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Abstract
Cerebrovascular disease, including both ischaemic and haemorrhagic strokes, remains one of the highest
causes of global morbidity and mortality. Developing nations, such as South Africa (SA), are affected
disproportionately. Early identification of stroke patients at risk of poor clinical prognosis may result in
improved outcomes. In addition to conventional neuroimaging, the role of predictive biomarkers has been
shown to be important. Little data exist on their applicability within SA. This scoping review aimed to
evaluate the currently available data pertaining to blood biomarkers that aid in the long-term
prognostication of patients following stroke and its potential application in the South African setting.

This scoping review followed a 6-stage process to identify and critically review currently available literature
pertaining to prognostic biomarkers in stroke.

An initial 1191 articles were identified and, following rigorous review, 41 articles were included for the
purposes of the scoping review. A number of potential biomarkers were identified and grouped according to
the function or origin of the marker. Although most biomarkers showed great prognostic potential, the cost
and availability will likely limit their application within SA.

The burden of stroke is increasing worldwide and appears to be affecting developing countries
disproportionately. Access to neuroradiological services is not readily available in all settings and the
addition of biomarkers to assist in the long-term prognostication of patients following a stroke can be of
great clinical value. The cost and availability of many of the reviewed biomarkers will likely hinder their use
in the South African setting.
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Introduction And Background
Cerebrovascular disease, including ischaemic and haemorrhagic strokes, remains one of the highest causes
of morbidity and mortality globally, with an estimated stroke prevalence of 104.2 million people, resulting
in over 6 million deaths in 2017 alone [1]. Low-to-middle income countries (LMIC), such as South Africa
(SA), are disproportionately affected compared to wealthier nations [2,3]. Strokes result in an excess of 100
disability-adjusted life years (DALYs) in SA alone, with one study in rural SA showing a burden of the cost of
more than R4.2-million (approximately US$264000) in sub-district health expenditure [4,5].

Early identification, confirmation and management of suspected acute ischaemic strokes (AIS) and
intracerebral haemorrhages (ICH) result in improved functional outcomes [6,7]. Neuroradiological imaging,
the gold standard diagnostic test in stroke medicine, incurs significant costs, with the global computed
tomography (CT) scan market alone exceeding US$6billion in 2020 [8]. CT brain, the investigation of choice
when a stroke is suspected, can cost upwards of ZAR4000 (approximately US$280), whilst magnetic
resonance imaging (MRI) can cost more than ZAR10000 (approximately US$700). This clearly limits the wide
implementation of these imaging modalities in LMIC, such as SA. The need for cheap, widely accessible
diagnostic and prognostic tools such as biomarkers, which have been shown to have significant additive
predictive value, is therefore evident [9].

The term biological marker, or biomarker, has been ascribed various definitions. Strimbu and Tavel and
Puntmann emphasise the objectivity of measured biomarkers [10,11]. The Food and Drug Administration-
National Institutes of Health (FDA-NIH) Biomarker Working Group published an updated version of their
document titled BEST (Biomarkers, EndpointS, and other Tools) Resource on the 25th of January 2021.
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Various types of biomarkers are defined and discussed [12]. Of interest in the current review are prognostic
biomarkers in acute strokes. A prognostic biomarker is “used to identify (the) likelihood of a clinical event,
disease recurrence or progression in patients” presenting with a specific diagnosis [12].

A biomarker aiming to assist in long-term prognostication in strokes should ideally be detectable early in the
disease process, widely available, easily interpreted, and must have an appropriate sensitivity to ensure false
negatives are avoided. The use of biomarkers following various insults to the brain has been well described.
Numerous studies and systematic reviews have been published over the years, including a study by Jickling
and Sharp, who found that more than 58 biomarkers in ischaemic stroke have been described [13-19].

This scoping review aimed to determine the currently available data pertaining to blood biomarkers that aid
in the long-term prognostication of patients following AIS or ICH and its application within the SA setting.

