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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- We analyzed the smart device-based sleep monitoring data of 6 million person-days in China.

- Short-term air pollution exposure increases obstructive sleep apnea (OSA) severity.

- The effects of air pollutants occur during the sleep period and last for 2 days.

- The exposure-response curves for air pollutants and OSA severity are almost linear.
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Obstructive sleep apnea (OSA) can lead to sleep deprivation, accidents, and
cardiovascular diseases. However, research on the short-term effects of air
pollutants on OSA severity is limited and inconsistent. We conducted a
novel case time series analysis using a nationwide dataset among Huawei
smart device users to assess the association between air pollution and OSA
severity in a population at moderate-to-severe risk of OSA. Fixed-effects
regression models were used to assess the associations between air
pollution and the risk of OSA exacerbation, apnea-hypopnea index (AHI),
and oxygen saturation. A total of 51,842 participants who were at moder-
ate-to-severe risk of OSA (mean age [SD]: 45.4 [11.0], 95.5% male) were
included, with 6,232,056 person-days of monitoring. The associations of
fine particulate matter, nitrogen dioxide, carbon monoxide, and sulfur diox-
ide with OSA severity could occur during the sleep period, and last for
2 days. An increase of 1 interquartile range in the moving average concen-
trations of air pollution during the sleep period and the 2 previous days
was associated with a 1.14%–4.31% increase in the risk of OSA exacerba-
tion, an increase in AHI by 0.05–0.17 events/h, and a decrease in oxygen
saturation (%) by 0.003–0.014. The exposure-response curves were almost
linear. The associations between air pollutants and OSA were consistently
stronger in participants aged 45 years or older. By virtue of the smart de-
vice-based technology, this large-scale, nationwide, longitudinal study pro-
vides compelling evidence that short-term exposure to air pollution may
worsen sleep apnea. Our findings highlight the significance of ongoing
efforts to improve air quality in mitigating OSA severity and the relevant
disease burden in an aging era.

INTRODUCTION
Obstructive sleep apnea (OSA) is a highly prevalent disorder characterized by

repeated episodes of apnea and hypopnea during sleep, leading to reduced oxy-
gen desaturation and sleep disruption.1,2 It was estimated that 23.6% of Chinese
adults aged 30–69 years had OSA, with nearly half of them experiencing moder-
ate-to-severe OSA.2 There is strong evidence linkingOSA, especiallymoderate-to-
severe OSA, to an elevated risk of accidents, neurocognitive impairment, and
various cardiometabolic diseases.3–6 Therefore, identifying the risk factors for
OSA is essential in preventing the condition and reducing the resultant disease
burden.

Air pollution has recently been proposed as a potential risk factor for OSA.7

Exposure to air pollution could lead to increased inflammatory responses in
the nasal or pharyngeal areas, induce neuroinflammation, and disrupt neuro-
transmitter levels, all of which are implicated in the etiology of OSA. Several
studies suggested that even a short-term exposure to air pollution may be asso-
ciated with OSA-related respiratory events, sleep quality, or sleep-related param-
eters, but the existing findings were quite mixed.8–12 Previous studies generally
had relatively small sample size (ranging fromdozens to thousands) or used only
one-night sleepmonitoring, or were conducted in single centers, limiting their sta-
tistical power and the generalizability of their results. Besides, in most previous
studies, air pollution data were based on daily 24-h averages, without taking
into account personalized sleep time, leading to unmeasured exposure misclas-

sification due to the discrepancies between sleep time and a calendar day.10,12 In
addition, some previous studies enrolled patients admitted to sleep centers who
reported OSA-like symptoms, but overlooked individuals who were unaware of
these symptoms, reducing the representativeness of the results. Furthermore,
the environment in sleep centers often significantly deviated from patients’
accustomed settings, potentially producing uncontrolled influences on the esti-
mated associations between air pollution and OSA severity.10 Most importantly,
there is compelling evidence to suggest that OSA severity can vary significantly
from one night to the next13,14; however, almost all existing findings have been
derived from cross-sectional studies with only one-night monitoring, which
does not capture the night-to-night variability in OSA severity andmay be suscep-
tible to potential residual confounding due to various unmeasured time-varying
factors.10,12

