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Abstract

Background: Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three
distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/
BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin
family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have
roles in cell adhesion and migration.

Principal Findings: Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus
several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-
substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular
development proceeds normally in the mutant. During chemotaxis secG2 cells elongate and migrate in a directed fashion
towards cAMP, however speed is moderately reduced.

Significance: The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a
cytohesin in a lower eukaryote.
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Introduction

Cell motility and transient cell contacts are essential during

mammalian development and for cells of the immune system. Both

aspects are mediated by integrins, heterodimeric cell surface

receptors that bind to the extracellular matrix and have roles in

intercellular adhesion as well. In the cytosol a number of integrin

interacting proteins are known which influence the conformation

and activity of integrins such as cytoskeletal, adaptor and signaling

proteins [1]. One of them, the guanine nucleotide exchange factor

cytohesin-1 activates beta-2 integrin in lymphocytes involving RhoA

[2]. Overexpression of cytohesin-1 in Jurkat T cells results in

upregulation of LFA-1 (leukocyte specific beta-2 integrin) adhesion

to ICAM-1 whereas knockdown of cytohesin-1 reduced the adhesion

[3]. The knockdown further resulted in migration defects and in

reduced chemotaxis in bone marrow-derived dentritic cells suggest-

ing an important role of cytohesin in amoeboid migration [2].

Cytohesin-1 is a member of a larger group of proteins

characterized by the presence of PH domains and a GEF domain.

Based on the homology of their GEF domain to the one of Arf

GEF sec7p of yeast, this group of proteins belongs to the Sec7

family of ArfGEFs.

ArfGEFs catalyze the switch from the GDP- to the GTP-bound

form of ArfGTPases. This is crucial for the function of the

ArfGTPases as key regulators of vesicular transport in eukaryotic

cells, their roles in the regulation of actin cytoskeleton dynamics, cell

adhesion and cell migration and in signal transduction processes [4]

[5]. Five subfamilies of Sec7 ArfGEFs have been defined that differ

with regard to their overall structure and domain composition; the

GBF and BIG family, the cytohesin, EFA6, BRAG and FBX family.

GBF and BIG type ArfGEFs are involved in Golgi traffic and have

been found in all eukaryotes. GBF/BIG proteins are the only Sec7

members present in plants, whereas the cytohesin, EFA6, BRAG

and FBX families were only reported for metazoans so far. Yeasts

harbour representatives of the GBF/BIG family, and two more

proteins which have been thought to be group specific. One of them

was recently re-classified as an EFA6 family member [6]. The

bacterial pathogens Rickettsia and Legionella also express ArfGEFs

that they may have acquired by gene transfer from their hosts [7]. In

the cytohesin, EFA6 and BRAG family, the Sec7 domain is followed

by a pleckstrin homology (PH) domain. The structure of the Sec7

domain/Arf complex has been solved and the catalytic mechanism

elucidated [8] [9]. The Sec7-domain encompasses 200 amino acids

containing 10 alpha-helices that form two subdomains. For the

phosphoinositide-dependent cytohesin-1 the crystal structure of

the Sec7-PH tandem revealed an autoregulation through the

interaction of a C-terminal amphipathic helix with a linker region

between the domains [10].
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Dictyostelium discoideum is an amoeboid motile cell which feeds on

bacteria and yeast in the wild. Based on its life style it can be

considered a professional phagocyte. Upon starvation cells

aggregate by chemotaxis and form a multicellular organism that

undergoes a developmental program ending with fruiting body

formation. Its genome encodes one ARF, five ARF-like proteins

and 10 ARF-related proteins [11]. The number of ArfGEFs is

lower and only six ArfGEFs (seven in strains AX3 and AX4 due to

a large duplication in chromosome 2) are present. The proteins

belong to the GBF, the BIG and the cytohesin family. Here we

present an analysis of Sec7 domain proteins in the Dictyostelia. We

focus on SecG of D. discoideum, the closest homolog of the

cytohesins in D. discoideum, and investigate its function in cell

adhesion and cell migration.