Review
Although no definition of a scoping review has been universally accepted, essential themes and purposes
have been identified which are ever-expanding [20,21]. Scoping reviews aim to rapidly determine important
ideas in a specific research area [22]. It assists in determining the scope of research done in its breadth,
depth and nature [22,23]. Mays et al. are of the view that scoping reviews “can be undertaken as standalone
projects in their own right” [24]. Extensive work has been published by Arksey and O’Malley, further
strengthened by work by Levac et al. [20,22]. These authors recommend a 6-stage process that has been
adapted for the purpose of this review.

Stage 1 required establishing the research question and discussion with a team of researchers with expertise
in the field. The question “What is the currently available literature regarding the evidence for the use of
blood biomarkers in long-term prognostication following stroke?” was decided upon. A long-term prognosis
is defined as functional or clinical outcome more than 30 days following the stroke event. Identification of
relevant studies (stage 2) required the determination of keywords, which, with the help of Boolean operators
(AND/OR/NOT), aided in refining the search terms in multiple databases. Following the application of filters
such as English language and human participants, the search resulted in the identification of literature from
PubMed/Medline (228 articles), ScienceDirect (890 articles) and SciELO (16 articles). A further 57 articles
were identified during the reading process.

As a result, a total of 1191 articles were identified for analysis. The Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) flowchart was utilised to screen these articles for selection (stage 3)
and, following the application of rigorous exclusion criteria, a total of 41 articles were included for critical
review (Figure 1) [25].
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FIGURE 1: The Study Selection Process Following the PRISMA
Flowchart
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Original image created by the
authors.

†Study/trial unrelated to research question: 583; study/trial focussing on stroke risk factors: 36; study/trial
focussing on management of stroke: 24; study/trial focussing on cardiac pathologies: 283; study/trial focussing on
atrial fibrillation: 35; study/trial focussing on cardiorenal syndromes: 5; study/trial focussing on coronavirus
disease 2019 (COVID-19): 30; study/trial focussing on sickle cell disease: 8; study/trial focussing on artificial
intelligence in disease: 3

‡Review article/meta-analysis/editorial: 34; full text not available, only abstract: 6; study on stroke risk/chronic
strokes/transient ischaemic attacks: 15; study on biomarkers and mainly other diseases in stroke: 20; study on
differentiating stroke types and stroke mimics: 7; study focussing on diagnosis/management/clinical decision-
making: 28; study determining risk of acute outcomes: 9; study to determine pathophysiology of disease: 7; study
criteria not specific: 2; animal/laboratory-based studies (validation): 11; study looking at cost associated with
stroke: 1

Data were extracted and charted (stage 4) from each study following critical analysis based on the methods
described by Young and Solomon [26]. Data were collated and summarised (stage 5) below, following which a
conclusion was drawn (stage 6). Arksey and O’Malley recommend that “a thematic construction is used to
provide an overview of the breadth of the literature” [22]. As such, following critical analysis, the 41 key
articles have been summarised (Table 1) [27-67]. The nature of the articles has allowed for a categorical
theme which is discussed below.

Author Year Stroke Type Serum Biomarker Assessed

Biomarkers of Inflammation

Christensen et al. [27] 2002 Ischaemic TNFa IL-1b IL-1RA IL-6 IL-10 TNF-R1 TNF-R2

Smith et al. [28] 2004 Ischaemic IL-6
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Sotgiu et al. [29] 2006 Ischaemic TNFa ICAM-1 IL-6

Welsh et al. [30] 2009 Ischaemic IL-6

Smedbakken et al. [31] 2011 Ischaemic ALCAM

Tsai et al. [32] 2014 Ischaemic TBARS

Xu et al. [33] 2018 Haemorrhagic Tim-3

Li et al. [34] 2020 Haemorrhagic OPN

Acute Phase Reactants

Di Napoli et al. [35] 2001 Ischaemic CRP

Christensen et al. [27] 2002 Ischaemic Ferritin

Montaner et al. [36] 2006 Ischaemic CRP

den Hertog et al. [37] 2009 Ischaemic CRP

Welsh et al. [30] 2009 Ischaemic CRP

Huangfu et al. [38] 2020 Haemorrhagic SAA

Biomarkers of Haemostasis

Di Napoli et al. [35] 2001 Ischaemic Fibrinogen

Nomura et al. [39] 2004 Ischaemic TM

Jauch et al. [40] 2006 Ischaemic TM

Carter et al. [41] 2007 Ischaemic Fibrinogen FVIII beta-TG vWF t-PA FXIII A subunit

