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Abstract

Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by
incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive
impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic
susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated
by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering
the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates
in distinct MS pathophysiological processes, including blood—brain barrier breakdown, inflammatory response,
demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of

environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted
using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might
contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
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Background

Multiple sclerosis (MS) is an autoimmune, inflammatory,
demyelinating and neurodegenerative disease of the cen-
tral nervous system (CNS) [1]. As a result of myelin
sheath destruction, the electric impulse between neurons
is inefficient, and thus the initial symptoms appear [2].
Although symptoms differ from each MS patient, the
most common ones include incoordination, sensory loss,
weakness, changes in bladder capacity and bowel func-
tion, fatigue, and cognitive impairment [3]. Therefore,
MS has serious negative effects on the health-, social,
and work-related issues of patients and their families,
creating a significant socioeconomic burden [4]. The
aetiology of MS is still unknown and requires a close
interaction between genetic susceptibility and exposure
to environmental agents. Synergistic effect of these risk
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factors would be responsible for triggering autoimmun-
ity in MS patients. For this reason, the underlying mech-
anisms involved in the MS pathogenesis can differ
among patients. Common mechanisms are observed in
the pathophysiology of disease and listed next. Autoreac-
tive CD4+ T cells are activated in the periphery [1] by
antigen-presenting cells (APC), that present via the class
II major histocompatibility complex (MHC) receptor an
amino acid similar to myelin peptides synthesised in the
CNS. This interaction activates the differentiation of the
CD4+ T naive cells into CD4+ T helper cells [5]. Upon
activation, the Thl subtype produces interferon gamma
(IFN-y) [6], a cytokine responsible for recruiting CD8+
T cells, B cells and monocytes in the periphery [7].
Then, these proinflammatory cells migrate to the blood—
brain barrier (BBB) throughout the bloodstream, where
they can adhere to the BBB endothelium [8]. In a healthy
brain, immune cells are circulating freely in the menin-
ges orchestrating immune surveillance of the CNS [9].
In MS, the BBB displays an aberrant expression and
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organisation of the endothelial tight junctions [10] that
favours massive lymphocyte trafficking into the brain
[11]. Infiltrated CD4+ T cells in the CNS are reactivated
upon interaction with the resident APCs [12]. After-
wards, the reactivated CD4+ T cells release a variety of
proinflammatory cytokines and chemokines [13], result-
ing in astrogliosis [14] and microgliosis [15]. This
process is exacerbated when infiltrated cytotoxic CD8+
T cells attack oligodendrocytes, causing their destruction
and neuronal death [16]. In parallel, plasma B cells pro-
duce antibodies against CNS self-antigens, contributing
to myelin sheath damage [17]. Plasma B cells in coordin-
ation with monocytes increase the local inflammatory
response by reactivating the autoreactive CD4+ T cells
[18] (Fig. 1). T cell-mediated axonal injury contributes
to trophic/metabolic support deficiency from oligoden-
drocytes as well as a lack of energy by releasing soluble
inflammatory molecules [19]. The pathophysiology of
MS suggests a complex interaction between the genetic
and environmental risk factors [20] regulated by epigen-
etic mechanisms. Epigenetics can provide a stable herit-
able base for understanding the underlying mechanisms
involved in MS [21].

Genetic, epigenetic and environmental factors

The robust susceptibility loci that confer risk for MS are
the human leukocyte antigen (HLA) system, which is lo-
cated in the short arm of chromosome 6 [22]. However,
only 27% of MS heritability can be explained by the gen-
etic variants of the HLA system [23], which supports a
prominent contribution of the environment to the MS
pathogenesis. Indeed, Epstein Barr virus (EBV) infection,
tobacco smoking, vitamin D deficiency, diet style and
sun light exposure are critically involved in MS suscepti-
bility [24, 25]. The individual genetic background in
combination with the environmental risk factors increase
the probability of developing MS. Epigenetic modifica-
tions do not alter the sequence of DNA, and they com-
prise distinct mechanisms such as DNA methylation
(DNAme), histone modifications and micro-RNA [26].
Given the scope of this review, we focus our efforts on
describing the contribution of DNAme in MS.

DNA methylation

DNAme is the most current epigenetic hallmark in human
somatic cells [27]. The methylation of DNA occurs when
a methyl group is transferred to the fifth carbon of a cyto-
sine (5mC) through the action of DNA methyltransferases
(DNMT). This process occurs mainly in CG dinucleotides,
which are commonly found in the regulatory and pro-
moter regions [28]. The addition of methyl groups in the
promoter region contributes to gene silencing [28]. In
mammals, DNMTs are mainly represented by DNMT]1,
DNMT3a and DNMT3b. DNMT1 acts during the cell
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cycle to maintain the DNAme pattern [29] and partici-
pates in the DNA repair system [30]. By contrast,
DNMT3a and DNMTS3b catalyse the de novo addition of
a methyl group into a naked cytosine [31]. This fact occurs
in cooperation with either the specific transcription fac-
tors or the binding transcription factors, which methylate
all the CpG sites uncovered [32].

DNAme is a dynamic process that usually requires the re-
moval of the methyl group (demethylation) to cope with en-
vironmental stimuli [33]. This process can be achieved in a
passive or active manner. Passive DNA demethylation occurs
when DNMT1 activity is misregulated and cannot maintain
the integrity of the DNAme pattern during the DNA replica-
tion, leading to the incorporation of unmethylated cytosine
into the genome [34]. Active DNA demethylation is achieved
when a sequence of enzymatic reactions of oxidation and/or
deamination modifies 5-methylcytosine (5mC) to obtain a
naked cytosine. In the oxidation pathway, 5mC is oxidised by
the ten—eleven translocation (TET) enzymes to 5-
hydroxymethylcytosine (5hmC) [35], which can be further
oxidised to 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) [36]. In the deamination pathway, AID or APOBEC
deaminates 5ShmC to 5-hydroxymethyluracil (5hmU) or 5mC
to thymine [37]. Eventually, all these modified bases (5ShmU,
Thymine, 5fC, 5caC) can be recognised by thymine DNA
glycosylase (TDG) [38] and converted to naked cytosine
through the base excision repair pathway (Fig. 2).