Results

Sec7 Members in the Genomes of Dictyostelia
We carried out an analysis of the Sec7-domain containing

proteins in the genomes of D. discoideum, Dictyostelium falciparum and

Polysphondylium pallidum. The three species belong to different

taxonomic divisions within the Dictyostelia. D. falciparum belongs to

group 1, the most basic group of Dictyostelia, P. pallidum is a

member of group 2 and D. discoideum is a member of group 4, the

most evolutionarily distant group. Its members use cAMP as

chemoattractant for aggregation whereas in the other groups

different compounds are used. Furthermore, the group 4 members

form solitary fruiting bodies [12].

The D. discoideum genome (strain AX4) encodes seven proteins

containing a Sec7 domain (dictyBase, http://dictybase.org/index.

html) (Table 1). Four of them belong to the family of large ArfGEFs

which are further subdivided into the GBF and BIG type large

ArfGEFs. One of the D. discoideum large ArfGEFs is a member of the

GBF family (DDB_G0290771/DDB0233595), the others belong to

the BIG family (DDB_G0290369/DDB0233618, DDB_G0273101/

DDB0233619, DDB_G0273831/DDB0233619). The BIG family

members DDB_G0273101 and DDB_G0273831 are identical copies

and are located in the large duplication of chromosome 2 which is

only present in D. discoideum strains AX3 and AX4 [13]. The GBF

subfamily member has a Sec7 domain, while the three BIG proteins

harbour in addition a DUF1981 domain (see below). Mouratou et al.

[14] identified five non-catalytic domains common to both

subfamilies based on sequence homology. These domains include

an N-terminal DCB domain allowing dimerization followed by the

Homology Upstream of Sec7 (HUS) domain, the Sec7 domain, and

three HDS domains (Homology Downstream of Sec7). The domain

structure of the D. discoideum GBF and Big proteins largely

corresponds to this pattern. In the GBF family member the HDS1

domain is interrupted at around position 100 of the HDS1 motif by

an unusually long stretch of amino acids rich in asparagines (position

Table 1. The Sec7 family of the Dictyostelia.