Welsh et al. [30] 2009 Ischaemic d-dimer

Taylor et al. [42] 2020 Ischaemic vWF:Ag-ADAMTS13Ac ratio

Nuclear Material

Rainer et al. [43] 2003 All Plasma DNA

Liang et al. [44] 2019 Ischaemic microRNA-140-5p

Zuo et al. [45] 2020 Ischaemic circFUNDC1 circPDS5B circCDC14A

Creatinine

Carter et al. [41] 2007 Ischaemic Creatinine

Hormones

Denti et al. [46] 2004 Ischaemic IGF-1

Zweifel et al. [47] 2011 Haemorrhagic GH

Wang et al. [48] 2016 Ischaemic Copeptin

Armbrust et al. [49] 2017 Ischaemic IGF-1 IGFBP-3

Yang et al. [50] 2017 Ischaemic NT-proBNP

De Marchis et al. [51] 2018 Ischaemic MRproANP

Tu et al. [52] 2018 Ischaemic Irisin

Arnold et al. [53] 2020 Ischaemic MRproANP

Amino Acids, Proteins and Enzymes

Alvarez-Sabin et al. [54] 2004 Haemorrhagic MMP-3

Wunderlich et al. [55] 2005 Ischaemic H-FABP B-FABP

Sotgiu et al. [29] 2006 Ischaemic MMP
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Carter et al. [41] 2007 Ischaemic Albumin Haemoglobin

Yan et al. [56] 2016 Haemorrhagic Galectin-3

Zhong et al. [57] 2017 Ischaemic tHy

Zhong et al. [58] 2017 Ischaemic MMP-9

Zeng et al. [59] 2019 Ischaemic Galectin-3

Qian et al. [60] 2020 Ischaemic Endostatin

Zhang et al. [61] 2020 Ischaemic Endostatin

CNS-Specific Biomarkers

Abraha et al. [62] 1997 All S100B

Wunderlich et al. [63] 2006 Ischaemic NSE Tau protein

Jauch et al. [40] 2006 Ischaemic S100B NSE MBP

Delgado et al. [64] 2006 Haemorrhagic S100B

Sotgiu et al. [29] 2006 Ischaemic BDNF

García-Berrocoso et al. [65] 2013 Ischaemic GELS DRP2 GELS/DRP2 GELS/DRP2/CYTA

Tiedt et al. [66] 2018 Ischaemic NfL

Zhu et al. [67] 2019 Ischaemic DDK-1

TABLE 1: Studies Included in the Scoping Review and the Biomarkers Assessed
TNFa: tumour necrosis factor alpha; IL-1b: interleukin 1 beta; IL-1RA: interleukin 1 receptor antagonist; IL-6: interleukin 6; IL-10: interleukin 10; TNF-R1:
tumour necrosis factor receptor 1; TNF-R2: tumour necrosis factor receptor 2; ICAM-1: intercellular adhesion molecules 1; ALCAM: activated leukocyte
adhesion molecule; TBARS: thiobarbituric acid-reactive substances; Tim-3: T-cell immunoglobulin and mucin-domain 3; OPN: osteopontin; CRP: C-
reactive protein; SAA: serum amyloid A; TM: thrombomodulin; FVIII: factor eight; beta-TG: beta-thromboglobulin; vWF: von Willebrand factor; t-PA: tissue
plasminogen activator; FXIII A subunit: factor thirteen A subunit; ADAMTS13Ac: activity of disintegrin and metalloproteinase with a thrombospondin type 1
motif, member 13; IGF-1: insulin-like growth factor; IGFBP-3: insulin-like growth factor binding protein 3; NT-proBNP: N-terminal fragment of B-type
natriuretic peptide; MRproANP: midregional pro-atrial natriuretic peptide; MMP: matrix metalloproteinase; H- and B-FABP: heart and brain type fatty acid-
binding protein; tHy: total homocysteine; NSE: neuron-specific enolase; MBP: myelin-basic protein; BDNF: brain-derived neurotrophic factor; GELS:
gelsolin; DRP2: dihydropyrimidinase-related protein-2; CNS: central nervous system; CYTA: cystatin A; NfL: neurofilament light chain; DDK-1: Dicckopf-1

