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Abstract: A metaheuristic algorithm can be a realistic solution when optimal control problems require
a significant computational effort. The problem stated in this work concerns the optimal control of
microalgae growth in an artificially lighted photobioreactor working in batch mode. The process
and the dynamic model are very well known and have been validated in previous papers. The
control solution is a closed-loop structure whose controller generates predicted control sequences.
An efficient way to make optimal predictions is to use a metaheuristic algorithm, the particle swarm
optimization algorithm. Even if this metaheuristic is efficient in treating predictions with a very
large prediction horizon, the main objective of this paper is to find a tool to reduce the controller’s
computational complexity. We propose a soft sensor that gives information used to reduce the
interval where the control input’s values are placed in each sampling period. The sensor is based
on measurement of the biomass concentration and numerical integration of the process model. The
returned information concerns the specific growth rate of microalgae and the biomass yield on light
energy. Algorithms, which can be used in real-time implementation, are proposed for all modules
involved in the simulation series. Details concerning the implementation of the closed loop, controller,
and soft sensor are presented. The simulation results prove that the soft sensor leads to a significant
decrease in computational complexity.

Keywords: optimal control problem; closed-loop control structure; optimal predictions; microalgae
growth model; soft sensors; adaptive particle swarm optimization

1. Introduction

Microalgae biotechnology has attracted increased interest in recent years due to its
potential to be used in a wide range of applications. Microalgae can be used in human
and animal nutrition and also in the production of a wide range of added-value com-
pounds [1,2]. They can also be involved in environmental applications such as the treat-
ment of wastewater or the production of biofuels. In addition, their capacity to biomitigate
carbon dioxide makes microalgae cultivation one of the most eco-friendly biotechnologies.

Light energy is required to perform water photolysis, one of the most energy-
demanding reactions in nature. Photosynthetic growth is very attractive due to its simple
and cheap requirements. Microalgae may be cultivated in photobioreactors that have at
least one transparent side through which the light radiates the culture [3].

This work is focused on controlling microalgae growth in a specific artificially lighted
photobioreactor (PBR). Therefore, dynamic models for photobioreactors and control ap-
proaches have been of interest to us. Many references concerning microalgae cultures
present reliable mathematical models validated with experimental data and propose con-
trol strategies [4–6].

Light is the main factor that restricts the photosynthetic growth process. It creates a
heterogenous light field inside the photobioreactor. The microalgae growth rate decreases
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according to the depth of the culture [7–9]. Thus, these light-driven processes must couple
the radiative model with the growth kinetics, resulting in a class of models able to express
the specific growth rate as a function of the available light inside the culture (i.e., the
irradiance) [4,7].

Discontinuous photobioreactors are artificially lighted for increased productivity and
high repeatability of results. The light sources have become more efficient (e.g., LED
grow light panels) and easier to control, which has opened up a new class of controllers
named lumostats [10,11]. These controllers modify the incident light intensity to control
variables such as light-to-microalgae ratio, biomass yield on light energy, etc. General
aspects concerning the optimization of microalgae cultures are presented in [6,12,13].

This work has great practical relevance because it is firstly addressed to the practicing
professional engineer who wants to implement an optimal control structure for a PBR
similar to that described in this paper. Many algorithms and their implementation could
be used in a future real-time application.

Nevertheless, the main contribution of this paper is a soft sensor, which is integrated
into the control structure and could have theoretical repercussions. The sensor aims to
reduce the admissibility domain of the process’s control input according to its current
state [14,15]. The admissibility domain contains all the control input values that lead to a
favorable process evolution (e.g., meeting certain dynamic constraints, such as the positive
growth rate of microalgae). A smaller admissibility interval involves a certain reduction in
computational complexity. For the microalgae growth process, the soft sensor proved its
utility. The general theoretical idea is that the sensor could be involved in controlling other
kinds of processes.

More precisely, several requests and preliminaries define our work:

• A specific artificially lighted PBR for microalgae growth has to be controlled over a
given control horizon. This batch PBR is described in [10,11], and sufficient details are
given in Section 2 and Appendix A.

• The dynamic process model (PM) concerning the microalgae growth is presented and
validated in [10,11]. Section 2 recalls the basic elements that led to this PM used in
our work.

• A bi-criteria optimal control problem concerning the PBR at hand is stated in Section 3.1.
The optimum criterion requires minimizing the amount of light (the energy) while a
specified quantity of biomass is produced.

• The optimal control problem must be solved through a closed-loop control structure.
Only in this way will the controller’s output depend on the real state of the PBR (e.g.,
the biomass concentration) in each sampling period.

The closed-loop control structure proposed in this work is the Receding Horizon Con-
trol (RHC) structure [16,17], a general and efficient control structure involving a prediction
technique. A module of the Controller, called the Predictor, generates sequences of control
output values, called predicted control sequences (pcs), that will determine the process’s
optimal trajectories. This solution entails two other options:

• Generating an optimal pcs requires a significant computational effort, as in our control
problem. For this reason, the Predictor will resort to a metaheuristic algorithm [18,19]
that can cope with high computational complexity. An adaptive version of the hy-
brid topology particle swarm optimization [20,21] algorithm will be integrated into
the Predictor.

• Despite the ability of the particle swarm optimization algorithm to efficiently generate
optimal predictions, we propose a soft sensor to further decrease the computational
complexity, especially for very large prediction horizons.

Section 3 states the optimal control problem with all its defining elements and describes
the RHC structure and the prediction sequences in the optimality context. Section 3.4 is
devoted to the proposed soft sensor and presents its necessity, structure, functioning,
and implementation.
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To keep the presentation self-contained, Section 4 briefly describes PSO and its ad-
vances, namely, hybrid topology and adaptation of particle speed. To conduct the simu-
lation study presented in Section 5, we implemented the proposed algorithms using the
MATLAB language and system. Many algorithms were implemented realistically, like in a
real-time application. Section 6 presents and discusses the simulation results. These results
prove that the control solutions and algorithms work well and that the soft sensor makes a
real contribution.

2. Photosynthetic Growth of Microalgae: The Process Dynamic Model

The objective of this section is to specify the PBR’s dynamic model, which will be
used in the following sections to state and solve a specific optimal control problem. The
basic aspects of the considered process model and the PBR’s parameters have already been
presented and validated (see [10,11] and Appendix A).

The microalgae are cultivated in photobioreactors of various geometries with trans-
parent regions allowing light to penetrate the culture. The incident light intensity q0 is
measured at the point where the light touches the microalgae culture. It is attenuated inside
the PBR, with the available light for any depth, z, of the culture being named irradiance
G(z). Models that describe the attenuation of light inside microalgal cultures are named
radiative models.

This work considers a continuously stirred flat-plate PBR lighted on one side, already
presented in [10,11]. The radiative model considered here was presented in [7]. The
irradiance is related to the biomass concentration (denoted as X for the moment), the depth
of the culture (z, see Figure 1), and few coefficients: the mass absorption (Ea), the mass
scattering (ES), and the backward scattering fraction (b).

G(z) = q0 × e−
1+α
2α Ea×X×z; α =

√
Ea/(Ea + 2bEs), (1)

where α is the linear scattering modulus.
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Figure 1. Schematic representation of light attenuation inside the photobioreactor.

The attenuation of light creates a heterogenous light field; the growth decreases along
with the increase in the culture’s depth. Coupling between radiative models and growth
kinetics models is present in many papers and has been investigated by numerous authors.
It has been agreed that light is the most important factor that governs growth and must
be considered a substrate. Thus, the specific growth rate of microalgae, µ, is a function of
the light available inside the culture: µ(G(z)). Because there is a different µ for any z, the
coupling between the radiative and kinetic models can be done in two ways:

• An average irradiance, Gavg, can be computed and used to calculate the specific
growth rate, µ

(
Gavg

)
;
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• Various local photosynthetic responses can be calculated µ(G(z)) for various depths z
and used to obtain the average photosynthetic response µ.

In this paper, the second approach is considered, even though both approaches give
similar results. An inhibition model gives the average specific growth rate:

µ = µmax
1
L

L∫
0

G(z)
KS + G(z) + G(z)2/KI

dz , (2)

where µmax is the maximum specific growth rate, KS is the saturation constant, and KI is
the inhibition constant. L is the depth of the PBR (z ∈ [0 L]).