Family Species Protein coding gene Gene ID Length (aa) Domains

GBF

D. d. DDB0233595 DDB_G0290771 1,748 Sec7

P. pallidum PPL_08838 871 Sec7

D. f. DFA_05701 1455 Sec7

BIG

D. d. DDB0233618 DDB_G0290369 1,886 Sec7, DUF1981

D. d. DDB0304853 DDB_G0290369 2,048 Sec7, DUF1981

D. d. DDB0233619 DDB_G0273831 2,048 Sec7, DUF1981

P. p. PPL_04049 1618 Sec7, DUF1981

P. p PPL_08053 1859 Sec7, DUF1981

D. f. DFA_04299 1956 Sec7, DUF1981

D. f. DFA_12170 1766 Sec7, DUF1981

Cytohesin

D. d. DDB0233591 DDB_G0279241 919 MFS, Sec7, PH

D. d. DDB0233617 DDB_G0272486 931 Sec7, PH

D. d. DDB0191439 DDB_G0287459 986 Ankyrin, Sec7, PH

P. p. PPL_10293 686 TM, Sec7, PH

P. p. PPL_12526 971 Sec7, PH

P. p. PPL_05633 1696 Ankyrin, Sec7, PH,
Zn2+finger

D. f. DFA_11559 678 DUF2339 Sec7, PH

D. f. DFA_11731 866 Sec7, PH

D. f: DFA_04214 962 Ankyrin, Sec7, PH

The Sec7 family members in three taxonomic divisions of the Dictyostelia are listed. The D. discoideum genome [11] was searched for proteins containing a Sec7 domain
(dictyBase, http://dictybase.org/index.html). The families were classified according to Casanova [46]. The domains listed were identified by Blast searches (http://blast.
ncbi.nlm.nih.gov/Blast.cgi). The D. discoideum (D. d.) proteins were then used to search for homologues in the D. falciparum (D. f.) and P. pallidum (P. p.) genomes at
http://sacgb.fli-leibniz.de/cgi/index.pl. D. falciparum belongs to group 1, P. pallidum is a member of group 2 and D. discoideum (D. d.) is a member of group 4. The
homology search was done by Blast. DUF1981, DUF2339, domains of unknown function, present in predicted membrane proteins. MFS, Major-Facilitator-Superfamily,
group of membrane proteins; TM, transmembrane; DUF1981, domain of unknown function, present in predicted membrane proteins, PH, PH-domain.
doi:10.1371/journal.pone.0009378.t001
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857 to 985), and HDS2 is rather weakly conserved when compared to

the mammalian counterpart (25.4% identity in a 118 amino acids (aa)

overlap for DDB_G0290771/DDB0233595). In contrast, in the BIG

family members the HDS2 motif is well conserved (50.6% identity in

a 158 aa overlap in DDB_G0290369/DDB0233618, and 43.7%

identity in a 167 aa overlap in DDB_G0273101/DDB0304853 and

DDB_G0273831/DDB0233619, respectively) and encompasses the

DUF1981 region of homology (Table 1).

Three further proteins carry the Sec7 domain in tandem with a

PH domain. Such an arrangement is present in the cytohesins, the

EFA6 and BRAGs where they occur in combination with further

domains. In BLAST searches these three D. discoideum proteins

show highest homologies to the Sec7 PH tandem domain of

cytohesins. Therefore we tentatively classify them as cytohesin

homologs although they lack the typical N-terminal coiled coil

domain of the cytohesins [15]. The DDB0233591 protein carries

transmembrane domains of the MFS family type in its N-terminal

region, DDB0233617 has no discernable domain in its N-

terminus, and for the N-terminal region of DDB0191439 (SecG)

several Ankyrin repeats are predicted. Of the three D. discoideum

cytohesin family proteins SecG exhibited the highest homology to

mammalian cytohesins in both the Sec7 and the PH domain. An

analysis of this protein in a rather simple organism like D.

discoideum might therefore give insights into the basic functions of

mammalian cytohesins.

In D. falciparum and P. pallidum we identified one GBF family

protein and two BIG family proteins (Table 2) (http://sacgb.

fli-leibniz.de/cgi/index.pl). DFA_05701 is unique as it is more

closely related to GBF proteins from plants such as GNOM from

Arabidopsis thaliana (GENE ID: 837958) than to the D. discoideum

homolog DDB0233595. Like D. discoideum, D. falciparum and P.

pallidum have three cytohesin family proteins (Table 1).

A Sec7 domain analysis revealed three groups in the

phylogenetic tree of the Sec7 family members. Group 1 clusters

with human cytohesin-1 and contains the secG homologues and

proteins composed of a Sec7 and PH domain only, group 2

is formed by the BIG family members, and group 3 contains

the GBF family proteins and the cytohesin family which is

distinguished by the presence of a putative transmembrane region

(Fig. 1A, Table 1). Closer inspection of the Sec7 domain specific

motifs 1 (position 105–110 in the human cytohesin-1 Sec7 domain,

Fig. 1B) and 2 (position 149–162, Fig. 1B) which are required for

the nucleotide exchange on Arf shows that they are quite well

conserved. Only in the BIG family members DDB0233618,

DFA_12170 and PPL_04049 motif 1 is more divergent, however,

it should be noted that the invariable glutamic acid (E) involved in

nucleotide exchange on Arf is present throughout (arrow in

Fig. 1B). [8].

Generation of a D. discoideum SecG Deficient Mutant
The secG gene of D. discoideum is located on chromosome 5. It

contains no intron and gives rise to a ,4 kb mRNA present during

growth and development. SecG is a 986 aa protein which when

expressed as GFP fusion is present throughout the cytosol (Fig. 2).