Categories of biomarkers studied
Inflammation

As is the case in AIS, the disruption of the supply of oxygen to the brain parenchyma results in focal
ischaemia (or necrosis), following which a number of biochemical and cellular changes occur [68]. Necrosis
results in the release of reactive oxygen species (ROS) which promotes oxidative stress, and nucleic acids
which promote cytokine and chemokine release, which in turn results in the recruitment of microglia [69].
Microglial cells play a critical role in the inflammatory cascade by upregulating the production of a number
of proinflammatory chemokines and cytokines, which results in the deleterious effects following the acute
insult, perpetuating the cycle [70]. Although fundamentally different in its initial insult, inflammation
similarly plays an important role in secondary cellular damage following ICH [71]. These measurable
cytokines and chemokines represent a potential quantitative assessment of the extent of the insult, forming
the theoretical basis for their use as prognostic biomarkers.

(i) Tumour necrosis factor alpha (TNFα) and its receptors: TNFα, a cytokine produced within the central
nervous system (CNS) by both neurones and glial cells, is an activity-dependent cytokine with low levels in
the normal physiological state [72]. Often thought of as the prototypical proinflammatory cytokine, it has
both advantageous (such as maintaining healthy myelin) and deleterious (such as inducing cellular necrosis)
effects, thought to be the result of different cellular receptors [73]. Its usefulness as a prognostic biomarker
has yielded contradictory results, which may reflect this pleiotropy [27,29].

(ii) Interleukins (IL): ILs, produced by a myriad of cell types throughout the body, play an imperative role in
the homeostasis of inflammatory cellular function, including cellular activation, suppression, proliferation
and migration [74]. Functionally, ILs may be considered pro-inflammatory or anti-inflammatory, with levels
maintained in a fine balance in normal physiological states. Disruption in this homeostasis results in the
deleterious effects seen following cerebral insults [75-77]. Measurement of ILs (and their direct drivers) as
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tools for prognostication in strokes has resulted in mixed results [27-30,34]. Of all the markers studied, IL-6
appears to have the greatest potential of being clinically useful.

(iii) Adhesion molecules: Adhesion, leukocyte rolling and subsequent cellular transmigration of
inflammatory cells are largely regulated by adhesion molecules [78]. Within the CNS, these molecules play a
role in neuronal cell migration, synapse formation and inflammation [79]. The production of these
molecules is rapidly upregulated following initiation of the inflammatory cascade following cerebral
ischaemia [80]. Both activated leukocyte adhesion molecule (ALCAM) and intercellular adhesion molecule 1
(ICAM-1) have shown promising results as biomarkers [29,31].

(iv) T-cell immunoglobulin and mucin-domain: The Tim gene family, expressed on T-cells, B-cells and
dendritic cells, underpins the complexity of immune regulation and dysregulation in a number of
conditions [81]. The interplay between a number of Tim-subsets results in different immune responses to
inflammation and may promote or suppress the inflammatory cascade. Tim-3 has been shown to
downregulate the T helper 1 response, thereby acting as an anti-inflammatory molecule [82]. Tim-3 has been
studied in ICH and has been found to be potential as both a prognostic biomarker and a potential
therapeutic target [33].

(v) Thiobarbituric acid-reactive substances (TBARS): The inflammatory response following cerebral
ischaemia is driven, in part, by the production of ROS [83]. Malondialdehyde, a by-product of lipid
peroxidation, is produced in excess as part of the inflammatory response following cerebral ischaemia and
can be measured, indirectly, by measuring TBARS [84]. Early measurement of TBARS predicts early clinical
outcome as well as long-term prognosis following AIS [32].

Acute Phase Reactants (APR)

APR vary greatly in the presence of inflammation and is often a surrogate for the extent of the systemic
inflammatory response to various insults [85]. APRs, including C-reactive protein (CRP) and ferritin, are
known to increase following cerebral insults [86,87].