A recently validated smart device-based technology for OSA screening pro-
vides a unique opportunity to collect large-scale, individual-level, longitudinal,
at-home sleep monitoring data.15 We thereby conducted a nationwide case
time series study to investigate the associations between short-term exposure
to various air pollutants and the risk of OSA exacerbation. We also evaluated
the impacts of air pollution on continuous measures of the apnea-hypopnea in-
dex (AHI) and oxygen saturation, which are commonly used indicators of OSA
severity.16

RESULTS
Descriptive statistics
As illustrated in Figure S1, we excluded 324 participants with less than 7 days

of eligible monitoring and those residing in districts more than 50 km away from
the nearest air qualitymonitors (n = 206), or 100 kmaway from the nearestmete-
orological stations (n = 912). We finally included a total of 51,842 participants
who were at moderate-to-severe risk of OSA with 6,232,056 person-days of
eligible monitoring from December 16, 2019, to October 15, 2022. These partic-
ipants were distributed across 313 Chinese cities at or above the prefecture level
(Figure S2). The participants had an average age of 45.4 years, with a standard
deviation of 11.0 years. Of the participants, 95.5%weremale, 40.1%with a history
of hypertension, and 7.8% with a history of diabetes. Each participant had an
average of 118 eligible monitoring days.
The characteristics of OSA-related parameters and environmental conditions

are summarized in Table 1. OSA exacerbation occurred in 46.1% of all monitored
person-days. In days without OSA exacerbation, themedian levels of AHI and ox-
ygen saturation were 0.93 events/h and 96.58%, respectively, while in days with
OSA exacerbation, these values were 29.95 events/h and 96.39%. The average
exposure levels of all air pollutants during sleep time were higher on days with
OSA exacerbation compared with those without.

Regression results
Associations of air pollutants with OSA exacerbation, AHI, and oxygen satura-

tion at different lag days are summarized in Figure 1. Overall, we found significant
associations of PM2.5, PM2.5-10, NO2, CO, and SO2 with an increased risk of OSA
exacerbation, elevated AHI levels, and decreased oxygen saturation levels, but
the magnitudes of associations varied depending on the specific air pollutants,
the outcomes studied, and the lag periods considered. The associations of
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most air pollutants could occur during the sleep period and last for 2 days. We
therefore used the moving average concentrations of air pollution during sleep
time and 2 previous days as the main lag in subsequent analyses.

For OSA exacerbation and AHI, air pollutants, with the exception of PM2.5-10,
exhibited associations during the sleep period, and these associations were
generally less pronounced in the subsequent days. An IQR increase in air
pollutant concentrations was associated with increases of 1.14%–4.31% in
risk of OSA exacerbation and increases of 0.05–0.17 events/h in AHI. In the
case of oxygen saturation, all pollutants showed immediate associations during
the sleep period. Exposures during 1 day before sleep showed stronger associa-
tions comparedwith other lag times formost air pollutants. An IQR increase in air
pollutant concentrations was associated with decreases of 0.003–0.014 in oxy-
gen saturation (%).

Figures 2, 3, and 4 illustrate the exposure-response curves for the associations
of air pollutants with OSA exacerbation, AHI, and oxygen saturation. For PM2.5,
NO2, CO, and SO2, the curves are almost linear, with higher concentrations
consistently leading to an increase in the risk of OSA exacerbation and AHI levels,
and a decrease in oxygen saturation levels. In the case of PM2.5-10, the curves are
largely non-significant in its association with OSA exacerbation and AHI. Howev-
er, when examining its association with oxygen saturation, the curves exbibit a
decline at lower concentrations, followed by a plateau at higher concentrations.

Subgroup analyses indicated that the associations of PM2.5, NO2 and SO2with
OSA exacerbation and AHI were significantly stronger in participants aged 45
years or older. There were no statistically significant between-group differences
based on sex, body mass index, sleep duration, or a history of hypertension and
diabetes (Figures S3–S5).

In the sensitivity analysis, themain estimates of PM2.5 were stable when using
alternative data from the exposure model (Figures S6 and S7).