Contribution of DNA methylation in patients with MS

Although the precise role of the DNAme in MS remains
to be fully elucidated, several studies have reported differ-
entially methylated regions in both the immune cells and
brain tissue collected from MS patients (Table 1). There-
fore, we summarise the current published research on
DNAme as follows: BBB breakdown, inflammation, de-
myelination, remyelination failure and neurodegeneration.

BBB breakdown

Infiltration of the autoreactive proinflammatory cells
across the BBB into the brain is one of the patho-
logical features of MS [62]. The BBB is a selective
semi-permeable endothelium that separates the CNS
from the circulating blood. This barrier is composed
of a monolayer of endothelial cells tightly bound
mainly by cadherins [63] and intercellular adhesion
molecule (ICAM) proteins [64]. Cadherins are
calcium-dependent adhesion molecules importantly
involved in cell-cell adhesion [63]. The disruption of
cell-cell interaction mediated by cadherins leads to
BBB permeability [63]. A hypermethylated pattern of
E-cadherin (CDH1) may increase the BBB permeability
in relapsing—remitting MS (RRMS) patients favouring
lymphocyte infiltration into the brain, and lastly, dis-
ease progression [47, 56]. The other adhesion
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Fig. 1 The underlying pathophysiological mechanism of MS. In the first instance, autoreactive CD4+ T cells are activated in the periphery by
antigen presenting cells (APC) that present, in conjunction with class I MHC molecules, similar antigens to those synthesised by the CNS. (1) This
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molecules expressing on the BBB endothelium are the
ICAM family. In particular, ICAM-1 is essential for
leukocyte crawling prior to diapedesis from the blood-
stream to the CNS [65] and plays a remarkable role in
T cell proliferation [66]. Liggett et al. (2010) reported
a hypermethylation pattern for ICAM1 in cell-free
plasma DNA derived from RRMS patients in response
to clinical remission, indicating an impairment of the
T cell extravasation into the brain as a consequence of
immune response mitigation [56]. These findings are
in accordance with the results reported in knockout

mice for Icaml subjected to the experimental auto-
immune/allergic encephalomyelitis (EAE) model [66].

Inflammation

The first inflammatory event in MS is conducted when
APC through the class II MHC complex presents a spe-
cific antigen to naive CD4+ T cells, which favour T cell
differentiation and the recruitment of proinflammatory
cells into the CNS [5]. MHC, also known as human
leukocyte antigen (HLA), is responsible for presenting
non-self-antigens to the T cell receptors and natural
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Fig. 2 DNA methylation metabolism. The addition of a methyl group to a naked cytosine is catalysed by DNMT (black arrow). 5-methylcytosine
(5mC) is oxidised by TET enzymes to 5-hydroxymethylcytosine (5hmC) which can be further oxidised to 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) as indicated red arrows. In the deamination pathway (green arrows), AID or APOBEC can deaminate 5hmC to 5-
hydroxymethyluracil (5ShmU) or 5mC to thymine. Eventually, all these modified bases (5hmU, Thymine, 5fC, 5caC) are recognised by TDG and
converted to naked cytosine through the base excision repair (BER) pathway (blue arrows)

killer receptors (NKRs) [67] facilitating the inflammatory
response. Leukocytes use the HLA complex to distin-
guish self-proteins from exogenous components [68]. In
MS, certain HLA genes showed an aberrant methylation
pattern contributing to MS aetiology [47]. For example,
the hypomethylation of MHC class I polypeptide-related
sequence B (MICB) has been reported in normal appear-
ing white matter (NAWM) [47] and CD4+ T cells in MS
patients [40]. In MS, a ligand codified by MICB activates
the NK and CD8+ T cell destruction [69]. Similarly, the
HLA-F variant is actively expressed in the inflammatory
reaction [67] as a result of its promoter demethylation
[43, 47]. Aside from the HLA complex, changes in
DNAme are found in other inflammatory pathways re-
ported in MS. Specifically, global CG island

hypermethylation of the Src homology region 2 domain-
containing phosphatase-1 and the suppressor of cytokine
signalling 1 might aggravate the course of MS through
the overactivation of the immune-mediated response
[49, 56, 57]. Adhesion molecules such as ICAMS5 are
markedly present in the cerebral and hippocampal neu-
rons [70]. In MS, the extracellular domain of ICAMS5 is
cleaved and released into the cerebrospinal fluid (CSF)
and blood, where it modulates the synthesis of proin-
flammatory cytokines (TNF-a, IL-1p), stimulates the ex-
pression of anti-inflammatory cytokine IL-10 and
represses T cell activation [71]. As a result of disease
progression, primary progressive MS (PPMS) patients
with non-recoverable demyelination and neurodegenera-
tion showed higher methylation levels for ICAMS5 than
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References Comparison Sample Method
target

Differentially methylated genes

[39] MS vs CTR CD8+ T cells  lllumina 450K array

[40] RRMS vs CTR CD4+ T cells  lllumina 450K array

[41] Myelinated vs Hippocampus lllumina 450K array
demyelinated
MS brains

[42] SPMS vs CTR PMBCs Microarray dataset and RT-
PCR

[43] RRMS vs PPMS vs  PMBCs lllumina 450K array
CTR

[44] Smoker vs non- PMBCs Bisulphite Illumina
smoker MS Methylation 450k Beadchip

[45] MS vs CTR NAWM Direct
BS-sequencing
[46] RRMS vs CTR cfDNA BS-PCR sequencing assay

(whole
blood)

[47] MS vs CTR NAWM Bisulphite Illumina
Methylation 450k Beadchip

ERG, FTL, DCAF4, NCAPH2, CDKN1C, ZNF462, CBX7, MIR492, HPST,
SASH1, MYL3, KCNGT, DYDC2, MEGF10, SP5, LMO3, SLC12A7, MORNT,
IGF2BP1, PLCB3, ABCC4, CREG2, CDC42BPB, UGTTA10, TMEM125,
ARHGAP22, DACH1, OR8B12, TMEMSC, BAI1, EIF251, CRTACT, DHX36,
C190rf41, DLGAP2, TNXB, PRDM8, HEATR2, WHSC2, CAMTAT, ALK,
KCNQ2, SCTR, RHEB, LOC202181, RRP9, KRT75, DGKE, PLD5, ZC3H14.