(i) C-reactive protein (CRP): CRP, first discovered in 1930, is primarily induced by the presence of IL-6 and
produced by the liver [88]. Not only has CRP been found to be increased following stroke, but it has also been
shown to be a predictor of new-onset strokes [89]. Results have been fairly conclusive and support its use as
a prognostic biomarker following AIS [30,35,36].

(ii) Ferritin: Ferritin is the primary storage form of iron and increases in response to hepcidin [90]. Hepcidin,
in turn, is thought to be an APR and has evolved to reduce iron availability, a metabolic rate-limiting step
for many pathogens [91]. Ferritin, a commonly analysed laboratory parameter, is therefore thought to serve
as a surrogate marker for hepcidin, and therefore inflammation. As such, authors have sought to determine
the potential use of ferritin as a prognostic biomarker. Unfortunately, results have not been supportive of
this [27]. This may reflect a timing issue in blood sampling due to the delay from the initiation of the
inflammatory cascade, increased levels of hepcidin and subsequent increased iron storage as ferritin.

(iii) Serum amyloid A (SAA): Isolated more than half a century ago, SAA has been under much research and
has been primarily identified in pathological states, with recent advances showing some role in normal lipid
metabolism [92]. Predominantly synthesised in the liver, SAA acts as a pleiotropic immune modulator, with
a predominantly pro-inflammatory effect [93]. A recent study by Huangfu et al. revealed the significant
predictive value of SAA following ICH [38].

Mediators of Haemostasis

Numerous factors play a critical role in the maintenance of normal, laminar vascular flow to the brain, with
disruption in endothelial wall integrity, flow or coagulability resulting in thrombosis [94]. Focal cerebral
ischaemia is often due to local hypercoagulability and it can be postulated that the level of activity of
mediators of haemostasis represents the extent of thrombosis [95]. Focal coagulopathies appear to play a
central role in haematoma formation following ICH, which is directly correlated to functional outcomes [96].

(i) Pro-coagulation: Peripherally measured factors which promote thromboses, such as the von Willebrand
factor, factors VIII and XIII and beta-thromboglobulin have been shown to have a significant ability to
predict both mortality and morbidity following strokes [41,42]. Studies assessing fibrinogen revealed mixed
results [35,41].

(ii) Anti-coagulation: Thrombomodulin, a naturally occurring anticoagulant, found on endothelial cell
membranes failed to yield a clinically significant prognostic value [39,40]. Endogenous tissue plasminogen
activator activity, however, appeared to predict poor outcomes well [41].

(iii) Coagulation end-products: Following fibrinolysis, d-dimer is produced as a soluble fibrin degradation
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product and is detectable in the serum [97]. A paper by Welsh et al. provided evidence that d-dimer levels
following AIS have a good prognostic value [30].

Nuclear Material

The nuclear material is released following cell death and can be detected using specialised equipment [98].
Primarily utilised in so-called liquid biopsies in cancer detection, free DNA and RNA material have been
identified as potential markers for the extent of cerebral damage following strokes, and may therefore
predict outcomes. Some studies support this claim when assessing plasma DNA and specific
microRNA [43,44]. Research looking at other circular nuclear material has not supported its use as a
prognostic biomarker [45].

Creatinine

Creatine, an amino acid-like compound, is predominantly produced in the liver and kidneys, but has been
shown to be a key in normal cellular function within the brain [99]. Creatinine, a metabolic by-product of
creatine homeostasis, has been widely studied [100,101]. Literature on its use as a prognostic biomarker
following strokes is limited, however, it has been shown to be a good predictor of mortality following
AIS [41].

Hormones

Various hormones have been shown to have a role in stroke risk as well as the neuroinflammatory response
following a stroke [102-104]. This has provided an opportunity to assess a number of hormones as
prognostic biomarkers in stroke.