DISCUSSION
By virtue of individual-level, longitudinal, at-home sleep monitoring data from

smart devices, we obtained the largest dataset to date and provided robust
and coherent epidemiological evidence that short-term exposure to air pollution
could significantly increase the severity of OSA, including the elevated risk of OSA
exacerbation, higher AHI level, and lower oxygen saturation. The impacts of air
pollution exposures on OSA exacerbation and AHI weremost pronounced during
the sleep period. Middle-aged and elderly participants were more susceptible to
these air pollution-related impacts.

Previous studies have provided limited and inconsistent insights into the short-
term associations between air pollutants andOSA, AHI, and oxygen saturation. In
the Sleep Heart Health Study consisting of 3,030 participants who underwent a
single-night polysomnography screening, short-term impacts of PM10 were

found in summer but not in other seasons, for the increases in the percentage
of sleep time at <90% oxygen saturation and the respiratory disturbance index
(the ratio of the count of all apnea and hypopnea events to the total sleep
time).8 Conversely, in the Heinz Nixdorf Recall study, which included 1,773 partic-
ipants undergoing screening for sleep-disordered breathing, investigators did not
find a statistically significant association between PM10 and AHI across all sea-
sons.12 Similarly, in a retrospective study by Cassol et al., involving correlation an-
alyses with one-night in-laboratory data from 7,523 patients suspected to having
sleep disorders, AHI was not found to be correlated with PM10 and SO2 but did
showa significant correlationwith CO.17 In a recent cross-sectional study among
4,634 adults who were admitted to sleep centers for the polysomnography diag-
nostic test, short-termPM2.5 exposurewas not associatedwith OSA, AHI, and ox-
ygen desaturation, while NO2 exposure showed a significant association with
elevated AHI and oxygen desaturation index (defined as the number of episodes
of oxygen desaturation per hour of sleep) in patients with an AHI of <15, and
increased odds of mild OSA.10 The inconsistent findings in previous studies
might be attributed to differences in study design, sample size, population char-
acteristics, exposure assessment, and exposure windows that were evaluated.
For example, the use of one-night sleep monitoring could result in apparent
bias in relation to time-varying confounders (eg, seasonality).

Our findings on the associations of air pollution with OSA severity are biolog-
ically plausible in the following aspects. First, air pollution could induce immedi-
ate nasal or pharyngeal inflammatory responses, subsequently increasing upper
airway resistance anddiminishing airway patency.18,19 Thesebiological reactions
might in turn result in reductions in lung ventilation and perfusion and exacerba-
tion in hypoxia associatedwith OSA. Second, some studies have reported that air
pollutants may translocate into brain through the olfactory nerve and penetrate
the central nervous system,20 resulting in elevated neuroinflammation and
altered neurotransmitter levels.21,22 The abovementioned changesmight impact
the areas of brain that regulate sleep and ventilation, further contributing to the
exacerbation of OSA symptoms.23 Third, the frequent reductions in ventilation
associated with air pollution exposure during sleep can result in OSA patients
receiving less air, ultimately leading to a decrease in oxygen saturation.

We found that the associations of air pollution with OSA severity were more
pronounced in middle-aged and elderly people. Aging, a major risk factor for
OSA,24 is associated with the deterioration of upper airway muscle tone and a
more easily collapsible airway due to the age-related loss of collagen.25,26 These
structural changes in older patients could substantially reduce airway flowduring
sleep and play key roles in the pathophysiology of OSA in this age group.27 In
addition, aging is associated with the decreased airway immunity and deterio-
rated mucociliary clearance, which might facilitate the retention of air pollutants
and the release of proinflammatory cytokines in the upper airway. The nasal or
pharyngeal inflammatory responses can further reduce the airflow.19

Our study has several notable strengths. First, we obtained an ultra-large,
nationwide database (more than 6 million person-days of sleep monitoring),
providing ample statistical power to detect even subtle effects of air pollution.
Second, in comparison with previous studies conducted among patients
admitted to sleep centers, the current real-world study collected sleepmonitoring
data at home, enhancing the generalizability of our findings. Third, in contrast to
most previous studies with a single-night measurement using a cross-sectional
design, this nationwide longitudinal study utilized intensively repeated measures
(an average of 118 eligible screening days per participant), so that our dataset
could provide ample variations in both air pollutant concentrations and OSA-
related parameters, and thus allow for comprehensive explorations on a stable
and full-range exposure-response relationship. Fourth, for the first time, we
applied a case time series design to adjust for both time-invariant and time-vary-
ing confounders that were not adequately addressed in previous studies. Finally,
we matched air pollution exposure levels according to the individualized sleep
time at an hourly resolution, thereby avoiding temporal exposure misclassifica-
tion that was widespread in previous studies.