To test a possible association with the cytoskeleton we lysed the

cells with Triton X-100 and fractionated the lysate into Triton-

insoluble material which represents the cytoskeleton and Triton-

soluble material. The GFP-tagged protein remained completely in

the supernatant indicating that SecG is primarily a cytosolic

protein (data not shown). To investigate the SecG role in adhesion

and cell motility we generated SecG deficient cells in strain AX2

using a gene replacement vector in which sequences from position

576 to 2083 of the coding sequence encoding 10 of the predicted

15 ankyrin repeats and the first half of the Sec7 domain (amino

acid residues 192 to 695) were replaced by the selection cassette.

The replacement event was confirmed by PCR and Southern blot

analysis. Northern blot analysis showed the absence of the mRNA

(Fig. 3). Growth of secG2 cells in axenic medium and on a lawn of

Klebsiella was comparable to wild type AX2. Under osmotic stress

conditions growth behaviour was also similar to the one of AX2.

The mutant strains developed in a timely manner in shaken

suspension under starvation conditions as well as on phosphate

agar plates and formed normal fruiting bodies (data not shown).

In our further analysis we focused primarily on cell-substrate

and cell-cell adhesion and on cell motility as these are aspects in

which mammalian cytohesins play a prominent role.

Cell-Substrate and Cell-Cell Adhesion Characteristics of
the secG2 Strains

To assay cell-substrate adhesion cells are kept in a Petri dish

where they settle on the surface. Four hours after start of the

experiment we assessed attachment by subjecting the cells to

rotation on an orbital shaker at 65 rpm for one hour. Then the

number of unattached cells was determined as well as the total

number of cells after resuspension of all cells, and the percentage

of detached cells was calculated. Approximately 25% of wild type

cells were detached from the substratum when shaken at 65 rpm

for one hour. For three individual mutant strains we observed 36,

,38 and 32% of all cells in the supernatant (Fig. 4). Although the

standard deviation is rather high in these experiments, the mutant

strains are clearly less adhesive than AX2.

Cell-cell adhesion is essential for multicellular development of

Dictyostelium and several proteins that mediate this adhesion are

expressed in an ordered fashion [16]. The strength of the adhesion

can be assayed by determining the extent of re-aggregation after

dissociation of aggregating cells. We developed cells on phosphate

agar plates, harvested them after 10 to 12 hours and mechanically

Table 2. Analysis of chemotactic cell motility of secG2 cells.

strain Speed (mm/min) directionality direction change (deg) Persistence (mm/min-deg) roundness

AX2 10.95+/22.9 0.83+/20.13 17.53+/27.54 3.57+/21.5 51.72+/26.72

secG-1 8.47+/22.89* 0.88 +/20.06 12.15+/25.02 3.6+/21.4 44.73 +/25.24

secG-5 8.16+/22.25** 0.91+/20.05 9.91+/23.38 5.2+/21.4 50.18+/24.57

Time-lapse image series were captured and stored on a computer hard drive at 30-second intervals. Images were taken at magnifications of 10X and 40X every 6 s. The
DIAS software was used to trace individual cells along image series and calculate motility parameters. Objects whose speed was ,2 mm/min were excluded from the
analysis. Speed refers to the speed of the cell’s centroid movement along the total path; directionality indicates migration straightness; direction change refers to the
number and frequency of turns; persistence is an estimation of movement in the direction of the path; and roundness indicates the cell polarity. Values are mean 6

standard deviation of .30 cells from three or more independent experiments. The difference in speed was statistically significant (P value 0.0416* and 0.012**).
doi:10.1371/journal.pone.0009378.t002
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Figure 1. Homology of the Sec7 domain. A. Phylogenetic tree of the Sec7 domains in D. discoideum (red), P. pallidum (green) and D. fasciculatum
(blue) proteins. The Sec7 domain of human cytohesin-1 (NP_004753, GI:4758964) was used for comparison. The tree was generated from a CLUSTALX
alignment with the TreeView program. The assignment of the different proteins to the three subfamilies of the Sec7 family of the Dictyostelia is indicated
on the right. The bootstrap support of each node is provided. The scale bar indicates 10% divergence. B Alignment of the Sec7 domains. At the top, the
Sec7 domain of human cytohesin-1 is shown. The alignment was generated with the program Multalin (http://bioinfo.genotoul.fr/multalin/multalin.
html). The color code and the symbols represent: upper case = high homology (red); lower case = lower homology (blue); ! = mostly I, V; $ = mostly L,
M; % = mostly F, Y; # = mostly D, E, N, Q. The invariable E involved in nucleotide exchange on Arf [8] is indicated by an arrow.
doi:10.1371/journal.pone.0009378.g001
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dissociated them into single cells. Then they were incubated with