(i) Growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway: Released from the anterior pituitary
somatotropic cells GH, also known as somatotropin, fulfils a multitude of functions either directly by
binding to target cells or indirectly via the action of IGF-1 [105]. Following the initiation of the
inflammatory cascade, multiple factors, including GH-responsive genes (such as the rat serine inhibitor 2
locus), suppress the expression of GH and allow for it to be considered a negative APR (meaning levels
reduce in the face of inflammation) [106]. Following ICH, however, activation of the hypothalamic-pituitary
axis promotes the release of GH, with elevated levels being associated with poor clinical outcomes [47].
Following production in the liver, IGF-1 is bound to IGF-1 binding protein (IGFBP) and acts on IGF-1
receptors to promote cellular growth [107]. An inverse relationship exists between stroke risk and functional
outcomes following strokes and IGF-1 and IGFBP-3 levels [108].

(ii) Natriuretic peptides: Natriuretic peptides consist of three structurally similar hormones which fulfil a
primary cardioprotective role [109,110]. Elevated levels of both atrial-and brain natriuretic peptides have
been associated with stroke risk, aetiology and prognosis [111-113]. A number of studies have confirmed the
utility of natriuretic peptides as prognostic biomarkers following strokes [50,51,53].

(iii) Copeptin: Antidiuretic hormone (arginine vasopressin, ADH) is synthesised in the hypothalamus and
stored within the posterior pituitary gland where it is released in response to hypovolaemia and
hypernatraemia [114]. Measurement of ADH is made difficult due to various technical factors and copeptin,
an amino acid glycopeptide, which has shown good potential as a biomarker in various disease states, has
been shown to be an accurate surrogate marker for ADH release [115]. Elevated levels of copeptin measured
shortly after symptom onset following AIS are a good predictor of both morbidity and mortality [48].

(iv) Irisin: Produced by the enzymatic cleavage of a protein found on myocyte membranes, irisin is a key
hormone in the regulation of brown adipocytes [116]. Low levels of irisin are associated with sedentary
lifestyles and its relationship with obesity and metabolic regulation has been suggested [117,118]. Reduced
irisin levels following AIS are associated with increased psychological morbidity [52].

Amino Acids, Proteins and Enzymes

(i) Homocysteine: The methionine derived amino acid homocysteine is necessary for cellular
homeostasis [119]. The association between homocysteine and atherosclerosis dates back to the late 1960s
with stroke complicating hyperhomocysteinaemia [120]. In addition to its role in the pathogenesis of the
cardiovascular disease, homocysteine levels have been found useful in predicting poor clinical outcomes
following AIS [57].

(ii) Haemoglobin: The iron-containing protein haemoglobin is essential for intravascular oxygen transport
and delivery [121,122]. Aberrant haemoglobin concentrations, both abnormally high and low, are associated
with strokes in all stages of its pathophysiology [123-126]. Low haemoglobin levels are predictive of
mortality following cerebral ischaemia [41].
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(iii) Albumin: As the most abundant plasma protein, albumin fulfils a number of functions [127]. Acting as a
negative APR, albumin has long been considered a useful tool in determining the extent of
inflammation [85]. Carter et al. found that albumin is a good prognostic marker of mortality following
AIS [41]. Hypoalbuminaemia may represent a poor pre-stroke physiological reserve, which increases the risk
of death following a cerebral insult [128].

(iv) Fatty acid-binding protein (FABP): To date, nine FABPs have been identified and form part of the
intracellular lipid-binding protein family and are involved in the binding and trafficking of intracellular
hydrophobic ligands [129,130]. The heart-type FABP is predominantly found within cardiac myocytes and
has been shown to be a good prognostic biomarker following both myocardial ischaemia as well as AIS,
whilst the brain-type FABP has been shown to provide significant prognostic value following AIS [55,131].

(v) Galectin: The family of beta-galactoside-binding animal lectins, galectin, has been shown to be involved
in a number of physiological and disease processes [132]. Some classes of galectins are predominantly
expressed within the brain and are fundamental in the formation and migration of specific neuronal tissue
following injury [133]. Galectin-3, a pleiotropic molecule, has in recent years been the target of a number of
investigational therapeutics in a wide variety of conditions [134-136]. Its use as a potential diagnostic and
prognostic biomarker in cardiovascular disease, especially, has been proven [56,59,137].