MICA, MICB, HLA-DRB, MORNT1, LCLAT1, PDCD1, MUC4, AHRR, ARSB,
PCBD2, TGFBI, PCDHB13, PCDHB15, KIF25, CSGALNACT1, ADARB2,
LDHALG6A, CORO1B, USP35, FUT4, ERC1, TCRA, PACS2, IL32, KCTD11,
C170rf108, ARHGAP27, NPLOC4, SBNO2, GNG7, C21orf56, RIBC2.

MLLT4, PPIF, SCRT2, SNRNP40, ISLR2, MEF2A, PMEPAT, ABCA4,
ADAMTS12, AHRR, BEST3, CASP7, CCL4L2, CPXM2, FBXWS, HLA-B,
LOC145845, MEIST, MGMT, MYO7A, NXN, PKP2, PQLCT, PSD3, SCN4B,
SDK2, SMYD3, TGFBI, TMEM165, PON1, HDLBP, MKKS, TRIM26, TRPST,
KRTAP27-1, MGP, AJAP1, Clorf106, C20rf62, DSE, EIF2C2, GATAS,
HLA-B, IGSF9B, INSC, KIAA1026, KIF25, LOC100292680, NFASC, RASA3,
SDKT1, SHISA2, SOLH, SORBS2, TAGLN3, TBX5, TM9SF1, TOP1MT,
ZSCANT, AKNA, EBPL, FLJ42709, HERC6, OR52M1, SFRP1, C220rf43,
LOC285830, NAPEPLD, NHLH2, PLCH1, SERPINA9, SLFN13,
TMEM132B, TTLL3, WDR81.

DNMT3A, GADD45A, GADD45B, MBD4, APOBEC3D, APOBEC4,
GADDA45G, TETT, TDG, APOBEC3C, APOBEC2, MBD2, MBD3,
APOBEC3A, DNMT3B, APOBECT, TET2, TET3.

RRMS vs CTR: ASB2, ATP11A, CACNA2D3, CERS5, ESRRG, FRMDA4A,
GNAS, HOXC4-HOXC6, IFITMS5, ILDR1, KCNK15, KLHL35, LEFTY2, PLE-
KHA2, RPH3AL, WRAP73, ZFYVE28.PPMS vs CTR: ATG16L2, CEST,
CSGALNACT2, CYB5D1, LSMD1, FAM110A, GDF7, HKR1, HLA-F,
HOXB13, IGSF9B, ILDR1, LDB2, MTPN, LUZP6, NTN1, OPCML, OR2L13,
RBM46, TBX1, TCP10L, TMEM44, VIPR2, WRAP73. RRMS vs SPMS:
ABCC5, AKAP12, CARS, CBFA2T3, CCDC67, FAM110A, FRMDA4A,
GIMAPS5, HIVEP3, ICAMS, KCNQ1, KLF4, LEFTY2, OLFM3, PTH1R,
RASA3, RNF39, RPH3AL, TRAF3, USP35, XKR5.

SRM, GNG12, GFI1, ANXA4, NFE2L2, ABLIM2, AHRR, SMIM3, CDKNT1A,
TPST1, CNTNAP2, SNTG1, MTSS1, PTK2, ZC3H3, ZMIZ1, PTGDR2,
PRSS23, GRIK4, ETV6, RARG, LOC348021, CCDC88C, ITPK1, ANPEP,
RARA, SMIM6, RECQLS5, F2RL3, LINC00111, ACOTO.

PAD2

MBP3, WM1.

ALDOA, ATP1A2, BCART, BRK1, CDK5, CORO1A, CSF3, DLC1, DTNBPT,
FGD2, FMNL1, MLST8, MYBPC3, MYH6, MYH7, MYO1F, OBSCN,
PDGFA, PRKCZ, SHCT, SIPATLT, SSH3, TPM3, ADA, AGAP1, ALDOA,
ARHGEF16, ATP1A1, ATPTA2, ATP1A4, ATP5H, BINT, DAB2IP, DLCT,
FGD2, LDHC, MACROD1, MLST8, MYBPC3, MYH6, MYH7, NME4, NT5C,
PLXNB1, PTPRN2, RASA3, SEPTY, SIPA1L1, TBCD, TK1, ACSBG1, ACSLT,
ACTR8, ADA, AGAP1, AGPAT1, AGRP, AKAP8, ALDH3A1, ALDOA, AMH,
ANGPT2, APBB1IP, APEX, ARHGEF16, ATF6B, ATPT1A, ATP1A1,
ATP1A2, ATP1A4, ATP6VOET, ATRIP, BBS2, BCART, BCL2L2, BINT, BIRCS,
BPI, BRD4, BRK1, C4B, CACNA1D, CASKINT, CBX4, CCL17, CCL22,
CD37, CD59, CDH1, CDK5, CHST3, CHURCT, CLASP1, CLIC5, CORO1A,
CREBS, CRY2, CSF3, CSNKTE, CX3CL1, CXXC5, CYP21A2, DAB2IP,
DANDS, DCPS, DHRS3, DLCT, DLL1, DOK4, DOT1L, DSCAMLT,
DTNBP1, DYRK1B, E2F6, E4F1, EDN2, EFS, ENTPD2, ERCC3, F7,
FAM109A, FGD2, FGFR3, FMNL1, GBX1, GDF10, GPR114, GPR56,
GTF2H1, GYLTL1B, HDAC11, HEG1, HEXIM1, HEXIM2, HIGD1A,
HIST3H3, HLA-DMA, IL17RB, IL25, IL34, INO8OE, INPP5J, INTS1, IRAK2,
[TPKB, JARID2, LIMD1, LMF1, LPCAT1, MAB21L2, MADD, MAML3,
MAP3K14, MAPK3, MBP, MCF2L, MED24, MEIS2, MLLT10, MLSTS,
MT1A, MT1E, MT1F, MT1G, MTTM, MT2A, MT4, MTCH1, MTSS1L,
MUSK, MYBPC3, MYH6, MYH7, MYOTF, NARFL, NCOR2, NDRGT,
NLRP3, NOTCH4, NRTH3, NUP210, OBSCN, OTX2, PABPN1, PAGT1,
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References Comparison

Sample
target

Method

Differentially methylated genes

(48]

RRMS and CTR

RRMS vs PPMS vs
SPMS vs CTR

MS vs CTR

MS treatment-naive
vs 1 year IFN-b vs
CTR

Discordant twins
(RRMS vs CTR)