The specific growth rate represents the ratio between the newly formed biomass
and the existing one, thus being given in h−1. To express the biomass concentration, we
considered the volumetric growth rate given below:

rx = rxp − rxd = µ× X− µd × X, (3)

rx is the volumetric growth rate that balances growth (i.e., rxp = the photosynthetic
growth rate) and decay (i.e., rxd = the volumetric decay rate). µd is the specific decay rate,
which describes processes such as cell death or respiration (opposite to photosynthesis). µd
is considered constant here.

Batches are done regularly at a constant incident light intensity. Still, many experi-
mental setups allow light variation over a wide range of intensities. In these conditions, by
expressing the specific growth rate as a function of light, the biomass is an explicit function
of the input, q0.

In this paper, we have adopted the hypothesis that the incident light intensity is
not constant over the entire control horizon and consequently is denoted by q(t). We
emphasize that q(t), which will replace q0, is the control input for the BPR considered in
the closed-loop control structure proposed in this paper.

The amount of light consumed in the process is calculated by simply integrating the
incident light intensity over the interval [t0, t]:

amount of light = A×
∫ t

t0

q(τ)dτ,

where A is the lighted surface of the reactor.
In this work, we have considered the PBR dynamic model to be the following two

ordinary differential equations:
.
x1(t) = rx
.
x2(t) = A× q(t),

where x1(t) is the biomass concentration (in g/L−) and x2(t) the amount of light consumed
up to moment t (in µmol/m2/s). The nonlinear character of the first differential equation
will be clearly expressed in Section 3.1.

The efficiency of a batch can be evaluated by the variable “biomass yield on light
energy”, denoted by Y. It is defined by the ratio between the newly produced biomass and
the amount of light used in the considered interval:

Y(t) =
V × [x1(t)− x1(t0)]

x2(t)
, (4)

where x1(t0) is the biomass concentration at the beginning of the batch and V is the working
volume of the PBR. Other PBR parameters, such as the specific growth rate and existing
biomass, will complete the dynamic model.
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3. Closed-Loop Control Problem
3.1. Optimal Control Problem

The elements defining an optimal control problem (OCP) and their integration into
real applications are presented in [22,23]. In the following, we describe the OCP—called
the photobioreactor optimal control (PBROC)—that was solved in this work. The three
parts that define the PBROC problem are given hereafter.

(1) The dynamic model of the optimized process

As stated in Section 2, the PBR depth is divided into equal kL segments (in our
implementation, kL = 100 for L = 4 cm). The corresponding depth values are zi, i = 1, . . . , kL.
This discretization involves the calculation of the following constants (see Equation (1))
used for the calculation of the state variables:

ki = e−
1+α
2α ×Ea×zi ; i = 1, . . . , kL (5)

The PBR’s dynamic model consists of two state equations as follows:

.
x1(t) = rx (6)

.
x2(t) = A× C× q(t) (7)

where
rx = (µ− µd)× x1(t)
Gi(t) = q(t)× ki

x1(t), i = 1, . . . , kL

µ = µmax × 1
kL
×

kL
∑

i=1

Gi(t)

KS+Gi(t)+
Gi(t)

2

kI

(8)

Equations (8) replace the continuous Equations (1)–(3). The constant C = 3600× 10−6

is present in Equation (7) because the light intensity (µmol/m2/s) will be finally expressed
in mol photons/m2/h.

We recall that q(t) is the control input for this process. With a consecrated notation,
it holds

u(t) = q(t)

The state variables have the following significance: x1(t) = the biomass concentration;
x2(t) = the amount of light consumed up to moment t. The second state variable x2(t)
will be considered within the process model only when the PBR productivity must be
evaluated.

In our work, we are interested in two PBR parameters that can be considered as output
variables: the specific growth rate and the biomass existing in the PBR. These parameters
are calculated as follows:

SGR(t) = µ− µd (9)

m(t) = V × x1(t) (10)

SGR indirectly depends on t through the intermediary of x1(t) and q(t).

(2) Constraints

For the PBROC, the following constraints have to be met:

control horizon: t0 ≤ t ≤ tf; (11)

initial conditions: x(t0) = x0 (12)

bound constraints: qm ≤ q(t) ≤ qM, with t0 ≤ t ≤ tf. (13)

The constants t0 and tf are the initial and final times of the control horizon; qm and qM
are, respectively, the minimum and maximum values of the admissible light intensity.
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Generally speaking, a dynamic system’s evolution might be subjected to other types
of constraints: path constraints, terminal equality constraints, algebraic equality, etc.

(3) Optimum criterion

In our context, the optimal control seeks the control input u(·) minimizing an objective
function I. We recall hereafter its continuous general form:

I(u, t0, t f ) =
∫ t f

t0

L(x(t), u(t))dt + M
(

t f , x f

)
The first part is a Lagrange-type term that measures the quality along the trajectory of

the dynamic system; the second part is a Mayer-type term that measures the quality of the
trajectory in its final state.

The proposed OCP involves finding out the control variable u(·) that meets all con-
straints and minimizes the objective function I. In this paper, a value I(u, t0, t f ) is associated
with each evolution of the system (Equations (6) and (7)):

I = α× x2(t f ) + β
(

m(t f )−m0

)2
(14)

The constant m0 is an imposed value for the biomass m(t) at the final moment tf. The
value x2(t f ) is the total amount of light that has radiated the microalgae culture. Our OCP
has the optimum criterion J defined below:

J = min
u

I(u, t0, t f ) (15)

Equations (14) and (15) correspond to a bilocal optimization problem with a fixed final
time. The minimization of the first term corresponds to a small amount of light, while a
small value for the terminal penalty means achieving the goal m0. Taking into account the
second state equation from Equations (7) and (15), we can render the optimum criterion in
the form

J = min
q(t), t0≤t≤t f

[
w1 ×

∫ t f

t0

q(t)× dt + w2

(
m(t f )−m0

)2
]

. (16)

The constants w1 and w2 are the new scale factors, whose setting is an important issue.
These constants must sufficiently penalize the non-fulfilment of the bilocal constraint but
avoid the minimization of the light term falling into eclipse.

For PBR users, it is important to have minimal final biomass, that is

m(t f ) ≥ m0. (17)

This constraint regards the state variable x1 because it can be written as follows:

x1(t f ) ≥
m0

V
. (18)

Remark 1. The control algorithm (containing the Predictor module) will generate a set of sys-
tem trajectories. The constraint in Equation (17) can be seen as a path constraint defining the
admissible trajectories.

Adding the inequality in Equation (17) to the set of constraints in Equations (11)–(13),
we render the optimum criterion in its final form:

J = min
q(t), t0≤t≤t f

[
w1 ×

∫ t f

t0

q(t)× dt + w2

(
m(t f )−m0

)]
. (19)
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Therefore, we have a weighted combination of the two criteria that transforms our
OCP into a standard optimization problem with a single optimal criterion. To summarize,
the PBROC can be seen as a procedure with:

• Input data: Equations (5)–(13), (17) and (19), all the PBR constructive parameters and
constants;

• Output data: the optimal control variable q(t), t0 ≤ t ≤ t f .

Remark 2. In the following, PM (from process model) denotes Equations (5)–(13). The PBROC
problem is described through the PM plus Equations (17) and (19).

NB: This work aims to give a closed-loop solution to the PBROC problem, which is
more complex than finding the optimal control input sequence applied from the known
initial state.

3.2. Receding Horizon Control Structure

For the PBROC problem stated before, we need a closed-loop solution, i.e., an optimal
controller that sends a value q(t), t0 ≤ t ≤ tf toward the BPR in each sampling period. The
current value q(t) will be computed based on the current state of the BPR such that the
process will meet all the constraints (Equations (5)–(13) and (17)) and the optimum criterion
(Equation (19)).