(vi) Matrix metalloproteinase (MMP): The zinc-dependent family of enzymes, MMPs, are critical in
maintaining allostasis within the extracellular matrix [138]. Of the more than 20 MMPs, a number of them
have become important biomarkers in a host of diseases and may prove a therapeutic target in future,
including strokes [139,140]. MMP polymorphisms have been identified as an important consideration in
both the pathophysiological processes and clinical outcomes following strokes [141]. MMP-9 in particular
has been shown to be a key factor in the disruption of the blood-brain barrier following strokes and is
associated with stroke severity [142]. Its role in prognostication following both ICH and AIS has been
proven [29,54].

(vii) Endostatin: The angiogenic response following cerebral ischaemia appears to be an important defensive
reaction and has a direct effect on long-term neurological recovery [143]. The mechanisms underpinning
angiogenesis are complex and rely on the balance of stimulating and inhibitory factors [144]. Endostatin, a
potent inhibitor of angiogenesis found in vascular walls and basement membranes, is associated with poor
functional outcomes as well as mortality following AIS [60,61].

CNS-Specific Biomarkers

(i) S100B: Concentrated within glial cells, S100B functions as a calcium-binding protein with a not yet fully
understood role [145]. Its clinical use as a marker of neurological disorders has been well established, with
elevated levels both in the CSF and in the peripheral circulation representing active disease or neuronal
damage [146,147]. S100B reliably predicts the severity of the neuronal injury, however, its utility as a
prognostic biomarker in stroke has yielded mixed results [40,62,64,148].

(ii) Neuron-specific enolase (NSE): One of three isoenzymes of enolase, NSE serves a critical role in neuronal
differentiation [149]. NSE has found significant utility in a number of neurological and oncological
disorders [150,151]. Its clinical utility in stroke-related cerebral insults has resulted in mixed evidence from
literature [40,63].

(iii) Wnt pathway: The Wnt signalling pathway is crucial to cellular regulation, including cell migration, cell
polarity and neural patterning [152]. The increased expression of the Wnt antagonist, Dicckopf-1 (DDK-1),
results from neurodegenerative processes and in further neurodegeneration via a complex pathway resulting
in cellular death (due to the inhibition of BCL-2 expression and induction of BAX) [153]. This canonical loss
of Wnt signalling results in the phosphorylation of tau protein [154]. The microtubule-associated neuronal
protein, tau, is phosphorylated under normal physiological conditions, however, excessive phosphorylation
results in self-aggregation resulting in tauopathies [155]. The build-up of these oligomers is associated with
increased morbidity and mortality and supports the rationale for the use of both DDK-1 and tau as
prognostic biomarkers [63,67].

(iv) Neurofilament light chain (NfL): Neurofilaments are particularly abundant in axons, which are
dependent on NfL to maintain axonal diameter, and are detectable in pathological states due to neuronal
cell death [156,157]. The high translational value of NfL has promoted its use as a prognostic biomarker in a
host of neurodegenerative disorders, including multiple sclerosis [158-161]. Its utility as a prognostic
biomarker in stroke has been confirmed by Tiedt et al. [66].

(v) Brain-derived neurotrophic factor (BDNF): Neuronal plasticity requires BDNF, a highly regulated
molecule, which shows great variability in both health and disease [162]. It is predominantly expressed in
the CNS and the gut and is involved in regulating energy metabolism and upregulating pro-survival genes,
with reduced levels associated with neurodegenerative disorders [163]. The relationship between BDNF and
functional outcomes following AIS has been shown [29].
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(vi) Myelin-basic protein (MBP): Myelin formation within the CNS is highly dependent on the activity of
MBP, and oligodendrocyte differentiation requires fine regulation of MBP expression [164]. MBP readily
interacts with a host of other proteins allowing it to participate in transmission of extracellular
signals [165]. Elevated central and peripheral levels of MBP are associated with cerebral damage [166]. MBP
does not increase early following the onset of cerebral ischaemia and this may explain why it has not been
found to be a useful biomarker in stroke [40,167].