RRMS(e)vs
RRMS(r) vs CTR

RRMS vs CTR
RRMS vs CTR

RRMS(e) vs
RRMS(r) vs CTR

RRMS(e) vs
RRMS(r) vs CTR

Discordant twins

CD4+ T cells
CD8+ T cells
Whole blood

Buffy coat

Whole blood
PBMCs
NAWM

PMBCs
CD4+ T cells
Serum
cfDNA
(serum)

CD3+ T cells

cfDNA
(plasma)

Whole Blood

PMBCs

lllumina 450K array

BS-sequencing

lllumina 450K array

BS-PCR sequencing assay

RRBS

BS-PCR sequencing assay

BS-PCR sequencing assay

BS-PCR sequencing assay

MethDet-56
microarray based assay

Methylation-Specific Multiple
Ligation Probe Ampilification
PCR

Bisulphite Illumina

PBX2, PCSK6, PDGFA, PEG10, PHF21A, PIK3R1, PLEKHGS3, PLLP,
PLXNB1, POLD4, POLR2C, POU2F1, PPARA, PPIL2, PPP1R13B, PPP4C,
PRAM1, PRDM16, PRKCH, PRKCZ, PTGDS, PTPRN2, RAD9A, RAIT,
RASA3, RBP1, RFX5, RIN2, RNF187, RPAT, RRM2, RXRA, SACS, SEMA4C,
SETD1A, SHC1, SHISAS, SIPATL1, SLC17A7, SLC22A17, SLC39A13,
SLC7A8, SMADS6, SOX1, SOX8, SPI1, SPOCK2, SREBF1, SSH3, SSTR5,
SUNT1, TACC3, TBCD, TBX6, TEAD2, TEF, TEP1, THRA, TLN2, TNRC6C,
TPM3, TRAF2, TSNARE1, UBE2L3, USP19, VAC14, WHSC1, WISPT,
WISP2, WNK2, ZBTB47, ZFP1, ZIC1, ZNF135, ZNF256, ZNF329, ZNF362,
ZNF414, ZNF418, ZNF488, ZNF606, ZNF664, ZNF687, ADAMDECT,
AIF1, AIRE, B2M, BPI, C1QA, C1QB, C1QC, C4BPA, C4BPB, CCR6, CD19,
CD37, CD4, CD7, CD81, CFD, DLGT1, FCER2, HAMP, HLA-DMA, HLA-
DMB, HLA-DOA, HLA-DOB, HLA-DQA2, HLA-DQB2, HLA-F, IRF6, IRF8,
IRF9, JAK1, JAK3, KYNU, LAG3, LAT, LBP, LCP2, LGMN, LST1, LTA, LTB,
MBL2, MICB, NCR3, OSM, PSMB8, PTPN22, RARA, RNF31, SECTMT1,
SLAMF?7, STXBP2, TAP1, TAP2, TAPBP, TNF, TNIP2, B2M, C1QA, C1QB,
C1QC, C4BPA, C4BPB, DLGI1, FCER2, HLA-DMA, LAG3, LTA, MBL2,
NCR3, SLAMF7, TAP1, TAP2, TNF, B2M, C1QA, C1QB, C1QC, C4BPA,
C4BPB, DLG1, FCER2, HLA-DMA, LAG3, LAT, LTA, MBL2, NCR3,
SLAMF?7, STXBP2, TAP1, TAP2, TNF, B2M, FCER2, HAMP, LAG3, MBL2,
NCR3, SLAMF7, STXBP2, TAP1, TAP2, BHLHE23, CTSZ, DLGI1, DLL1,
DLX1, DLX2, EDARADD, EPHB4, FOXL2, GLIT, GNAS, HOXC11,
HOXC13, HOXC4, HOXC8, HOXC9, HOXD10, HOXD11, HOXD13,
HOXD3, HOXD4, HOXDS8, HOXD9, MSX1, PHLDA2, PPP1R13L, PTCD2,
RARA, RUNX3, SOX1, SOX8, TBX3, TEAD2, TGM1, TH, TNF, TWISTT,
WNT2, ZIC1.

CD4+T cells: DCX, RDH13, DNHD1, TEKTS5, TXNL1, MAGI2, TTC30B,
APC2, TMEMA48, ANGPTL2, RALGPS1, USP29, C200rf151, DLL1 6,
DACH2, INPP5A, LOC727677, SEMASB, SUGT1L1, HOXB2, OR10J5,
RBMST, C200rf151, AEN. CD8+T cells: APC2, HOXA2, HRNBP3, HEXDC,
NTRK3, DCX, TRIL, ARHGEF17, ESPNP, LHX5, TEKT5, LRRC43, CYP27C1,
TMEM48, HHATL, AMMECR1, C190rf45, SRRM3, PSD3, PTPRN2,
LOC654342, ARHGEF17, DNHD1, KIF1C, INCAT, VSIG1. Whole blood:
DACH2, LAMA2, TTLL8, GALNT9, POU3F4, NLRP12, PLS3, ANKRDT1,
CLSTN2, MAGEB4, APC2, PCDHA7, TMEM27, DNHD1, LGI1, PTCHD2,
MMD2, HHATL, TMEMA48, NXPH1, TDRD9, CDX1, YTHDC2, RGPD1,
PLGLB2.

SHP-1

IL2RA

LINE-1

TMEM1, PEX14.

MOG

LINE-1

VDR

RRMS(r) vs CTR: CDH1, CDKN2A, CDKN2B, FAS, ICAM1, MCJ, MDGlI,
MUC2, MYF3, PAXS5, PGK1, RB1, SOCST, SYK, TP73. RRMS(e) vs CTR:
BRCAT1, CCND2, DAPK, FAS, FHIT, MCT1, MDGI, MCJ, CDKN2A, TP73,
PGK1, PR-PROX.RRMS(r) vs RRMS(e): CDH1, CDKN2B, HICT, PR-PROX,
SYK.

CDKN2A, SOCS1, RUNX3, NEUROGT.