The control structure adopted in this work to achieve the closed-loop solution is
RHC (see [16,17]) as presented in Figure 2. RHC involves the calculation of the optimum
criterion over the interval [tk t f ], where [tk tk+1] is the current sampling period. Therefore,
the controller has to predict the future evolution of the process (see [16]). That is why the
RHC structure includes a process model, which allows predictions to be made using the
current real state x(k) acquired from the process. The controller selects its control output
u(k) (for the process, it is the control input) as the prediction’s first element and sends it
toward the process. The process feedback arrives after a sampling period when the new
state x(k + 1) is achieved.
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3.3. Controller’s Predictions

In the following, we use the discrete form of the PBROC problem (Equations (5)–(13),
(17) and (19)) in a way that is adapted to the presentation of the next sections. The control
horizon is finite [0, H× T], where H is a positive integer and T is the sampling period. The
discrete moments tk = k× T will be specified simply by k = 0, 1, . . . , H.

In this work, we consider a realistic case of the control input q(t), which is constant
within a sampling period T:

q(t) = qi, t ∈ [i× T, (i + 1)× T); where i = 0, . . . , H − 1; t f = H × T.; qm ≤ qi ≤ qM. (20)
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Hence, the control input is a step function. The continuous process model (Equa-
tions (5)–(9)) can always be converted into a discrete one as follows:

x(k + 1) = f (k, x(k), u(k)); k = 0, 1, . . . , H − 1, (21)

where u(k) = q(t), x(k) = [x1(k) x2(k)]
T, and f is a two-dimensional vector function.

Any overall control sequence Q0 meets all constraints and determines the system
evolution over the control horizon. It is defined as follows:

Q0
D
=< q(0), q(1), . . . , q(H − 1) > . (22)

The optimum criterion (Equation (19)) has its discrete form presented hereafter.

J = min
Q0|m(H)≥m0

{
w1 × A× C

H−1

∑
i=0

q(i) + w2 × [V × x1(H)−m0]

}
. (23)

The min operator is applied for the set of sequences that leads to final biomass greater
or equal to m0.

At each moment k, the controller makes predictions over the predicted horizon [k, H].
A predicted control sequence has the following form:

pcs(k) D
=< q(k|k ), q(k + 1|k ), . . . , q(H − 1|k ) >, k = 0, 1, . . . , H − 1, (24)

where q(k + i|k) , i = 0, . . . , H − k− 1 is the predicted value for the control input q(k + i)
based on our knowledge up to moment k.

The controller uses an algorithm to generate such control sequences and to determine
the optimal one. In this work, the optimal predictions will be made by the APSO algorithm.

Remark 3. Note that the state x(k) is not estimated because it is acquired from the process at every
sampling moment. This state, the process model (Equation (21)), and a generated pcs(k) allow
estimation of all the intermediary states and computation of the objective function.

The control input q(k + i|k) is kept constant within the sampling period [k + i, k + i + 1],
such that a pcs represents a step function.

Remark 4. It should also be noted that q(k + i|k) 6= q(k + i); the value q(k + i|k) is a future
control input predicted at the present moment, whereas the future real control input q(k + i) is
unknown at the prediction moment. We can assert the same thing for the state variables.

Using the current state x(k) = x(k|k), the generated pcs(k) and the process model
(Equation (21)), the controller can calculate the corresponding predicted state sequence,
pss(k), as defined below:

pss(k) D
=< x(k|k), . . . , x(H |k) >, k = 0, 1, . . . , H − 1 (25)

Equation (25) refers to the prediction horizon [k, H] and the state trajectory that starts
with x(k). The sequence pss(k) has a length greater by one unit than pcs(k).

Within the RHC loop, the controller has to make an optimal prediction, that is, to
calculate the optimal control sequence (ocs)

ocs(k) D
=< q∗(k|k), . . . , q∗(H − 1|k) >, k = 0, 1, . . . , H − 1 (26)

that minimizes the objective function, as below:
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J(k, x(k)) = min
pcs(k)|m(H)≥m0

{
w1 × A× C

H−1

∑
i=k

q(i) + w2 × [V × x1(H)−m0]

}
(27)

ocs(k) = arg J(k, x(k)) (28)

The optimal state sequence oss(k) is the pss(k) corresponding to the optimal control
sequence (ocs). The controller can now establish the current control output using ocs(k).
This is the first element of the sequence ocs(k):

u(k) = q∗(k|k) D
= q∗(k). (29)

Table 1 presents an outline of the controller’s actions for every sampling period. Its
structure is a general one that uses a generic function (“Predictor”).

Table 1. Outline of Receding Horizon Controller.

1 Obtain the current value of the state vector, x(k).

2 ocs(k)← arg J(k, x(k))/*call Predictor function*/

3 u(k)← q∗(k)

4 Send u(k) towards the dynamic system

5 Shift the prediction horizon and wait for the next sampling period

To determine the optimal prediction in line #2 is not a simple job because of the
computational complexity the Predictor faces. Except for the first value of the sequence
ocs(k), the remaining part is not used. This fact has a simple explanation: ocs also proves
that an admissible final state is accessible from the current state x(k). The same thing must
be proved for the next moment (k + 1), starting from a new state variable acquired from the
process (Remark 3).

3.4. A Soft Sensor to Determine the Range of Control Output Values
3.4.1. Necessity

Generally speaking, the control output value is subjected to the constraint in
Equation (13), where the bounds qm and qM are mainly technological limits. The light
intensity q(k) can be supplied between these bounds. For example, in this work, qm = 50
and qM = 2000 µmol·m−2·s−1, which is a very large interval. Therefore the computational
complexity of the algorithm making the predictions is very important.

We define the admissibility domain (Dk) of the control input as the interval containing
all the values that lead to a favorable process evolution (e.g., meeting certain dynamic
constraints). For example, we can consider only the input values that entail positive values
for the growth rate of microalgae. We emphasize that the admissibility domain depends on
the current state of the process and the “favorable” dynamic constraint at hand.

If the current state of the process entails, for certain physical reasons, a narrower
interval Dk ⊂ [qm, qM] such that q(k) ∈ Dk, this situation could be used to diminish the
computational complexity. The process control input will be looked for in a smaller interval.
Hence, the constraint in Equation (13) could be replaced by

q(k) ∈ Dk, Dk ⊂ [qm, qM]. (30)

NB: The process control input may be considered, at the same time, to be the control
output q(k) issued out from the controller because it is the connection between the controller
and the process.
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Using narrower intervals, we expect to improve the Predictor’s computational com-
plexity, which in this simulation study is based on the APSOA. This improvement will be
proved in the next sections.

This section proposes a soft sensor to reduce the admissibility domain of the process’s
control input according to its current state. The sensor returns information about the
domain Dk meeting Equation (30). This is based on:

• measurement of the biomass concentration (x1(k)) and
• the numerical integration of the PM over the next sampling period ([k, k + 1]) for a

certain number of light intensity values. These values are considered successively as
the control output for the current sampling period:

q0(l), l = 1, . . . , nl; q0(l) ∈ [qm, qM]; (31)

For example, in our simulations, we have adopted nl = 40.
The sensor’s estimations are based on a real measure x1(k) and refer only to the

current sampling period to be realistic. In the next sampling period, the sensor will be
based on the new real measure x1(k + 1).

The sensor makes the integrations and generates its output OUT(k), which the Pre-
dictor can use in two different ways to define a smaller interval Dk (as described later in
this section).

3.4.2. Controller Structure with Soft Sensor

Figure 3 shows how the SENSOR is included in the controller. It also shows how
data circulate among modules and between the controller and the process in sampling
period k. To understand this figure, let us suppose that the biomass concentration x1(k) is
acquired from the process at the beginning of the current sampling period. All the modules,
including the SENSOR, have the data necessary for their calculations and estimations.
Finally, the controller computes the output u(k) = q*(k), which is sent toward the process
(red lines are used for the information exchanged between the controller and the process).
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The latter evolves due to the control output u(k) and will produce a new biomass
concentration returned to the controller after a sampling period (x1(k + 1)).
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3.4.3. Output Parameters of the Soft Sensor

To understand what the soft sensor evaluates and what information is returned, we
shall analyze the PBR evolution over a period of time, for example, [0, 50] hours.

