I(T=t)
p(t)

dFT(t)

−
P ∫ I(T=t)

p(t)
Y (t + Δ)dFT(t)P ∫ I(T = t) 1−p(t)

p(t)
(H(t),X)TdFT(t)

(P ∫ I(T = t)∕p(t)dFT(t))2

⎤
⎥
⎥⎦

S
𝛽
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−
⎡
⎢
⎢⎣

P ∫ I(T > t + Δ) p(t)
1−p(t)

(H(t),X)TY (t + Δ)dFT(t)

P ∫ I(T>t+Δ)
1−p(t)

dFT(t)

−
P ∫ I(T>t+Δ)

1−p(t)
Y (t + Δ)dFT(t)P ∫ I(T > t + Δ) p(t)

1−p(t)
(H(t),X)TdFT(t)

(
P ∫ I(T>t+Δ)

1−p(t)
dFT(t)

)2

⎤
⎥
⎥
⎥⎦

S
𝛽

.

Here, ̃E[⋅] denotes the expectation with ̃T and ̃Y . Therefore,
√

n(𝛾̂(Δ) − 𝛾(Δ)) converges to a mean-zero normal distribu-
tion with variance E[ΓΓT].
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