TMEM232, SEMA3C, YWHAGI, ZBTB16, MRI1.
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Table 1 DNA methylation changes in MS (Continued)
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References Comparison Sample Method Differentially methylated genes
target
(MS vs CTR) CD4+ T cells  Methylation 450k Beadchip
[59] RRMS and SPMS PMBCs BS-PCR sequencing assay PAD2
vs CTR
[60] RRMS and SPMS PMBCs EpiTyper assay DNMTT, TET2
vs CTR
[61] RRMS vs SPMS CD4+ T cells  lllumina 450K array VMP1, MIR21
vs CTR

MS multiple sclerosis, CTR control, RRMS relapsing-remitting multiple sclerosis, PPMS primary progressive multiple sclerosis, SPMS secondary progressive multiple
sclerosis, RRMS(e) RRMS in exacerbation, RRMS(r) RRMS in remission, cfDNA circulating-free DNA, PBMCs peripheral blood mononuclear cells, BS bisulphite, RRBS
reduced representation bisulphite sequencing, NAWM normal appearing white matter

RRMS patients [43]. This result suggests that an overac-
tivation of the inflammatory response in MS may be at-
tributable to the aberrant methylation pattern of certain
anti-inflammatory genes.

Demyelination

In MS, demyelination occurs when the myelin sheath
of neurons is damaged by the action of the immune
system [72]. The attack of immune surveillance is
mainly directed against the myelin basic protein
(MBP) [73], a protein that stabilises and maintains the
correct structure of the myelin sheath around the axon
[74]. An extensive hippocampal demyelination simul-
taneously coincides with the lower number of methyl
groups to the DNMT promoters with an increase in
their mRNA levels and a decrease in their TET en-
zymes [41]. Under normal conditions, approximately
20% of the total MBP is citrullinated (MBP-Cit).
Citrullination is a post-translational modification cata-
lysed by peptidyl arginine deiminase 2 (PAD2) [75].
The addition of citrullin groups leads to the loss of
myelin compaction [76], and particularly, the percent-
age of MBP-Cit increases drastically [77] along with
the promoter demethylation and overexpression of
PAD2 as a result of the clinical course [45, 59]. The
processing of MBP self-antigens and their presentation
by APCs to T cells occurs during the negative selec-
tion of autoreactive T cells in the thymus [78]. An in-
crease in the legumain (LGMN) activity, an enzyme
involved in the self-antigen processing, prevents the
development of immune tolerance against MBP [79].
Interestingly, the demethylation of the LGMN pro-
moter could be responsible for favouring autoimmun-
ity in MS patients [47, 74].

Remyelination failure

Following the myelin destruction, the recruitment of
oligodendrocyte progenitor cells (OPCs) is necessary to
rescue the demyelinated axons [80]. However, in MS
patients, this process is not completely achieved [81],
contributing to progressive neurodegeneration. The

origin of this failure is not fully understood, but some
hypotheses have been postulated in this regard [81].
Briefly, remyelination may be incomplete because of
the inadequate recruitment of OPCs into the demyeli-
nated lesion, an impairment of the OPC differentiation
into myelinating oligodendrocytes, or the dysfunctions
in oligodendrocytes when they attempt to wrap axons
[81, 82]. In adults, OPC migration and recruitment re-
quire several growth factors including the platelet-
derived growth factor (PDGF) and the fibroblast growth
factor (FGF) [83-85]. Both growth factors are signifi-
cantly methylated in the NAWM of MS patients [47].
In this regard, the addition of methyl groups to the
DNA may be accompanied by the lower expression of
PDGF and FGF during disease progression, thus gain-
ing mechanistic insight into the oligodendrocyte dys-
function. Wnt signalling pathway is involved in the
differentiation of precursor oligodendocytes into ma-
ture myelinating oligodendocytes, affecting remyelina-
tion of axons [86]. Fancy et al. (2009) found that MS
demyelinating lesions display an activation of the Wnt
signalling impairing the remyelination process due to
lack of proliferation of premyelinating oligodendrocytes
[86]. Interestingly, some of the negative regulators of
the Wnt pathway (histone deacetylase inhibitors, or
Shisha genes) [87, 88] are hypermethylated in the brain
[47, 41]. This hypermethylation would facilitate Wnt
pathway activation declining efficiency of endogenous
remyelination. This hypothesis is reinforced by Chen
et al. (2011). They reported that mice lacking HDAC1/
2 displayed severe myelin deficiency [89]. The hyperme-
thylation of neurofascin (NFAS) has been related to the
improper myelin wrapping of paranodal segments and
might respond to the pathophysiological mechanisms
underlying MS [90, 91]. Self-antibodies against NFAS
have been detected in MS patients [92]. In the hippo-
campus while neurodegeneration is ongoing, Chomyk
et al. (2017) reported a decrease in the WD repeat do-
main 81 and AT-hook transcription factor methylation
status, which could lead to a lower mRNA expression
and neuronal injury [41].
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Neurodegeneration

Progressive axonal loss contributes to brain atrophy and
neurological disability [93]. Kulakova et al. (2016) exam-
ined the DNAme of the peripheral blood mononuclear
cells (PBMCs) collected from secondary progressive
(SPMS) and RRMS patients, providing a time course
DNAme pattern [43]. They found a cluster of 21 differ-
entially methylated genes. Gene ontology analysis re-
vealed that four of these genes are hypermethylated
while neurodegeneration is ongoing and involved in bio-
logical processes, such as cell proliferation (PTHIR,
CBFA2T3, KLF4) and nuclear factor k-light-chain-en-
hancer of activated B cell (NF-kP) pathway (KLF4,
TRAF3). NF-kB is a pleiotropic regulator of neuroin-
flammation, neuronal protection and neurotoxicity [94]
involved in distinct pathological events mediated by the
glia once the earliest signs of MS are present [95]. Dur-
ing the course of neurodegeneration, an imbalance be-
tween the expression of enzymes participating in the
addition and removal of methyl groups to the DNA has
been reported in MS patients. Indeed, Fagone et al.
(2016) found an upregulation of methyl CpG-binding
protein 2 and 4 and a downregulation of enzymes such
as TET3 and TDG in SPMS patients [92].

Environmental and lifestyle risk factors

The influence of the environment on MS pathophysi-
ology has been largely studied in twins discordant for
the disease [52]. This divergence has been attributed to
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epigenetic modifications [96]. Thus, Handel et al. (2010)
reported an additive deleterious effect of smoking, ultra-
violet (UV) exposure and HLA alleles on MS prevalence
[20]. Scientific evidence shows that environmental fac-
tors, such as smoking, Epstein Barr infection, vitamin D
level, organic solvent and chemical pollutant exposure,
diet style, gut microbiota, exercise and stress, are in-
volved in the development and/or course of MS (Fig. 3).