Figure 4 depicts the evolution of the state variables during the interval [0, 50] hours.
The initial values of the state variables and all the system parameters are presented in
Appendix A. At the moment k = 50, the following values are obtained through numerical
integration of the PM:

x1(50) = 1.5137 g/L SGR(50) = 0.0114 h−1. (32)

One may wonder if there is a narrower interval, D(50), within which the controller
would search for the next control output u(50). To respond to this question, a certain
number of values for light intensity u(50) = q(50) = q0 can be tested. Considering the
initial state (Equation (32)), we carried out the numeric integration of the PM over the next
sampling period (one hour) for all these values (see Equation (31), with nl = 40). We noted
the final values for the biomass concentration, SGR, and biomass yield on light energy.
Figure 5 presents these final values as a function of light intensity.
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The soft sensor returns information that can define narrower intervals Dk ⊂ [qm, qM]
for the current sampling period. We can call this interval the admissibility domain for the
control output at moment k. There are two modes of using this information.

In the first mode (mode = 1), the light intensity, q(k), avoids the values placed at the
extremities of the interval [qm, qM]. On the left, the values for which the specific growth is
negative are avoided because the biomass will decrease. On the other side, very large light
intensity values lead to growth saturation inside the PBR and a certain inefficiency when
considering biomass yield on light energy. In this mode, the light intensity belongs to the
following interval:

D(k) = [q1
m, q1

M];
q1

m = min{q0|SGR(q0 ) ≥ 0};
q1

M = p× arg max
q0∈[qm , qM ]

SGR(q0); 0 <p< 1
. (33)
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The value q1
M is a fraction of the light intensity that produces the maximum SGR. In

this work, we have considered p = 0.8. Therefore, in our example, a reasonable choice is to
consider D(50) = [150 , 1101] µmol·m−2·s−1, like in Figure 5 where the red lines define
the two values (q1

m and q1
M). Aiming to use this mode, the first two output parameters of

the soft sensor are q1
m and q1

M.
The second mode of using the sensor (mode = 2) is related to the biomass yield on light

energy (Equation (4)). Figure 5 shows Y as a function of light intensity. In our case, the value
qopt(k) = 451 µmol·m−2·s−1 determines a maximum value for Y. This information can be
useful in control applications that aim to maximize Y over larger intervals. In the PBROC
problem, apparently, this information would not be useful because we have to minimize
the amount of light while a specified quantity of biomass is produced. Nevertheless, the
strategy to control the PBR using light intensity values around the optimal value (qopt)
would have a beneficial influence. In this sensor mode, the light intensity belongs to the
following interval:

D(k) = [(1− r)× qopt
(
k), (1 + r)× qopt(k)]; 0 < r < 1. (34)

In this work, after a few tests, we chose the value r = 0.2, which offers a sufficient
range for the control output and keeps a certain optimal behavior. The simulations proved
that this mode produces very good results. Let us remark that if the value of Y is near
optimal in the current sampling period, the amount of light is near minimal for the newly
produced biomass. This is why the global optimum criterion can be determined using the
interval in Equation (34).
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The soft sensor’s third parameter is the value qopt(k). It belongs to the calling applica-
tion to compute the extremities of the interval in Equation (34) using an appropriate value
r. Finally, the list of parameters returned by the soft sensor is

OUT(k) =
[
q1

m(k), q1
M(k), qopt(k)

]
. (35)

According to one of the two modes described above, it is up to the calling application
to use this information.

3.4.4. Implementation of the Soft Sensor

The SENSOR function is described by the pseudocode presented in Table 2. To estimate
its output parameters, the SENSOR has the biomass concentration as the input variable.
Other important information is available through global variables: the current moment,
k, sampling period, T, and the PBR’s dynamic model SPM (simplified to PM). The latter
includes only Equations (6) and (9) concerning the biomass concentration and SGR.

Table 2. Algorithm of the soft sensor.

function
[
q1

m(k), q1
M(k), qopt(k)

]
← SENSOR(x1(k))

1 Initialize the light intensity vector (q0(l), l = 1, . . . , nl) according to Equation (31).

2 Initializations: p = 0.8; X0 = [x1(k) 0].

3 for j = 1, . . . ,nl

4 [Bc(j), SGR(j), Y(j)]← EvalState(SPM, X0, [0, T], q0(j))

5 if Y(j) < 0 then Y(j) = 0

6 end

7 f ound← 0; j1 ← 1 /*start computing q1
m(k)*/

8 while (j1 < nl) & (found = 0)

9 if (SGR(j1) > 0) f ound← 1

10 else j1 ← j1 + 1

11 end

12 end

13 q1
m(k)← q0(j1)

14 Sg80← p×max{SGR(j), j = 1, . . . , nl} /* start computing q1
M(k)*/

15 j2 ← 1; di f ← |SGR(j2)− Sg80| ;
16 for m = 2, . . . , nl

17 dx = |SGR(m)− Sg80|
18 if (dx < di f )

19 di f ← dx; j2 ← m ;

20 end

21 end

22 q1
M ← q0(j2)

23 j3 ← argmax
j
{Y(j), j = 1, . . . , nl} /* start computing qopt(k)*/

24 qopt(k)← q0(j3)

25 end SENSOR
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Remark 5. The biomass concentration can be determined online due to a linear correlation between
the dry matter and the turbidity of the culture. The dry matter can be determined daily, and the
turbidity measured online (see [10]).

After the numerical integration of the SPM, to estimate its output parameters, the
SENSOR uses very simple and fast methods whose precision is satisfactory. The greater the
value of nl, the more precisely the three output parameters are determined. A very high
precision for these parameters is not mandatory because the two intervals Dk will be used
in a stochastic environment.

Line #1 can be implemented, for example, by a loop that generates the following vector:

q0 = [qm, qm + ∆, qm + 2∆, . . . , qM]; ∆ =
qM − qm

nl − 1
. (36)

The numerical integration for the nl light intensities is carried out within lines #3–#6.
The function EvalState is called at line #4 and achieves the SPM numerical integration over
a sampling period ([0 T]), starting from the initial state X0 and applying the light intensity
q0(j). The integration results are the biomass concentration (Bc(j)), SGR(j), and Y(j) at the
final moment, T.

Lines #7–#13 calculate q1
m(k) as being the first light intensity that involves a positive

value of SGR. The value q1
M(k) is determined in lines #14–#22 as being q0(j2), to which

the SGR that is the closest to Sg80 (defined in line #14) corresponds. The third output
parameter is calculated in lines #23–#24. The value qopt(k) ensures the maximum value
of Y.

A real implementation of the SENSOR—using the MATLAB language and system—is
presented within the files “SENSOR.m” and “XXEvalState.m” inside the folder
“PSO_pred_senz”.

4. Prediction Based on Adaptive PSO Algorithm
4.1. Brief Description of PSO

PSO is a well-known metaheuristic used in many applications [24–26]. To keep the
presentation self-contained, we present hereafter a few elements defining this metaheuristic
for the readers that are newcomers in the field of PSO. Its detailed structure is given in
Appendix B.

A particle swarm system aims to optimize an objective function with n decision
variables through a simulated movement of the particles within the search space where the
objective function is defined. The latter models the “environment” shape, i.e., the altitude
of “valleys” and “hills”, which characterizes the optimization problem (OP). Each particle
“flies” over new regions and updates its information. In the initial version of PSO, the
particles communicate among themselves through the intermediary of a global variable,
memorizing the swarm’s best position “encountered”.

As the search process proceeds, the exploration decreases, and the exploitation is
intensified. Finally, the particles converge to the global best solution of the OP. The main
elements concerning the analysis of PSO algorithms are presented in [24]. The convergence
of PSO algorithms is addressed in [23,24]. Results guide the choice of algorithm parameters.

The swarm is composed of N particles, coded through a three-component vector,
usually denoted by

(
Xi, Vi, Pbesti

)
. Each component is an n-dimensional vector representing

the position, speed, and best personal position reached in the search process (see [20]). It
holds as:

Xi =
(

x1
i , x2

i , . . . , xd
i , . . . , xn

i

)
, Vi =

(
v1

i , v2
i , . . . , vd

i , . . . , vn
i

)
Pbesti

=
(

p1
besti

, . . . , pd
besti

. . . , pn
besti

)
, i = 1, 2, . . . , N
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An iterative process simulates the evolution of the particle swarm. Pgbest denotes the
particles’ best position up to the current step, called the “global best” position. When the
algorithm ends, that is when convergence is achieved; Pgbest is the OP solution.