Some limitations should be also acknowledged. First, the consumer-led
approach for OSA screening could attenuate the population representativeness
of our results. Second, this study is inherently observational in nature, making
it challenging to establish a causal relationship between air pollution and OSA
severity. Third, exposure misclassifications are inevitable, because all environ-
mental data were measured based on nearby fixed-site monitoring rather than
personal measurements. However, ambient monitoring data have been widely

Table 1. The median (P25, P75) of AHI, oxygen saturation, and environmental
conditions for days with OSA exacerbation and days without OSA exacerbation,
respectively

Indicators

Person-days without
OSA exacerbation
(N = 3,357,709)

Person-days with
OSA exacerbation
(N = 2,874,347)

AHI (events/h) 0.93 (0.58, 1.23) 29.95 (22.64, 37.95)

Oxygen saturation (%) 96.58 (96.11, 97.01) 96.39 (95.95, 96.79)

PM2.5 (mg/m
3)a 23.12 (14.22, 37.67) 24.00 (14.78, 39.12)

PM2.5-10 (mg/m
3)a 18.88 (10.56, 32.00) 19.44 (10.73, 33.11)

NO2 (mg/m
3)a 23.89 (15.33, 38.14) 24.50 (15.67, 39.11)

CO (mg/m3)a 0.62 (0.47, 0.81) 0.63 (0.48, 0.82)

SO2 (mg/m
3)a 6.09 (4.22, 8.78) 6.20 (4.33, 9.00)

Temperature (�C)b 19.05 (10.60, 25.29) 18.33 (10.16, 24.88)

Relative humidity (%)b 70.68 (58.40, 79.83) 70.66 (58.33, 79.85)

AHI, obstructive sleep apnea; CO, carbon monoxide; NO2, nitrogen dioxide; OSA,
obstructive sleep apnea; P25, 25th percentile; P75, 75th percentile; PM2.5, fine
particulate matter; PM2.5–10, coarse particulate matter; SO2, sulfur dioxide.
aAir pollution levels from the hour of falling to sleep to the hour of waking up.
bweather conditions in 3 moving days before falling to sleep.
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used in epidemiological studies investigating the short-term effects of air pollu-
tion, and such surrogates have been validated to only bias the effect estimates
downward.28 Fourth, we did not account for factors like indoor air pollutants,
long-term exposure to air pollution, noise, and socioeconomic characteristics.
These factors are unlikely to introduce significant bias into our results because
they tend to remain relatively stable over days, weeks, even months for the
same participants, and can be automatically controlled in the self-control design.
However, the absence of these data restricts our ability to further explore their
potential effectmodifications. Finally, OSA risk and severityweremeasuredusing
smart devices without clinical confirmation, thus diagnostic errors are also inev-
itable. Nevertheless, we could reasonably assume that these errors were rare,
occurred randomly, and were not closely related to variations in air pollution,
so our results would be not substantially biased.

In conclusion, this nationwide case time series study provides compelling
evidence that short-term exposure to air pollution could increase OSA
severity. These associations between air pollution and OSA severity could
occur during the sleep period and last for 2 days. Our findings highlight
the importance of reducing air pollution exposures to mitigate OSA severity
and relevant disease burden in an aging era. This study also suggests that
continuous sleep screening by virtue of “smart technology” is a promising

and feasible approach for OSA patients, especially for those residing in areas
with high air pollution levels.