Smoking

Smoking confers the risk for developing MS, and it is associ-
ated with disease onset and progression [97]. Degelman and
Herman (2017) found a significant association between
smoking frequency and conversion from RRMS to SPMS
forms [98]. Nearly 98 chemical compounds of tobacco, in-
cluding nicotine, cyanide and nitric oxide, are hazardous
[99]. For example, nicotine increases the permeability of the
BBB [100] in the earlier stages of MS [101], cyanide contrib-
utes to CNS demyelination [102] and nitric oxide promotes
neurodegeneration [103]. Tobacco contains dioxins that ac-
tivate the aryl-hydrocarbon receptor pathway [104], which
modulates neuroinflammation [105] and Th17 and Treg ac-
tivities [106] becoming a key player in the MS aetiology and
disease progression. A well-designed study performed by
Zeilinger et al. (2013) reported the differences in the
DNAme of current, former and never smokers [107]. They
found that the aryl-hydrocarbon receptor repressor (AHRR)
was highly demethylated among the current smokers, lead-
ing to the inhibition of AhR signalling pathway and thus en-

the effect of environmental risk factors through hancing neuroinflammatory and neurodegeneration events
GENETICS ENVIRONMENTAL
Gender Smoking
Disease modifier Vitamin D

genes

Disease susceptibility
genes

¢ ¥ =

EPIGENETICS

Organic solvents and
Pollutants

Diet and Salt intake

Single nucleotide
polimorphism

Epstein Barr Virus

1 |

s

\/

MS RISK FACTORS \/

Fig. 3 Risk factors of multiple sclerosis. MS pathogenesis is influenced by both genetic and environmental factors. Among the genetic factors,

gender, disease-modifier genes, disease susceptibility genes and single nucleotide polymorphisms are remarkably important in prevalence and
MS pathogenesis. In contrast, environmental factors such as smoking, vitamin D deficiency, organic solvents and pollutants exposure, diet style,
Epstein Barr infection, dysbiosis of the gut microbiota, lack of exercise and stress are critically associated with MS susceptibility and progression

Gut microbiota

Exercise

Stress
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[105, 106]. AhR can act as protective or deleterious pathway
depending on the cell type where is expressed. In EAE
model, AhR activation has a protective role in dendritic cells
(DC), astrocytes and foxp3+ T reg cells, while it has a pro-
inflammatory effect in Th17 cells [108]. AhR deletion is
known to exacerbate EAE disease [109], altering myelin-
associated proteins and increasing the production of proin-
flammatory cytokines [110]. In MS patients, low levels of
AhR have been measured in serum, along with a reduced
AhR activity in demyelinating lesions during disease pro-
gression [111]. Interestingly, Laquinimod, a phase III drug
for MS treatment that activated AhR pathway, was shown
to reduce brain atrophy in MS patients by counteracting the
neuroinflammatory reaction [112].

Epstein Barr virus

The latent form of EBV is present in almost 90% of the
world population within memory B cells [113]; more
than 99% of MS patients are seropositive for EBV [24].
Infection with EBV increases the risk of developing MS
by ~ 3.6-fold [114], and its effect can be exacerbated
when interacts with other risk factor, such as HLA risk
variants, rocketing the odd ratio for MS up to ~ 15-fold
[115]. We can speculate that a cross-reaction may occur
between the myelin self-antigens and certain viral pro-
teins of the EBV in MS [116]. This hypothesis is under-
pinned by the identification of two EBV peptides
(EBNA-1 and BRRF2) in the CSF of MS patients [117].
Indeed, the CD8+ T cells derived from MS patients dis-
played reactivity against some latent EBV proteins [117].
The reactivation of latent EBV in memory B cells may
occur through specific epigenetic modifications. For ex-
ample, the use of 5-azacytidine, a DNMT inhibitor, can
switch the EBV latent form to a reactivated form [118].

Vitamin D

Vitamin D is synthesised upon exposure to UV [119] or
can be obtained from diet [120]. Vitamin D deficiency is
considered a risk factor for MS even before birth, alter-
ing the structure of embryonic tissues as a result of low
maternal vitamin D [121]. Indeed, the prevalence of MS
is lower near the equator, where UV radiation is at its
maximum, than at higher and lower latitudes [122]. Low
levels of vitamin D have been associated with a higher
frequency of relapses [123] and disability [121].

Current evidence points out that the active form of
vitamin D acts as an inducer of the promoter de-
methylation of multiple genes [124]. In accordance
with these findings, Rawson et al. (2012) reported that
a high intake of vitamin D is associated with lower
methylation levels of certain genes involved in the
Wnt signalling pathway [125], which could favour
neurogenesis and neuronal plasticity [126]. In T cells
from RRMS whole peripheral blood, the vitamin V
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receptor (VDR) showed a promoter demethylation
pattern associated with an overexpression of VDR
mRNA [55]. Nevertheless, the underlying mechanism
behind vitamin D and its effect on demethylation re-
mains unknown and requires further investigation.

Organic solvents and pesticides

Organic solvents are hydrocarbon compounds commonly
used worldwide. The prolonged exposure to these com-
pounds has severe effects on health and may be clinically
important in autoimmune diseases [127]. Organic solvents
are highly hydrophilic and lipophilic molecules able to
pass through the BBB into the brain, resulting in distinct
myelin pathologies [128]. Exposure to organic solvents in-
duces changes in the DNAme of the immune system
[129] and certain genes involved in cell survival [130].
Hexachlorobenzene, a pesticide widely used until 1965,
modulates the expression of E-cadherin through the acti-
vation of the integrin-linked kinase signalling [131]. E-
cadherin plays an important role in BBB integrity, and its
promoter region is highly methylated in MS patients [49],
facilitating the infiltration of immune cell into the brain.
To evaluate the precise contribution of this pesticide in
the context of MS, we should determine the exposure
time frame and if it occurred before or after the diagnosis
of disease. Remarkably, the precise effect of organic sol-
vents on DNAme in MS warrants further investigation.
However, exposure to organic solvents and the presence
of HLA risk alleles present a fourfold increased risk for
MS in comparison with exposure to organic solvents
alone, and the additive effect of organic solvents, HLA risk
alleles and smoking increase the risk 20-fold [132].