The PSO algorithm’s main action is updating the speed and position of particles
at each iteration of the search process. This update is carried out using the following
equations:{

Vi(t + 1) = w×Vi(t) + C1 × rand1 × (Pbest(t)− Xi(t)) + C2 × rand2 ×
(

Pgbest(t)− Xi(t)
)

Xi(t + 1) = Xi(t) + Vi(t + 1)
(37)

w is inertia weight, C1 and C2 are acceleration coefficients, rand1 and rand2 are random
numbers in the interval [0, 1], and t is the step number.

4.2. Adaptive PSO Algorithm

The PSO algorithm used in this paper uses two advances: hybrid topology and
adaptation of particle speed. Hybrid topology particle swarm optimization (HTPSO) [19,24]
improves the PSO metaheuristic with better communication abilities among particles. It
is also enhanced with adaptive updating of the particle speed by a continuous change of
some algorithm parameters.

The proposed algorithm will be referred to as APSOA (Adaptive PSO Algorithm),
implicitly including hybrid topology.

APSOA also uses a swarm’s local topology, regarded as a communication network.
The local topology means the existence, for any particle #i, of a “social neighborhood”, i.e.,
a set of 3–5 particles that inform particle #i about their best personal experience. These
neighborhoods are settled deterministically or randomly (see [19,24]). Each particle will
decide the local best position Plbesti

, which is the best experience of the particles belonging
to the “social neighborhood” (including the particle itself). It holds that:

Plbesti
=
(

p1
lbesti

, . . . , pd
lbesti

. . . , pn
lbesti

)
; d = 1, . . . , n; (38)

A new term, containing C3 and rand3, appears in the speed equation (see [24]). The
updating of the speed and position is performed using the following equations:

vd
i (t + 1) = w× vd

i (t) + C1 × rand1 ×
(

pd
besti

(t)− xd
i (t)

)
+

+C2rand2

(
pd

lbesti
(t)− xd

i (t)
)
+ C3rand3

(
pd

gbest(t)− xd
i (t)

)
xd

i (t + 1) = xd
i (t) + vd

i (t + 1)

; d = 1, . . . , n (39)

An efficient technique can enhance the APSOA: adaptation of particle speed. This
technique modifies the coefficients C1, C2, C3, and w during the iterative process (see [19]).
These coefficients are adapted to the phase of the search process and prepared to help the
algorithm’s convergence. A linear increase for the coefficients C1, C2, and C3 between their
minimum and maximum values will adapt the particles’ speed. At the same time, the
parameter w decreases as follows:

C1(t) = C1min + (C1max− C1min)t/T; C2(t) = C2min + (C2max− C2min)t/T;
C3(t) = C3min + (C3max− C3min)t/T; w(t) = wmax− (wmax− wmin)× t/T

(40)

T is the estimated or maximum number of steps until convergence.
Because the structure of APSOA is well known and has already been presented in

many papers, including [19,24], this structure is described in Table A1 in Appendix B.
However, some specific characteristics are mentioned hereafter:

• APSOA is organized like a function of five input parameters;
• The predicted sequence length (h) is an input parameter because RHC involves pre-

dicted sequences with different lengths;
• k and x0 define the moment and initial state of the process, for which the optimal

sequence is determined.
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• xm and xM are vectors with h elements. They are composed of the minimum and
maximum values for each component of the predicted sequence. The values xm(1)
and xM(1) are determined by the SENSOR. The other values are set to qm and qM
respectively.

• The function RHC_EvalFitnessJ evaluates the objective function resulting from
Equation (27).

4.3. Predictor Structure

The structure of the Predictor is presented in Table 3 as the pseudocode of the function
Predictor_SZ, which has the following input parameters:

• k is the current moment when the controller calls the Predictor to make an optimal
prediction;

• x0(k) is the initial state (biomass concentration) acquired from the process;
• x1

m and x1
M are the two extremities of the interval Dk determined by the SENSOR

(whatever the utilization mode).

Table 3. Algorithm of the Predictor function.

function Predictor_SZ(k, x0, x1
m, x1

M)

1 Initialization; /*space reservation for each particle*/

2 h← n− k

3 xm(1) = x1
m; xM(1) = x1

M; /*From SENSOR*/

4 for i = 2, . . . , h /* if h ≥ 2*/

5 xm(i) = qm; xM(i) = qM; /*Technological limits*/

6 end

7 Pgbest← APSOA(k, h, x0, xm, xM ) /*call the metaheuristic */

8 ocs← Pgbest

9 return ocs

The predicted sequence will have a variable dimension, h, according to line #2, where
n corresponds to the total control horizon.

The Predictor has two main tasks:

• To set the two vectors’ values, the control output limits for the predicted sequences
(lines #3–#6). The two vectors (xm and xM) have the same length as the predicted
sequences. The values from the SENSOR are assigned to the first element of these
vectors, corresponding to the first control output u∗(k). The other limits are qm and qM.

• To call the function APSOA with the appropriate arguments. The best prediction (ocs)
is returned to the controller.

To describe the Predictor’s structure simply, APSOA was presented before as a function
(a separate program unit). In our real implementation, the APSOA code is included in the
Predictor code. Details are given in Appendix B.

5. Simulation Study

The organization of similar simulations is presented in [27–29]. All of them concern
applications of computational intelligence [30].

5.1. Study Objectives and Preliminaries

All the control tools developed in previous sections are available now to tackle the
PBROC problem stated in Section 3.1. This simulation study has a few objectives, as
listed below:
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1. To implement and simulate a closed loop based on Receding Horizon Control devoted
to solving the PBROC problem.

2. To study the feasibility of the prediction technique using a metaheuristic algorithm.
In our case, we have chosen the Adaptive PSO Algorithm. When metaheuristic
algorithms are involved in optimal control, the main impediment often encountered
is the computational complexity, which affects the controller’s computing time for the
control output.

3. To validate the hypothesis that the computational complexity of the prediction will
diminish by introducing the admissibility domain Dk for the control output.

4. To validate the hypothesis that the proposed soft sensor can realistically provide the
admissibility domains using the biomass concentration measured from the process.

Objectives 1 and 2 will be analyzed together as well as objectives 3 and 4 because they
are intrinsically connected.

The simulation study will be performed with an application that emulates the closed-
loop functioning. Some modules will be implemented realistically, like in a real-time
application, with only a few adjustments devoted to the simulation.

• The Controller, which by definition includes the PM, is also connected to the real
process (PBR). The soft sensor is connected to the process as well. Both modules are
realistically implemented but should have connections with the process (PBR). Only
these connections are simulated.

• In our application, the real process is also simulated using the PM (see Remark 2). The
red lines in Figure 3 also show the simulated connections that create the closed loop.

• The sequence of sampling moments is simulated.

5.2. Closed-Loop Implementation

The algorithm RHC_Closed_Loop, which simulates the closed-loop solution of the
PBROC problem and will allow us to analyze the proposed tools, is described in Table 4.

Table 4. Closed-loop simulation—description of RHC_Closed_Loop algorithm.

1 Initializations: PM parameters and constants, see Appendix A
Some parameters and constants of the APSOA

2 mode = 0; p = 0.2; /*or mode = 1, or mode = 2*/

3 Compute ki, i = 1, . . . , kL /*see (5)*/

4 x0 ← 0.36 ; /*Initial biomass concentration*/

5 state(1)← x0;

6 n← 120; /*Final moment t f = 120 h*/

7 ∆t← 1 ; /*SENSOR’s Horizon */

8 k← 0 ; /*Sampling moment counter*/

9 while k <= n − 1

10 if (mode = 0)

11 x1
m ← qm; x1

M ← qM

12 else
[
x1

m, x1
M, uopt

]
← SENSOR(x0, ∆t) /*mode = 1 or mode = 2*/

13 if (mode = 2)

14 x1
m ← (1− p) ∗ uopt; x1

M ← (1 + p) ∗ uopt

15 end

16 end /*else*/

17 end /*if*/
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Table 4. Cont.