shaking at 60 rpm and the number of single cells was determined

after one and two hours. For all strains re-association of the cells

into large aggregates was complete after two hours.

secG2 Cells Do Not Have a Defect in Cell Sorting
Cell sorting in the mound and slug stage of Dictyostelium

development is mediated by a combination of differential che-

motaxis and cell-cell adhesion. We therefore performed mixing

experiments of wild type and mutant cells. These experiments will

give further information on cell adhesion during development. We

carried out the experiment with secG2 cells expressing GFP-LimD

or AX2 cells expressing GFP-LimD. The GFP-expressing cells

were mixed in a ratio of 10:90 with unlabelled wild type or mutant

cells as appropriate and allowed to develop on phosphate agar

plates. We then analysed the distribution of wild type and mutant

cells in the chimeras at the mound and slug stage by microscopic

inspection. We did not observe a sorting out of mutant or wild type

cells, instead, the fluorescently labelled cells were randomly

distributed throughout the mounds and slugs irrespective of their

origin and were not specifically enriched in either the prespore or

the prestalk region (Fig. 5). The results show that mutant and wild

type cells are indistinguishable with regard to their cell surface

proteins and do not sort out and also that they develop in a

comparable manner.

Uptake of Bacteria and of Yeast Particles
Bacteria are the favourite food source of D. discoideum cells in the

wild. Their uptake is most likely initiated by binding to receptors at

the membrane and triggering signalling processes required for

uptake. The adhesion receptors have however not been identified

[17]. We analysed growth on a lawn of Klebsiella and growth on E.

coli B/r in suspension and determined the growth rates of AX2 and

the secG mutants. All mutant strains grew like AX2 with the

bacteria as food source either on agar plates containing Klebsiella

or in suspension with E. coli B/r where they had comparable

duplication times of approximately three hours. Similarly, in yeast

uptake assays where we quantified the ingested particles after 10,

20 and 30 minutes we found that secG2 cells were as efficient in

uptake as was AX2. In a representative experiment 3.25% of AX2

cells and 4.7% of secG2 cells had taken up yeast particles after 10

minutes of incubation, after 20 minutes 12.82% of AX2 and

11.33% of secG2 and after 30 minutes 19.92% of AX2 and

19.30% of secG2 had ingested yeast.

Cell Motility and Chemotaxis in secG2 Cells
Dictyostelium cells exhibit an amoeboid type of cell motility. They

deform very quickly and translocate via rapidly alternating cycles

of pseudopod extension and pseudopod retraction in response to

external signals which are dependent on changes in the actin

cytoskeleton. Similar amoeboid movements are observed in

hematopoietic stem cells, leukocytes and certain tumor cells. In

contrast to movement by other mammalian cells such as

fibroblasts or keratinocytes they do not depend on b1-integrin-

mediated adhesion [18] [19].

To determine if secG2 cells exhibit defects in cell motility and

chemotaxis during aggregation we examined the parameters of

cAMP mediated chemotaxis of individual aggregation competent

cells. Mutant cells consistently displayed a reduced speed (,8 versus

,10 mm/min for AX2). They were however highly elongated and

extended pseudopods mainly in the direction of the chemoattrac-

tant. All parameters analysed, directionality, direction change,

persistence and roundness, did not differ significantly suggesting

that SecG of D. discoideum plays no role in chemotaxis but its absence

leads to a speed reduction (Table 2, Fig. 6).