Diet

Recent evidence points out that food intake is important
in the pathogenesis of MS and other autoimmune dis-
eases. Seasonal variations in food intake in pregnant
mothers may interfere with foetal development and con-
fer the risk of MS in the later life of the offspring (for a
review, see [133]). The intake of some nutrients, such as
long-chain fatty acids and salt, is known to act as pro-
inflammatory molecules, whereas other nutrients, such
as short-chain fatty acids and flavonoids, possess anti-
inflammatory properties [134]. A type of flavonoid called
quercetin represses the capacity of monocytes to cross
the BBB [135] and reduces the synthesis of proinflam-
matory cytokines produced by monocytes in MS [136].
Limited data are available on the intake of nutrients and
their effect on DNAme. However, certain cofactors ob-
tained from diet are required to maintain DNAme
homeostasis. For example, vitamin B, folate, methionine,
choline and zinc are essential to maintain the levels of
Dnmtl [137] and methyl-donor S-adenosylmethionine
[137]. By contrast, vitamin C can act as a cofactor for



Celarain and Tomas-Roig Journal of Neuroinflammation

TET enzymes [138]. In particular, vitamin B, is neces-
sary for the proper function of the CNS through the
conversion of homocysteine to methionine. Methionine
regulates the expression of DNA methyltransferase 3A
(DNMT3A) [139] and participates in the transcription of
pro-inflammatory genes and the formation of myelin
sheath [140]. Interestingly, vitamin B, and folate defi-
ciency is reported in RRMS concomitantly with elevated
levels of homocysteine. A misbalance in DNAme metab-
olism has been reported in MS patients [139, 141]. In-
deed, some authors found that the levels of methyl
group donors were lower in plasma [139] and post-
mortem grey matter [141] in MS.

The elevated consumption of salt has many noxious
effects, including the production of reactive oxygen spe-
cies [142], deregulation of regulatory T cells [143] and
macrophage [144], disruption of BBB permeability [145]
and higher probability of new brain lesions in RRMS pa-
tients [146]. After the ingestion of a diet containing high
levels of salt, patients with an autoimmune disease
showed demethylation and elevated levels of hydroxy-
methylation in CD4+ T cells as a result of TET2 overex-
pression [25]. Consequently, the high consumption of
salt may be a risk factor for MS. Note that the use of
standardised diets or alternative therapies cannot substi-
tute conventional MS treatments, but the intake of
healthy food may ameliorate the inflammatory and phys-
ical status of MS patients. Therefore, it can be hypothe-
sised that some components of diet may interfere with
the DNAme metabolism even before childbirth or

Table 2 List of metabolites released by microbiota
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during lifetime contributing to both disease aetiology
and progression.

Gut microbiota

Gut microbiota is a complex ecosystem of microor-
ganisms that establish a symbiotic relationship with
the host by favouring the vitamin production and
fermentation of some components of diet [147].
However, the dysbiosis of microbiota increases the
risk of developing autoimmune diseases [148, 149].
DC from germ-free mice subjected to the EAE
model were less reactive to stimulated proinflamma-
tory T cells than conventionally colonised germ mice
[149]. Berer et al. (2011) found that gut microbiota
in cooperation with myelin auto-antigens is neces-
sary to stimulate the immune response [148], con-
sistent with [149]. Dysbiosis has been associated with
an inflammatory phenotype in MS patients [150,
151]. Resident microbiota can alter the epigenetic
signature of the host through the production of spe-
cific metabolites (Table 2). Pregnant women showed
a different DNAme profile according to their pre-
dominant microbiota in the gut [166]. Therefore,
dysbiosis of microbiota can be involved in disease
onset by an overactivation of T cells [148, 149] or
exacerbating inflammatory events in patients diag-
nosed with MS [150, 151]. However, the contribution
of microbiota in disease aetiology and progression
warrants further investigation.

Metabolite Effect on DNA methylation

p-Cresol

It induces the expression of DNA methyltransferases 1, 33, and 3b and it is associated with CpG hypermethylation of Klotho

gene [152], a regulator of vitamin D metabolism [153].

Hydrogen sulphide

Involved in the neutralisation of ROS. It increases DNA methylation [154].

Riboflavin (vitamin B,) Cofactor involved in DNA methylation metabolism [155, 156].

Pyridoxine (vitamin
Bs)

Cobalamin (vitamin
Bi2)

Folate (vitamin Bo)

It acts as a methyl donor involved in DNA methylation metabolism [155, 156].

It reduces the activity of DNA methyltransferase [157].

Choline

It acts as a methyl donor that can be recruited by human gut microbiota, reducing its availability [158].

Involved in DNA methylation and gene expression in murine colitis model, an inflammatory disease [159].

Betaine

It acts as a methyl donor involved in DNA methylation reactions [156, 160].

Associated with changes in DNA methyltransferases and coupled with changes in DNA methylation [161].

Ammonium (NH,)
a-ketoglutarate

L-ascorbic acid

(vitamin C) [165].

Inverse correlation between faecal NH; and LINE-1 gene methylation [162].
Involved in (de)methylation as a co-factor of histone demethylases and TET family [163, 164].

It exerts a strong influence on active DNA demethylation. It enhances TET-mediated generation of 5-hydroxymethylation

ROS reactive oxygen species, NH; ammonia, LINE-1 long interspersed element-1, TET ten-eleven translocation

Adapted from Mischke et al. [147]
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Physical activity

Physical exercise has been demonstrated to produce
changes in the leukocyte DNAme pattern [167] and
thus changes in gene expression [168]. In the context
of neurodegenerative diseases, the influence of phys-
ical exercise has a direct effect on the brain-derived
neurotrophic factor (BDNF) [169, 170]. In a healthy
brain, BDNF is mainly expressed in neurons [171].
However, following a demyelinating insult, this gene
is transcriptionally active in astrocytes [172], regula-
tory T cells, B cells and monocytes [172, 173], favour-
ing brain plasticity [174] and myelin formation [175].
Recently, Briken et al. (2016) found elevated protein
levels of serum BDNF after 30 min of exercise in pro-
gressive MS patients [170], and this result was prob-
ably attributable to the demethylation of its promoter
region [169]. Similarly, 2 weeks of physical exercise
promotes the overexpression of TET1 and the de-
methylation of the vascular endothelial growth factor
A (VEGF-A) [176]. VEGF-A may potentiate neurogen-
esis and neuroprotection in the EAE model as postu-
lated by [177]. The overexpression of apoptosis-
associated, speck-like protein containing a C-terminal
caspase recruitment domain gene (ASC) activates in-
flammatory signalling and may exacerbate MS pro-
gression [178]. In addition, Nakajima et al. (2010)
found that following 6 months of moderate exercise,
the mRNA levels of ASC were lower because its pro-
moter region was hypermethylated [179]. Therefore,
the current data support the notion that moderate ex-
ercise can reduce pro-inflammatory cytokines and im-
prove the clinical MS course. However, some studies
failed to validate this evidence [180-182]. The find-
ings reported here point out that moderate exercise
can ameliorate some symptoms but cannot stop the
progression of MS.