MATERIALS AND METHODS
Study design

This study used data from the pre-mobile atrial fibrillation app (mAFA) II registry, estab-

lished to screen the users’ atrial fibrillation status by the photoplethysmography (PPG)-

based Huawei smart devices (Huawei Technologies Co.). Users can freely download this

application from the Huawei Appstore, and it can provide both sleep apnea screening and

atrial fibrillation screening. We recruited users who were aged 18 or older, residing in main-

land China, possessing compatible smart devices, and providing electronic informed con-

sent. Thestudy received approval from theCentralMedical Ethic Committee of ChinesePeo-

ple’s Liberation Army General Hospital (S2017-105-02). This study adheres to the principles

of the Declaration of Helsinki. Patients withmoderate-to-severe OSA aremore likely to expe-

rience excessive sleeplessness, and various comorbid conditions comparedwith those with

mild OSA. We only included participants identified as having a risk of moderate-to-severe

OSA through this application from December 16, 2019, to October 15, 2022. We did not

consider individualswithmild OSA because of the limited clinical relevance and the substan-

tial computational burden in relation to themuch larger sample size. Participants were clas-

sifiedas havingmoderate-to-severe OSA risk if, in any2-weekperiod, they had at least 5 days

A

B

C

Figure 1. Estimated percent changes (and 95% confidence intervals) in risk of obstructive sleep apnea exacerbation (A) Absolute changes (and 95% confidence intervals) in apnea-
hypopnea index (B) and oxygen saturation (C) per interquartile range increase in air pollutant concentrations across various lag periods. PM2.5, fine particulatematter; PM2.5–10, coarse
particulate matter; NO2, nitrogen dioxide; CO, carbon monoxide; SO2, sulfur dioxide; OSA, obstructive sleep apnea. Note: During sleep means the duration from the hour of falling in
sleep to the hour of waking up.
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ofmonitoring andR80% ofmonitoringmeasurements showed an AHI>15 events per hour

during sleep. An eligible monitoring day was defined as having a duration of 4–12 h of sleep

monitoring. Participants with less than 7 eligible monitoring days were further excluded to

reduce the influences of having too few monitoring days.

We applied a novel case time series design to analyze the longitudinal data, which com-

bines elements of traditional time series method with self-matched methods like the case-

crossover approach.29 This approach allows for flexible control of time-varying confounders

within a longitudinal structure, and automatically addresses time-invariant confounders

through a self-controlled structure.

Health data
Sleep-related data were collected using the Huawei smartwatch GT2, capable of

capturing PPG signals through an optical heart rate sensor and wrist pulse oximeter. Sleep

apnea was evaluated based on pulse rate variability and blood oxygen saturation, which

were estimated and extracted from the PPG signals during sleep using a machine learning

algorithm. A hypopnea or apnea event was identified when PPG-based respiratory wave-

forms were reduced by 30% or 90%, respectively. AHI was calculated as the total number

of hypopnea and apnea events per hour during sleep. In this study, we additionally defined

a binary variable of OSA exacerbation, classifying an AHIR5 as indicative of OSA exacerba-

tion. Previous studies have demonstrated that compared with the gold-standard technique

(polysomnography), the present PPG-based technique (used by smart devices) has high

levels of sensitivity and specificity in OSA screening.15,30–32 In the present study, a total of

1,628 participants who had been identified as having a moderate-to-severe OSA risk via

smartwatches received the gold-standard testing in hospitals; and 92% of the participants

were ultimately diagnosed, indicating a high accuracy of our screening technique.

Environmental data
Hourly concentrations of criteria air pollutants during the study periodwere obtained from

China’s National Urban Air Quality Real-time Publishing Platform. We evaluated fine partic-

ulatematter (PM2.5), coarse particulatematter (PM2.5-10, that is PM10minus PM2.5), nitrogen

dioxide (NO2), carbonmonoxide (CO), and sulfur dioxide (SO2).We did not evaluate ozone as

its concentrations during nighttime, especially indoors, were considerably lower than the es-

tablished “safe” thresholds.33Meteorological data including temperature and relative humid-

ity were collected from the National Oceanic and Atmospheric Administration. All environ-

mental exposure data were matched to the nearest monitoring stations at the district

level for privacy reasons. To reduce exposure measurement errors, participants located

more than 50 km from the nearest air pollution monitoring station and more than

100 km from the nearestmeteorologicalmonitoring stationwere excluded. The top andbot-

tom 0.1% of hourly concentrations for air pollutants were trimmed to reduce the potential

impact of outliers on the analyses. The exposure levels of air pollutants during sleep period

were calculated as the mean concentrations from the hour of falling asleep to the hour of

waking up. The exposure levels on days before sleep were calculated as the mean concen-

trations for every 24 h before the time of falling asleep, briefed as lag 1 day, 2 days, etc. To

allow for the sensitivity analysis using exposure models, we matched daily PM2.5 data with

the model developed by the project of Tracking Air Pollution in China (TAP, a spatial resolu-

tion of 103 10 km, http://tapdata.org.cn).34–36 We did not conduct similar sensitivity ana-

lyses for other air pollutants because there were no publicly available exposure models that

could cover the entire study period.