Discussion

Cytohesins are intracellular proteins that can be recruited to the

plasma membrane due to binding of their PH domains to

phosphatidylinositol phospholipids. At the plasma membrane they

interact with integrins and influence cell adhesion and cell

Figure 2. Distribution of GFP-SecG in living cells. Localization of GFP-tagged full length SecG analyzed by live-cell imaging. Three frames taken
at the indicated time points after start of the analysis are shown.
doi:10.1371/journal.pone.0009378.g002
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migration. Here we studied the role of the D. discoideum cytohesin

homolog SecG in adhesion and motility in order to unravel

the basic roles of cytohesins. Until now cytohesins have been

considered metazoan specific. We show that SecG closely

resembles cytohesin-1 in its Sec PH tandem domain, further, we

identified SecG homologs in Dicytostelidae groups that are

phylogenetically at the base.

Three forms of adhesion are important for Dictyostelium growth

and development, adhesion of bacteria to the surface of amoebae

during growth phase, cell-substrate adhesion for locomotion when

the amoebae chase their prey, during aggregation and at later

stages of development, and cell-cell adhesion when the cells

undergo multicellular development [16]. The molecular compo-

nents responsible for cell-cell adhesion have been studied for some

time whereas the other types of adhesion have come into the focus

of research much more recently.

Dictyostelium cells exhibit an amoeboid movement. Such type of

movement is characterized by a high membrane turnover which is

opposed to strong attachment mediated by focal adhesions. This

explains why strong focal adhesions as they exist in mammalian

cells are not present. However, cells do exhibit cell-substrate

adhesion and molecules mediating them have been identified and

characterized such as SadA, a plasma membrane protein with nine

putative transmembrane domains and tenascin-like EGF repeats

in the extracellular region. SadA deficient cells cannot initiate

attachment to a plastic surface nor do they take up latex beads,

furthermore vegetative cells move faster than wild type [20].

Dictyostelium paxillin might provide a link between components of

the plasma membrane and the cytoskeleton similar to mammalian

paxillin which is an essential regulatory component of focal

adhesions and couples integrins to the actin cytoskeleton [21] [22].

Loss of paxillin in D. discoideum leads to reduced cell-substratum

adhesion of vegetative cells and impaired multicellular develop-

ment [23].

Cell-cell adhesion is mediated by developmental stage specific

proteins in Dictyostelium [24] [25]. They belong to the immuno-

globulin superfamily in case of contact site A or represent cadherin

type molecules in case of DdCAD-1. Loss of csA did not affect

Figure 3. Generation of secG deficient cells. A. Upper part: SecG domain structure. The domain structure of Sec G aligned along the nucleotide
and amino acid sequence is schematically depicted. A. Lower part: Generation of a gene replacement vector. The vector was constructed by
replacing an internal segment of the secG gene extending from position 576 to 2083 with the blasticidin resistance cassette (bsr). The secG gene is
located on a 16.5 kb NdeI genomic fragment. Location of relevant restriction enzyme sites and of the probe used for Southern blot analysis is given.
B. Southern blot analysis of XhoI/NdeI digested genomic DNA of individual transformants 1, 2, 3, 5, and 9. After successful replacement a shift from
16.5 kb for the wild type band (transformants 2, 3) down to 3.5 kb (transformants 1, 5, 9) occurred as detected by a 39 gene specific probe. C.
Northern blot analysis. In secG2 transformants (1, 9) the ,4 kb mRNA of AX2 wild type is no longer detected using the 350 bp 39 probe. For control
of loading, the blot was probed with a ddFLN specific probe recognizing the ,3.5 kb mRNA [45].
doi:10.1371/journal.pone.0009378.g003
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development in the mutant cells under laboratory conditions,

however when grown on soil plates which resembles natural

conditions the mutant cells displayed reduced cell-cell adhesion,

increased adhesiveness to the substratum, and slower motility,

which led to their sorting out from aggregating wild-type cells [26]

[27]. Loss of DdCAD-1 resulted in abnormal slug morphology and

a delay in culmination [28]. Adhesion regulators are Rap1 and its

activators (RapGAPs) which are important for differential

adhesion during development, cell type patterning and morpho-

genesis [29] [30].