Stress

Stressful life events have a negative effect on MS by in-
creasing the risk of clinical exacerbation and disease pro-
gression [183]. However, the contribution of stress in
the pathophysiology of the disease remains under discus-
sion. A well-designed study by Liu et al. (2009) reported
a strong association between stress and MS aetiology
[184]. In accordance with these findings, Babenko et al.
(2015) demonstrated that prenatal stress causes a de-
methylation of the nuclear subfamily 3 group C member
1 glucocorticoid receptor (NR3C1) [185] and changes in
the nervous, immune and musculoskeletal systems [186].
Interestingly, the differences in NR3C1 gene expression
have been reported in MS patients [187], suggesting that
early life stressors can present susceptibility to develop-
ing MS in adulthood.
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DNA methylation in animal models of MS

None of the current experimental animal models can
reproduce the complexity and heterogeneity of MS. In
particular, both disease onset and clinical course in ani-
mals differ considerably from those in humans [188].
However, in vivo experimental models are widely used
to understand certain aspects of the disease. In general,
we consider three models to study MS pathophysiology:
(a) EAE, (b) Theiler’s murine encephalomyelitis virus
(TMEV) and (c) use of toxins such as cuprizone (CPZ)
or lysolecithin. However, not all of them have been ad-
dressed to study the changes in DNAme. For example,
no current study has been conducted on DNAme in the
TMEV model.

EAE model

EAE is a well-established model of autoimmunity in-
duced by the subcutaneous injection of self-antigens de-
rived from myelin proteins, such as the myelin
oligodendrocyte glycoprotein (MOG) [189] and the pro-
teolipid protein (PLP) [190]. Catanzaro et al. (2016)
characterised the DNAme profile in the striatum of EAE
mice showing a global DNA hypomethylation of inter-
neurons positive for neuronal nitric oxide synthase
[191]. Interestingly, they found a demethylation of Ras-
related protein-1 (Dexras-1) in parallel with elevated
levels of iron inside the cells and thus neurotoxicity and
neuronal death. Furthermore, they reported that the hy-
pomethylation of Dexras-1 was reverted when mice were
subjected to an enriched environment in their home
cage, emphasising an epigenetic-mediated effect [191].
Recently, Noori-Zadeh et al. (2017) found that the pro-
moter region for forkhead box P3 was hypermethylated
in T cells collected from EAE mice [192], thus indicating
a dysfunction of regulatory T lineage and the lack of
auto-immune tolerance [193].

Toxin-induced demyelination

Demyelination can be induced by copper-chelating agents
(e.g. CPZ) or lysolecithin [194]. In the CPZ model, young
adult mice fed with this neurotoxicant showed a significant
loss of mature oligodendrocytes, astrocytosis, microgliosis
and demyelination, followed by spontaneous remyelination
[195]. The CPZ model was used by Olsen et al. (2019) to
identify novel biomarkers related to the demyelination
course [53]. Specifically, they isolated circulating-free DNA
from mice blood at the end of the CPZ treatment, and iden-
tified a specific methylation pattern associated with oligon-
dendrocyte apoptosis. Conversely, the use of lysolecithin in
mice induced demyelination accompanied by a high expres-
sion of DNMT1 in the OPCs at the early stages of remyeli-
nation. By contrast, DNMT3A is highly expressed in
oligodendrocytes at the later stages when remyelination is
achieved. The study revealed a global hypermethylation in
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the oligodendrocyte lineage during remyelination, demon-
strating that DNMT1 plays a crucial role in the proliferation
and differentiation of OPCs into mature oligodendrocytes,
while DNMT3A has a dominant role in the remyelination
phase [196].

Conclusions

MS is an inflammatory autoimmune disease of the CNS
caused by a complex interaction between genetic and
environmental factors [20]. Emerging evidence indi-
cates that DNAme actively participates in gene x envir-
onment interactions [33]. As previously mentioned,
several studies showed an aberrant DNAme profile in
relapsing—remitting forms and in progressive MS
forms. Remarkably, most of the studies reported in this
work were based on the bisulphite technique (Table 1).
However, this approximation does not discriminate be-
tween 5-methylcytosine and 5-hydroxymethylcytosine
and thus may contribute to a misinterpretation of the
data. To avoid this bias, we recommend an alternative
method for studying DNAme, such as the methylated-
DNA immunoprecipitation and the TET-assisted bisul-
phate sequencing. As far as we know, genetic factors
can explain approximately 30% of worldwide MS preva-
lence [23], and the remaining 70% may correspond to
the influence of environmental risk factors. As de-
scribed in this study, UV radiation, cigarette smoking
and infection with the Epstein Barr virus are clinically
relevant for MS, although other environmental factors,
such as diet style, microbiota profile, exposure to or-
ganic solvents and pollutants, exercise and long-term
stress, have a clear effect in MS. All of the aforemen-
tioned risk factors can modify the DNAme pattern in
humans, but further studies are required to expand our
knowledge of the molecular basis of the disease and
elucidate the underlying mechanisms behind MS patho-
physiology. Furthermore, DNA methylation is currently
the best surrogate marker for epigenetic change in dis-
ease, because methylation alterations track with disease
state. DNA methylation markers can also indicate suc-
cess or failure of drug treatment, are stable in isolated
DNA, and can be measured by a variety of quantitative
and qualitative methods. We postulate that epigenetic
DNAme marks described in the context of the disease
can potentially be used in a specific, substantial, and
credible way in clinical interventions. It is conceivable
that, in the near future, we will be able to design drugs
modifying DNAme metabolism to stop the progression
of MS.
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