18 ocs← Predictor_SZ(k, x0, x1
m, x1

M)

19 u(k)← ocs(1); /* optimal control output q∗(k)*/
/*Send u(k) towards the process */

20 xnext ← RealProcessStep(u(k), x0, k) ;
/*Wait for the next sampling moment and obtain the next state of the process*/

21 x0 ← xnext /* the new initial state */

22 k← k + 1 /*next sampling period */

23 state(k + 1)← x0

24 end /*while*/

25 /*Generate and display simulation results*/

After the appropriate initializations for the PM, APSOA, and simulation, the algo-
rithm is mainly structured through a “while-loop” that follows the sampling moments
k = 0, . . . , t f − 1.

Basically, this loop uses the SENSOR (lines #10–#17), calls the Predictor (line #18), sets
the control output (line #19), obtains the new state of the process (line #20), and moves on
to the next sampling moment (lines #21–#23).

The variable mode, set in line #2, specifies how the SENSOR is used. If mode = 0, the
SENSOR is not called, and the admissibility domain Dk is the widest possible (#11). The
SENSOR is called within line #12, as though mode = 1. If it is actually mode = 2, lines #13–#15
make the corrections.

The function “RealProcessStep(u(k), x0, k)” simulates the state evolution of the real
process. It integrates the PM over the next sampling period, starting from the initial state
x0 and having the step function u(k) as a control input.

Lines #19 and #20 contain comments corresponding to the red lines from Figure 3. The
vector “state” has (n + 1) elements and stores the process states for k = 0, 1, . . . , n. Finally, it
represents the global oss (see Section 3.3) obtained with RHC.

Details concerning the implementation of the RHC_Closed_Loop algorithm are given in
Appendix C.

6. Results
6.1. Simulation of the Tandem SENSOR–Predictor

To better understand how the SENSOR and Predictor modules work together, we
present in this section a simulation of their standalone execution (which is not included in
the closed-loop control). We calculate the optimal control sequence at the moment k = 0,
that is, an ocs with n = 120 control output, considering different values for m0. The SENSOR
(mode = 2) is called before the Predictor call as below:[

x1
m, x1

M, uopt

]
← SENSOR(x0, ∆t)

x1
m ← (1− p) ∗ uopt; x1

M ← (1 + p) ∗ uopt

ocs← Predictor_SZ(k, x0 , x1
m , x1

M

)
.

This relates to lines #12–#18 of the RHC_Closed_Loop algorithm (Table 4). Considering
the initial biomass concentration x1(0) = 0.36 g/L, the PM is integrated using ocs. Table 5
presents the results.

For each execution, five values are displayed: the target m0 (g), newly produced
biomass (g), value of the optimum criterion (J), amount of Light x2(H) (mol photons/m2/h),
and the number of calls (Ncalls) of the objective function. We can conclude that the target
m0 is precisely achieved in a small number of objective function calls.
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Table 5. Results produced by the standalone couple SENSOR–Predictor.

m0 ∆m J x2(H) NCalls

1.5 1.5012 3.3389 3.3273 210

1.8 1.8013 3.8872 3.8747 240

2.0 2.0005 4.5031 4.4984 195

2.2 2.2018 5.6522 5.6344 300

2.4 2.4035 6.2092 6.1744 180

2.6 2.6166 7.6403 7.4739 180

2.8 2.8926 9.8765 8.9504 330

3.0 3.0019 8.9459 8.9267 240

6.2. Closed-Loop Simulation without SENSOR

In this section, the simulation results of the RHC structure for solving the PBROC
problem are presented. We give hereafter the input data for the problem we have solved.

The PM presented in Section 3.1 is characterized by the physical and constructive
parameters given in Appendix A. In addition, we have the following initial data:

• Control horizon: 120 h; t f = 120 h; n = H = 120;
• Sampling period: 1 h; T = 1;
• Light intensity bounds: qm = 50; qM = 2000 (µmol·m−2·s−1);
• Initial biomass concentration: x1(0) = 0.36 g/L.

Desiderata:

• To fulfil the optimum criterion in Equation (27), where w1 = 1; w2 = 10;
• To ensure the newly produced biomass:

m0 ≥ 3 g (41)

The APSOA has the parameters presented in Appendix B and tuned for this applica-
tion. Their values result clearly from the first lines of the script RHC_PSO_PBRJ13_SZ.m.
Very important for the algorithm’s computational complexity is the number of adopted
particles in the swarm:

N = 15 (42)

Because the prediction is based on a stochastic algorithm, to analyze the simulation
results, the RHC_Closed_Loop program was ran 30 times for each instance of the PBROC
problem. Practical details about this operation are given in Appendix C.1.

A realistic measure of this application’s computational complexity is the number of
calls of the objective function during the control horizon. This fact is true, especially when
the objective function involves numerical integrations, which have significant complexity
and are time-consuming. This measure is also adequate for comparison between different
versions of applications. That is why the RHC_Closed_Loop totalizes the number of calls for
each sampling period.

The results of this simulation series without SENSOR (controller in mode = 0) are given
in Table 6.

For each execution, four values are displayed: the value of the optimum criterion (J),
the amount of light (Light) over the entire control horizon (mol photons/m2/h), newly
produced biomass (g), and the average number of calls (Ncalls). The latter equals the
total number of calls divided by the number of sampling periods (n = 120). The sampling
periods have very different numbers of calls: the greater the value of k, the smaller the
number of calls. However, it is easier to perceive and compare the total number of calls
divided by 120 (Ncalls).
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Remark 6. It can be seen that newly produced biomass equals almost exactly 3 g for all executions.
This fact is the consequence of how the constraint in Equation (41) is checked. Equation (27) defining
the optimum criterion over the prediction horizon [k, H] specifies that only the predicted control
sequences that lead to m(H) ≥ m0 are considered. In our implementation of the objective function
(like a programming unit), the constraint in Equation (41) is treated like a trajectory constraint
(Remark 1). If the constraint in Equation (41) is not met, the value returned by the objective
function is infinity, and the trajectory is not admissible. Otherwise, it equals the sum of the two
terms (see file RHC_EvalFitnessJ13.m, which implements the objective function). On the other side,
the optimum criterion in Equation (27) looks for a minimum for both terms and their sum. The
smaller the amount of light, the smaller the value m(H)−m0 (for physical reasons). Therefore,
naturally, APSOA will find a minimum for which we have m(H)−m0 ≈ 0.

Because the constraint in Equation (41) is met for all the executions, the produced
biomass cannot discriminate among the quality of simulations. Therefore, we shall deter-
mine the typical one among the 30 simulations using, of course, the value of the optimum
criterion. We shall consider the simulation that produces the closest value to the average
optimum criterion as the typical execution.

Table 6. Simulation series for RHC_Closed_Loop without SENSOR.

Run # J
Light

[ mol photons
m2·h ]

∆m
(g) NCalls Run # J

Light
[ mol photons

m2·h ]
∆m
(g) NCalls

1 9.0136 9.0077 3.0006 960.00 16 9.2717 9.2717 3.0000 672.625
2 9.0423 9.0347 3.0008 665.000 17 9.3212 9.3212 3.0000 727.250
3 9.0523 9.0523 3.0000 951.000 18 9.2314 9.2314 3.0000 689.000
4 9.0448 9.0447 3.0000 845.000 19 9.2276 9.2276 3.0000 758.125
5 9.1961 9.1838 3.0012 940.000 20 9.2726 9.2726 3.0000 731.125
6 8.9792 8.9764 3.0003 962.000 21 9.2753 9.2753 3.0000 848.500
7 9.1024 9.0582 3.0044 663.000 22 9.3992 9.3992 3.0000 717.375
8 9.0728 9.0691 3.0004 959.000 23 9.2007 9.2007 3.0000 738.750
9 9.0605 9.0419 3.0019 841.000 24 9.2302 9.2302 3.0000 839.875
10 9.0059 8.9988 3.0007 941.000 25 9.4145 9.4145 3.0000 654.000
11 9.3527 9.3527 3.0000 773.625 26 9.4045 9.4045 3.0000 745.500
12 9.4327 9.4327 3.0000 662.875 27 9.2029 9.2029 3.0000 759.125
13 9.2569 9.2569 3.0000 747.750 28 9.4126 9.4126 3.0000 753.625
14 9.2506 9.2506 3.0000 785.125 29 9.2264 9.2264 3.0000 798.250
15 9.4629 9.4629 3.0000 812.375 30 9.2924 9.2924 3.0000 790.500

The minimum, average, and maximum values and standard deviation for the optimum
criterion (J) are given in Table 7.