(vii) Novel brain-derived biomarkers: Gelsolin, dihydropyrimidinase-related protein-2 and cystatin A have
been identified by researchers following experimental identification in animal studies, with human post-
mortem confirmation [65]. Although the function of these molecules is yet to be determined, the authors
found that their presence following a stroke is associated with poor functional outcomes.

Applications in South Africa
Successful management of stroke, including diagnosis and treatment decision-making, is highly time-
sensitive [168-170]. Neuroradiological services are not readily accessible to many communities in SA,
notably communities that rely on public healthcare, and significant delays in accessing facilities that
provide these services are experienced. This affects time-to-diagnosis and time-to-treatment which,
specifically in stroke medicine, may result in a significant delay in patient care, and poorer outcomes.
Biomarkers may provide an additive tool; however, limitations remain. Although some readily available
biochemical tests have shown significant potential in predicting patient outcomes following stroke, cost
and availability limit their use. For instance, the GH and NT-proBNP tests cost ZAR121.16 (approximately
US$8) and ZAR509.45 (approximately US$32), respectively [171].

Some biomarkers, including SAA and IGF-1 are available, however, are not being widely utilised. These tests
require specialised equipment, which is often only available at specialist centres. The cost analysis,
therefore, needs to include the transport of the samples in addition to the laboratory cost, which, as in the
case of IGF-1, can be nearly ZAR500 (approximately US$32) [171]. Potential biomarkers that have been
identified in diseases other than strokes, such as copeptin, DDK-1 and MRproANP, were reported in multiple
articles suggesting wider applicability in strokes. These tests are not readily, if at all, available in the private
and public healthcare sectors in SA. The difficulty and cost of these tests make it unlikely that they will be
available anytime soon [172]. The significant disparity between LMIC and high-income countries poses a
barrier to their effective implementation of novel biomarkers in the near future [173].

The delay from blood sampling to the availability of a biomarker result must also be considered. The
currently available biomarkers in Uganda (an LMIC), GH and IGF, for instance, have a turnaround time of 2-3
days and 3-5 days, respectively [174]. Although its diagnostic potential is severely impacted by this delay, it
might still be of prognostic value.

People within SA can access either public or private healthcare, with the former providing care from a
resource-limited setting. The introduction of the National Health Insurance bill will likely result in the
private healthcare sector sharing the financial burden, and the role of cost-effective adjuncts in managing
patients with stroke will become ever more important.

Implications and recommendations
Cerebrovascular events, whether ischaemic or haemorrhagic in nature, result in significant morbidity and
mortality worldwide [175]. Early detection and risk stratification yield improved patient outcomes [6,7].
Numerous clinical and radiological scoring systems have been introduced to determine the outcome for
patients following a stroke; however, the availability of neuroradiological imaging in LMIC greatly limits its
implementation. McLane et al. compared the availability of neurodiagnostic tools, such as MRI and CT,
between LMIC and wealthier nations and revealed a significant disparity, “diagnostic gap” [176]. Novel
approaches are required to bridge this gap.

The availability of objective, measurable biomarkers can provide accurate prognostication and identify high-
risk individuals following a stroke. This is especially true in communities where access to specialised testing
is limited. The advent of point-of-care testing, for markers such as creatine kinase (CK) and amino-terminal
pro-peptide counterpart (NT-proBNP), has been shown to have a significantly positive impact on health
outcomes in resource-limited settings and should be further researched [9,177].

Conclusions
This scoping review revealed the currently available biomarkers from published literature. Laboratory
investigations range from widely utilised tests to newly identified experimental tests. The applicability in
SA, based on cost and availability, varies greatly. The scoping review has limitations. First, publication bias
needs to be considered. Research that has either not been submitted due to statistically insignificant results
or research declined by journals cannot be assessed. Second, the reviewers are not fluent in languages other
than English, limiting the review of articles published in languages such as Mandarin, Spanish, French,
German or Japanese.
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Biomarkers show tremendous promise in aiding clinicians in the early prognostication of patients following
cerebrovascular events. This scoping review highlights the need for further research to be performed to
assess new biomarkers, in terms of both clinical and laboratory accuracy and cost-effectiveness, which are
readily available in the SA setting.
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