Figure 4. Cell-substratum adhesion in secG2 cells. Adhesion of vegetative cells was measured. After a 4 hour incubation period the cells were
subjected to rotation at 65 rpm on a gyratory shaker. The number of detached cells was determined after one hour of shaking and set in relation to
the total number of cells. AX2 wild type and three different mutant cell lines were examined. The results are from 23 independent experiments for
AX2 and a total of 39 experiments for the mutant cell lines. Shown are the mean values and the mean deviations. The P values (secG-1, 0.0721; secG-5,
0.0903; secG-9; 0.0964) were not quite statistically significant.
doi:10.1371/journal.pone.0009378.g004

A B

Figure 5. Distribution of labelled AX2 cells in a chimeric developmental organism. AX2 cells expressing GFP-LimD were mixed with secG2

cells in a ratio of 10:90. The GFP-labelled wild type cells show a random distribution at the multicellular stage (culminant). The phase contrast (A) and
the fluorescence (B) image are shown.
doi:10.1371/journal.pone.0009378.g005
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Based on SecG homology to mammalian cytohesins we probed

its roles in cell-cell, cell-substrate adhesion and cell motility. Like the

cytohesins it is a cytosolic protein which has the potential to

associate with lipids through its PH domain. In the cytohesins the

Sec7 domain can associate with integrins. Adhesion molecules with

homologies to integrins have been described only recently in D.

discoideum [31] [32]. They were designated Sib, similar to integrins,

based on structural and functional homology to mammalian

integrins and are potential interactors of the cytohesin-like proteins.

SibA, one of the three family members, interacts with Dictyostelium

talin. Talin is also a well known partner of mammalian integrins.

Inactivation of the sibA gene affected adhesion to phagocytic

particles, cell-cell and cell-substrate adhesion. Similarly, talin null

cells of Dictyostelium have an adhesion and phagocytosis defect [33].

When we compare the phenotypes reported for the SadA, SibA,

talin, paxillin, Rap and RapGAPs with the one of secG2, we find

that the phenotype of the secG mutant is less complex and we

cannot easily link SecG to any of theses proteins. The main defect

is in cell-substrate adhesion during growth. Adhesion to bacteria

was not affected neither was cell-cell adhesion during develop-

ment. The cells were chemotactically active during development,

they acquired a polarized cell shape and migrated in a directed

fashion towards the chemotactic agent whereas speed was slightly

reduced. We conclude that SecG primarily acts in cell-substrate

adhesion. Other types of adhesion may be ensured by different

proteins. As cellular behaviour is often multiply guaranteed, it

might well be that the closely related Sec7-PH domain protein

DDB0233617 (DDB_G0272486) acts in similar pathways as SecG

and takes over some of its functions in the mutant [34].

Materials and Methods

Dictyostelium Strains and Mutant Generation
D. discoideum strain AX2 was used as the parental strain. Growth

and development were done as described [35]. For generation of

secG deficient cells a knockout vector was generated by amplifying

DNA sequences of the intron-less gene (DDB_G0287459) from

positions 3–575 and 2084–2657 of the coding sequence and

cloning them into the Cre-loxP vector pLPBLP carrying a

blasticidin resistance conferring gene [36]. The plasmid was

linearized and transformed into AX2 cells. Transformants were

selected using Blasticidin S (MP Biomedicals, Eschwege, Germany)

at 1.5 mg/ml and analysed by PCR and Southern blot. Three

mutant cell lines, segG2 1, 5 and 9 were analysed giving identical

results. A plasmid allowing expression of GFP-SecG was obtained

from Dr. D. Brazil [37]. Expression was under the control of the

actin15 promoter. An ethics statement is not required for this

work.

Mutant Analysis
Strains were analysed for growth in axenic medium both under

standard conditions as well as under osmotic stress conditions

by addition of 115 mM sorbitol or 30 mM NaCl. Growth was

also analysed on bacterial plates using Klebsiella as food source.