Table 7. Statistics regarding the optimum criterion.

Jmin Javg Jmax Sdev Jtypical

8.979 9.224 9.463 0.142 9.226

In our simulation series, there is an execution that yields Jtypical = 9.226. The other
simulation results (line #29 in Table 6) are presented hereafter:

Jtypical = 9.226; Light = 9.226; ∆m = 3.0000; NCalls = 798.25

For each execution, the 120 values of the quasi-optimal control output are recorded
for the final simulation of the closed loop. The light intensity for the typical execution is
depicted in Figure 6a.
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This control action involves the typical evolution of the state variables in Equations (6)
and (7) and the newly produced biomass depicted in Figure 6b.

The simulations have proved that the APSOA converges for all executions. This
fact is a characteristic of this metaheuristic with the considered advances. Despite the
computational complexity of the first sampling period, when the pcs’s length is maximal,
the controller calculates the control variable in a few decades of seconds (depending on
processor speed). This amount of time is very satisfactory for a sampling period of 1 h.
Hence, the control structure could be a solution even for real-time control.

6.3. Closed-Loop Simulation Using the Soft Sensor (mode = 1)

The RHC_Closed_Loop program with SENSOR (mode = 1) was ran 30 times for the
same instance of the PBROC problem as in the previous section. Practical details about this
simulation are given in Appendix C.2. The results of this simulation series are given in
Table 8.

Table 8 has two particularities. The first one concerns column ∆m, which always
equals exactly 3 g. The second one is the consequence of the first one; columns J and Light
are identical because the second term of J is practically null. The constant w2 determines
these particularities because it privileges the minimization of J’s second term.

Remark 7. A smaller value of w2 entails a relaxation for the minimization of the second term; finally,
the value of J will be greater, and the values of J and Light will be different. This relaxation will lead
to a relaxation of the searching process and, consequently, a smaller number of objective function
calls. Hence, we have a spare strategy to diminish the number of calls, choosing a smaller value of
w2. The price to pay is greater light and a greater newly produced biomass (to a small extent).

Table 9 presents the new statistics for the optimum criterion (J). The average value
is practically the same as in Table 6, but what is noteworthy is the standard deviation,
which is smaller by 43%. The new values of J are positioned in a smaller interval. The
difference between Jmax and Jmin equals 0.292, smaller than 0.484 as in Table 6. This is the
consequence of the controller’s commands, which belong to smaller intervals Dk.
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Table 8. Simulation series for RHC_Closed_Loop with SENSOR mode = 1.

Run # J
Light

[ mol photons
m2·h ]

∆m
(g) NCalls Run # J

Light
[ mol photons

m2·h ]
∆m
(g) Ncalls

1 9.2035 9.2035 3.0 773.00 16 9.1755 9.1755 3.0 740.875
2 9.1904 9.1904 3.0 717.00 17 9.3622 9.3622 3.0 735.625
3 9.2315 9.2315 3.0 788.00 18 9.1986 9.1986 3.0 678.500
4 9.4021 9.4021 3.0 739.00 19 9.3125 9.3125 3.0 739.625
5 9.1366 9.1366 3.0 728.00 20 9.3089 9.3089 3.0 728.750
6 9.3324 9.3324 3.0 715.00 21 9.2234 9.2234 3.0 639.125
7 9.2815 9.2815 3.0 784.00 22 9.3419 9.3419 3.0 791.875
8 9.2265 9.2265 3.0 779.00 23 9.2711 9.2711 3.0 661.375
9 9.1967 9.1967 3.0 791.00 24 9.2027 9.2027 3.0 818.875
10 9.1718 9.1718 3.0 763.00 25 9.2818 9.2818 3.0 744.875
11 9.3391 9.3391 3.0 854.00 26 9.2994 9.2994 3.0 639.500
12 9.2078 9.2078 3.0 686.375 27 9.1633 9.1633 3.0 764.875
13 9.1327 9.1327 3.0 690.625 28 9.4251 9.4251 3.0 690.125
14 9.2975 9.2975 3.0 765.375 29 9.2925 9.2925 3.0 660.00
15 9.3036 9.3036 3.0 742.125 30 9.3970 9.3970 3.0 676.00

Table 9. Statistics regarding the optimum criterion (SENSOR mode = 1).

Jmin Javg Jmax Sdev Jtypical

9.133 9.264 9.425 0.080 9.271

The typical simulation produces the following results (line #23 in Table 8):

Jtypical = 9.271; Light = 9.271; ∆m = 3.0000; NCalls = 661.375.

The average value of Ncalls from Table 8 is 734.
The typical simulation of the closed loop with SENSOR (controller in mode = 1) is

illustrated in Figure 7.
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Remark 8. The average number of calls of the objective function equals 734, which is smaller than
791 by 7.2%. This decrease is expected, and although not spectacular, it proves the improvement
in computational complexity due to the soft sensor. The efficiency of the soft sensor is confined to
a certain extent because it has a limited action. At moment k, the pcs covers the interval [k, H]
and has the form given by Equation (24). The soft sensor improves the bounds only for the first
component pcs(k); the other H-k-1 elements will have the initial bounds given by Equation (13). The
SENSOR’s estimations are based on a real measure x1(k) and could not be extended to the other pcs
components because the next real states are unknown. The estimations refer to the current sampling
period to keep them realistic.

Remark 9. The increase in computation complexity is negligible when using the SENSOR because
the PM’s integration covers only the current sampling period. It should be noted that the controller
already acquires the biomass concentration to implement the closed loop.

6.4. Closed-Loop Simulation Using the Soft Sensor (mode = 2)

This time, the SENSOR calculates the best biomass yield on light energy for the current
sampling period. The RHC_Closed_Loop program with SENSOR (mode = 2) was ran
30 times for the same instance of the PBROC problem as in the previous sections. Practical
details are given in Appendix C.3 about how the simulation results were generated. The
results are presented in Table 10.

Table 10. Simulation series for RHC_Closed_Loop with SENSOR mode = 2.

Run # J NCalls Run # J Ncalls

1 8.4403 704.250 16 8.4083 677.500
2 8.4640 638.000 17 8.3669 688.625
3 8.4104 612.000 18 8.4294 660.000
4 8.5084 648.875 19 8.4403 704.250
5 8.3898 715.000 20 8.4640 638.000
6 8.4294 660.000 21 8.4104 612.000
7 8.4403 704.250 22 8.5084 648.875
8 8.4560 768.750 23 8.3898 715.000
9 8.4576 810.125 24 8.3952 730.500

10 8.4159 740.625 25 8.3973 630.625
11 8.4429 728.375 26 8.3669 672.125
12 8.4224 724.125 27 8.4253 777.000
13 8.4655 702.375 28 8.4120 570.000
14 8.3984 714.750 29 8.4475 717.000
15 8.4156 648.000 30 8.4803 645.625

Table 10 has only two columns because the light values equal the J values and the
newly produced biomass is always 3 g, as in Table 7. The minimum, average, maximum and
typical values and standard deviation for the optimum criterion (J) are given in Table 11.

Table 11. Statistics regarding the optimum criterion (SENSOR mode = 2).

Jmin Javg Jmax Sdev Jtypical

8.367 8.430 8.508 0.036 8.429

The typical simulation produces the following results (line #6 in Table 10):

Jtypical = 8.429; Light = 8.429; ∆m = 3.0; NCalls = 660.

The average value of Ncalls is 686.8, smaller than 791 from Table 6 (without SENSOR)
by 13.1%. This decrease in computational complexity is even more important when we
consider the argumentation of Remark 8.
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The typical simulation of the closed loop with SENSOR (controller in mode = 2) is
illustrated in Figure 8.

To explain the SENSOR’s good result, we recall that we want to minimize the amount
of light on the entire control horizon while the constraint in Equation (41) is fulfilled. This
desideratum is equivalent to maximizing Y over the entire control horizon while meeting
the constraint in Equation (41).