Statistical analyses
The case time series design splits the follow-up period into daily time series for each case,

yielding a set of multiple case-specific time series. Fixed-effects regression models were

used to estimate the association between air pollution and the risk of OSA exacerbation,

AHI, and oxygen saturation. Inmainmodels, we incorporated the subject/year/month strata

intercept to control for the individual-level variations, as well as the yearly and monthly var-

iations. We also included natural splines of day (with 8 degrees of freedom [df] per year) to

control for seasonal and long-term trends, natural cubic splines of 3-day moving average of

temperature and humidity (with 6 df) to adjust for their potentially lagged and nonlinear con-

founding effects, a categorical variable of the day of theweek, and a binary variable of public

holidays. In order to investigate the potential lagged associations of air pollution, we evalu-

ated the associations across various lag days, including the sleep period and the 3 days pre-

ceding the hour of falling asleep.We first fitted nonlinear models using natural cubic splines

with 3 df for air pollution variables to examine the shape of exposure-response curves. If a

nonlinear relationshipwas observed, wewould report the effect estimates by comparing the

extreme air pollution levels (ie, the 99th percentile) to the reference concentrations. In the

case of a linear relationship, wewould present the effect estimates as per interquartile range

(IQR) increase of air pollutant concentrations. For OSA exacerbation, the estimated relative

risk was transformed into the percentage change in risk associated with each IQR increase

in air pollutants, which was calculated using the following formula: (eb3IQR � 1Þ3 100%.37

For AHI and oxygen saturation, the absolute changes were presented.

Figure 3. Exposure-response curves for the association between air pollutant levels during sleep time and 2 days before and apnea-hypopnea index Solid lines = change of apnea-
hypopnea index; shaded areas = 95% confidence intervals. Abbreviations: PM2.5, fine particulate matter; PM2.5–10, coarse particulate matter; NO2, nitrogen dioxide; CO, carbon
monoxide; SO2, sulfur dioxide.

Figure 2. Exposure-response curves for the association between air pollutant levels during sleep time and 2 days before and the onset of obstructive sleep apnea exacerbation
Solid lines = percent change in relative risk of obstructive sleep apnea exacerbation; shaded areas = 95% confidence intervals. PM2.5, fine particulate matter; PM2.5–10, coarse
particulate matter; NO2, nitrogen dioxide; CO, carbon monoxide; SO2, sulfur dioxide.
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To examine potential effect heterogeneity, we did subgroup analyses by age (<45 ands

45 years), sex, bodymass index (<24 ands 24 kg/m2), and sleepduration (<7 h ands 7 h),

as well as history of hypertension and diabetes. The statistical significance of differences in

effects between subgroups was tested using the following formula: ðQ1 � Q2Þ±
1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Se1

2+Se2
2

q
, where Q1 and Q2 indicate the estimates for each subgroup, and Se1

and Se2 represent their respective standard errors.38 The p values for between-group differ-

ence tests were calculated based on the 95% CIs mentioned above.

To assess the robustness of the results, we did sensitivity analyses for PM2.5 by using

daily data from an exposure model instead of relying on measurements obtained from

nearby air quality monitors.

All statistical analyses were performedwith R (version 4.1.2) using the “gnm” package. All

statistical tests are two-sided and p values less than 0.05 were considered to be statistically

significant.
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Figure 4. Exposure-response curves for the association between air pollutant levels during sleep time and 2 days before and levels of oxygen saturation Solid lines = change of
oxygen saturation levels; shaded areas = 95% confidence intervals. PM2.5, fine particulatematter; PM2.5–10, coarse particulatematter; NO2, nitrogen dioxide; CO, carbonmonoxide; SO2,
sulfur dioxide.
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