Development was assayed during starvation in suspension

(in Soerensen phosphate buffer, 2 mM Na2HPO4, 14.6 mM

KH2PO4, pH 6.0) and on phosphate agar plates.

Adhesion Assays
To analyse cell-substrate adhesion a substrate detachment assay

was carried out [20]. A total of 16106 cells in growth medium was

added per well (24 well plates, Costar) and incubated for four

hours at 22uC. Then the plates were shaken on a gyrotary shaker

at 65 rpm for one hour. The number of detached cells was

counted in a hemocytometer. The total number of cells was

determined after resuspension of all cells and the percentage of

detached cells calculated. To analyse cell-cell adhesion during

development [29] cells were starved on phosphate agar plates and

harvested after 10 to 12 hours once they had formed tight

aggregates. The cells in the aggregates were dissociated by

repeated passage through a 21G needle, 16106 cells in Soerensen

phosphate buffer were added per well (24 well plate) and shaken at

60 rpm. The number of single cells was determined one and two

hours after the start of shaking.

Cell Mixing Experiments
For examining the distribution of the cells in a chimeric

developmental organism, 10% GFP-LimD [35] expressing AX2

wild-type cells were mixed with 90% unlabeled secG2 cells or 10%

GFP-LimD expressing secG2 cells with 90% unlabeled AX2 cells

and developed on phosphate agar plates. The images were

collected on a microscope (Leica) with DIC and fluorescence

imaging.

Growth on Bacteria and Uptake of Yeast Particles
E. coli B/r was grown to saturation, the cells were pelleted and

washed with Soerensen phosphate buffer and concentrated to a

density of 161010 cells per ml. Dictyostelium cells growing in

suspension were harvested, washed, resuspended in Soerensen

phosphate buffer and used at a density of 16105 cells/ml for

inoculation of the E. coli B/r suspension. Shaking was at 160 rpm.

The increase in cell number was determined every two hours. Yeast

phagocytosis was analysed on a substratum as described [38].

Figure 6. Chemotaxis of aggregation competent cells. AX2 wild
type and secG2 cell lines 1 and 5 were subjected to a chemotaxis assay.
Cells were traced from the movies and analysed by DIAS software [41].
Representative stacked images are shown. The star indicates the
location of the cAMP source.
doi:10.1371/journal.pone.0009378.g006
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Analysis of Chemotaxis
Cells starved for 5 h were used for chemotaxis assays [39]. They

were stimulated with a glass capillary micropipette (Eppendorf

Femtotip) filled with 0.1 mM cAMP, which was attached to a

microcontroller. Time-lapse image series were captured and stored

on a computer hard drive at 30 seconds intervals with a JAI CV-

M10 CCD camera and an Imagenation PX610 frame grabber

(Imagenation Corp., Beaverton, OR) controlled through Optimas

software (Optimas Corp., Bothell, Washington). The DIAS

software (Solltech, Oakdale, IA) was used to trace individual cells

along image series and automatically outlined the cell perimeters

and converted them to replacement images from which the

position of the cell centroid was determined [40]. Speed and

change of direction were computed from the centroid position

[41]. For processing images, Corel Draw version 11 and Adobe

Photoshop were used. Chemotaxing GFP-CRN7 expressing cells

were observed under a cAMP gradient in a chemotaxis chamber

(m-slide chemotaxis hydrophobic, uncoated, and sterile, ibidi,

Martinsried, Germany).

Miscellaneous Methods
Immunofluorescence analysis was done as described [42]. Actin

was detected with mAb Act-1–7 [43] followed by incubation with

Cy3-labeled goat anti-mouse IgG secondary antibody. Confocal

microscopy was done using a Leica TCS-SP5 confocal laser

scanning microscope [44]. Distribution and live dynamics of GFP-

SecG were analyzed. Images were processed using the accompa-

nying Leica software or Image J. The preparation of TritonX-100

insoluble cytoskeletons is described in [45].
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