Remark 10. Maximizing Y in each sampling period does not imply the maximum value of Y over
the interval [0, H]. It is a “greedy” strategy that, in general, does not ensure the global optimum.
Nevertheless, if the value of Y is near optimal in the current sampling period, the amount of light is
near minimal in relation to the newly produced biomass. At the same time, the predicted sequence
guarantees that the constraint in Equation (41) is met because it generates an admissible trajectory.

After a few exploratory tests of Equation (34), we chose the value r = 0.2, which offers
a sufficient range for the control output to face the minimization of J.

Remark 11. The appearance of Figure 8, which entails a certain monotony of the control output,
is due to the monotony of the value qopt as a function of initial biomass concentration, which is
considered by the sensor within its estimations.
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7. Conclusions

For the PBR and its PM, which is well known and has been validated in previous
papers, we have stated the PBROC problem. The implementation of its solution requires
metaheuristic-based predictions. The Adaptive PSO Algorithm was chosen for its conver-
gence speed. Despite the ability of APSOA to efficiently generate optimal predictions (in
a reasonable time), we have proposed a soft sensor to cope with a very large prediction
horizon (e.g., 120).

The main contribution of our work is the soft sensor, which was conceived to diminish
the Predictor’s computational complexity. The SENSOR is based on measurement of the
biomass concentration and numerical integration of the process model over the current
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sampling period. The returned information concerns the specific growth rate of microalgae
and the biomass yield on light energy. Our proposal generated two modes of using the soft
sensor to reduce the admissibility intervals (D(k)) for the process control input (u(k)).

The simulation study proved that our main contribution, the SENSOR, reduced the
computational complexity significantly, expressed by the number of calls of the objec-
tive function.

To conduct the simulation study presented in this paper, we implemented the pro-
posed algorithms using the MATLAB language and system. The Supplementary Materials
(attached to this article) include scripts and files that show how the closed loop, Controller,
SENSOR, and Predictor (including the APSOA) can be implemented with good results.
Many algorithms and their implementation could be used in a future real-time application,
at least as a starting point.

For future work, we could investigate the conception of sensors for other processes as
a general idea, aiming for the same objective of reducing the admissibility intervals. The
difficulty would be in disclosing the biophysical aspects that justify the limitation of the
admissibility domains according to the current state of the process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21238065/s1, The archive file “PSO_pred_senz.zip” contains all files described in
Appendices B and C.
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Appendix A

Details Concerning the Photobioreactor

• The radiative model: the absorption coefficient, Ea = 172 m2·kg−1; the scattering
coefficient, Es = 870 m2·kg−1; the backward scattering fraction, b = 0.0008 (-).

• The kinetic model: the specific growth rate, µmax = 0.16 h−1; the saturation constant,
KS = 120 µmol·m−2·s−1; the inhibition constant, KI = 2500 µmol·m−2·s−1; the specific
decay rate, µd = 0.013 h−1.

• Volume of the reactor, V = 1.45 × 10−3 m3; the depth, L = 0.04 m; the lighted surface,
A = 3.75 × 10−2 m2.

• The initial biomass concentration x1(0) = 0.36 g/L.

The simulation in Section 3.4.3 was carried out using q0 = 502.3 µmol/m2/s (the light
intensity that radiates the PBR).

The mathematical model was validated (see [10]) on microalgae strains such as Chlamy-
domonas reinhardtii and Scenedesmus quadricauda (see [9]) cultivated in laboratory flat-plate
photobioreactors in similar conditions. The biomass concentration, measured offline as
dry mass, can be correlated with turbidity, measured online by a sensor. The PBRs are
lighted on one side by dimmable LED panels, which the process computer can control. The

https://www.mdpi.com/article/10.3390/s21238065/s1
https://www.mdpi.com/article/10.3390/s21238065/s1
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calibration of the LED panel can be done with a portable light meter; the incident light
intensity is measured inside the reactor at z = 0.

Appendix B

Description of APSOA and Implementation of Predictor

Table A1. Description of adaptive particle swarm optimization algorithm.

function Pgbest← APSOA(k, h, x0, xm, xM )

1

Input parameters: k—the current discrete moment; x0—the current state (biomass
concentration); h—predicted sequence length (Xi has h elements)
xm: vector with h elements—minimum value for each component
xM: vector with h elements—maximum value for each component

2 Initialization: N, h, vmax, xmin, xmax, C1min, C1max, C2min, C2max, C3min, C3max,
wmin, wmax, T, NF, MINNF

3 Generate the particles’ initial velocities as uniformly distributed values in the
interval [−vmax, vmax]h.

4 Generate the particles’ initial positions Xi, i = 1, . . . , N;

5 for i = 1, . . . , N

6 Pbesti
← Xi

7 BEST(i), fitness(i)← RHC_EvalFitnessJ(Xi, x0 , k)

8 end

9 i0 ← arg max {BEST(i), i = 1, . . . ,N};

10 Pgbest ← Xi0 ; GBEST← BEST(i0); /*Determine Pgbest and GBEST */

11 found← 0

12 t← 1;

13 while (t <= T) & (found = 0)

14 Coefficients tuning: w, C1, C2, C3

15 for i = 1, . . . , N /* move the particles swarm*/

16 Plbest i ← Generate_Plbest(i); /* generate “local best”*/

17 for d = 1, . . . , n

18 Update the particles’ speed using Equation (39)

19 Speed_limitation
(

vd
i (t + 1) )

20 xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

21 Position_ limitation
(

xd
i (t + 1)

)
/*using xm, xM*/

22 end

23 fitness(i)← RHC_EvalFitnessJ(Xi, x0 , k)

24 if fitness(i) < BEST(i)

25 Pbest i ← Xi ; BEST(i)← fitness(i); NF(i) = 0;

26 else NF(i) = NF(i) + 1;

27 end

28 if fitness(i) < GBEST(i)

29 Pgbest ← Xi ; GBEST← fitness(i)

30 end
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Table A1. Cont.

31 if min {NF(i), i = 1, . . . ,N} = MINNF then found← 1;

32 t← t + 1

33 end /*while */

34 return Pgbest

The APSOA code is included in the Predictor code in our implementation, which is
the script “RHC_Predictor_SZ.m”. The objective function is implemented within the file
“RHC_EvalFitnessJ13.m”. Both files are inside the folder “PSO_pred_senz”.

Appendix C

The general algorithm RHC_Closed_Loop was implemented according to the three
employment modes and generated three applications (three scripts). Each of them calls the
function “RHC_RealProcessStep.m”.

All the scripts are included in the folder “PSO_pred_senz”, attached to this work.

Appendix C.1. Simulation Details for RHC_Closed_Loop without SENSOR (mode = 0)

The algorithm RHC_Closed_Loop was implemented by the script “RHC_PSO_
PBRJ13withoutSZ.m”. This program was ran 30 times using the script “Loop30_8_50_
withoutSZ.m”. The computation of the statistical parameters, which are presented in
Tables 5 and 6, was conducted using the script “MEDIERE30loop_withoutSZ.m”. Figure 6
was generated using the script “DRAWfigWithoutSZ.m”.

Appendix C.2. Simulation Details for RHC_Closed_Loop with SENSOR (mode = 1)

For this mode, the algorithm RHC_Closed_Loop was implemented by the script
“RHC_PSO_PBRJ13_
SZ.m”. This program was ran 30 times using the script “Loop30_8_50_SZ.m”. The compu-
tation of the statistical parameters, which are presented in Tables 7 and 8, was conducted
using the script “MEDIERE30loop_cuSZ.m”. Figure 7 was generated using the script
“DRAWfigCuSZ.m”.

Appendix C.3. Simulation Details for RHC_Closed_Loop with SENSOR (mode = 2)

For this mode, the algorithm RHC_Closed_Loop was implemented by the script
“RHC_PSO_PBRJ13_SZv2.m”. This program was ran 30 times using the script “Loop30_8_
50_SZv2.m”. The computation of the statistical parameters, which are presented in
Tables 9 and 10, was conducted using the script “MEDIERE30loop_cuSZv2.m”. Figure 8
was generated using the script “DRAWfigCuSZv2.m”.
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