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A B S T R A C T

Nigeria’s economic problems which inhibited local production has resulted in massive importation of used
automobiles. Most of these automobiles need some repairs and reworking, having outlived their lifespan in the
manufacturer’s country. This study centers on the human carcinogenic and non-carcinogenic health risk as-
sessment of cadmium, chromium and nickel exposures from reworking of imported used vehicles. Scraped car
paint dusts from 56 Japanese made cars were collected from 8 different panel beating (body works) workshops
(A–H) in Southeastern Nigeria. They were homogenized, mixed, divided into fine particles, filtered and digested
by standard method. The filtrates were assayed for cadmium, chromium and nickel with atomic absorption
spectrophotometry (AAS, 200A), workshops F and D have the highest concentration (mg/kg) of Cd
(3.58 ± 0.02) and (3.36 ± 0.04) and higher than levels in workshops A, B, C, E, G and H. Chromium (mg/kg)
in workshops F and G were (2.87 ± 0.04) and (2.95 ± 0.06) and higher than the other workshops. Nickel in
workshop A (3.84 ± 0.04) is close to other workshop values. The highest hazard quotients for adults were
cadmium in workshops B (1.37E-01), D (1.69E-01), E (1.79E-01) (inhalation), chromium [workshops G (5.45E-
02), F (5.29E-02) and C (5.24E-02) inhalation]. Nickel -workshop A (5.9E-03) for children (inhalation). HQ in
children through ingestion is cadmium (3.72E-04) workshop F and ingestion- 3.21E-01(workshop F) while nickel
is 1.06E-02 (workshop A).The highest cancer risks were in exponents -4,-7 and -8 (adult) and -3, -6 and -9
(children) for workshops A–H through inhalation, ingestion and dermal contact, exposures to scrap car paint
dust may be of significant public health importance in Nigeria as it can add to body burden of some carcinogenic
heavy metals.

1. Introduction

Environmental heavy metal contamination is a worldwide phe-
nomenon, but the associated ecological and health risks are not yet
matters of priority to the authorities in Nigeria. Low level and un-
specialized industrial and manufacturing concern have given rise to
high artisanal activities in Nigeria. Nigeria imports large quantities of
old vehicles and the figure continues to increase [1] and their repair fits
into artisanal (unregulated) activities. Components of automobiles in-
clude mechanical components, electronic and electrical devices, poly-
meric and sundry components that may contain toxic substances, ex-
amples include vehicular crankshaft, engine block and connecting rod,
which contains steel, chromium, nickel, titanium, copper [2,3] while
switches, batteries, headlamp bulbs, break light, data tapes, floppy disk,
power supply boxes, car stereo equipment etc. contains cadmium,

chromium and nickel etc., when these vehicles age and decompose,
they constitute environmental and public health menace [4,5]. In an
attempt to repair these vehicles, the artisans at the workshops are ex-
posed to heavy metal pollution through scrapped car paint dust by a
number of subtle ways such as contact with workshop tools, handshake,
body hug, sharing of personal items, inhalation of and contact with
microscopic air suspensions at the workshops. These workshops are
cited mainly along busy but congested roads inter mixed with other
business activities in Nigeria, hence human contact with heavy metals
through paint dusts is possible. These metals cause array of symptoms
and chronic diseases, studies has suggested that cadmium at low en-
vironmental exposures as currently found in industrialized countries,
may result to subtle renal effects leadin3g to noticeable level in urinary
excretion of micro-proteins [6,7]. Cadmium is hazardous both by in-
halation and ingestion and can cause acute and chronic intoxications in
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humans with exceptional long half-life and accumulation in kidney,
lungs and liver [8], very toxic, can disrupt biological systems, even at
very low concentrations than most toxic metals [9]. Chronic exposure
leads to ulcerations and perforations of the nasal septum, chronic
bronchitis, decreased pulmonary function, pneumonia and other re-
spiratory effects [10]. The cancer causing properties of chromium (VI)
is known [11]. The acute toxicity of chromium (VI) is due to oxidation
properties, hemolysis and organ failures [12].

Human exposure to nickel causes a variety of pathologic effects but
adverse health effects is dependent on exposure route (inhalation, oral
or dermal) and classification based on systemic, immunologic, neuro-
logic, reproductive, distorted developmental or carcinogenic effects
following acute (01 day), sub-chronic (10–100 days) and chronic (100
days or more) exposure periods [13]. Kidney is the actual organ of
accumulation for nickel but inflammation in the bronchioles, alveolar
congestion, alveolar cell hyperplasia and congestion in the lumen do
occur [14]. Heavy metals act antagonistically disrupting trace elements
in the body, inhibit and compete with protein and enzyme for binding
sites and impair immune system. Unachukwu and co-workers [15] re-
ported that non-communicable diseases (NCDs) such as cardiovascular
disease, diabetes mellitus, cancer, renal diseases, liver failure and so on,
which may be associated with heavy metal toxicity are now highly
diagnosed and reported in Nigerian hospitals and may be more pro-
nounced amongst artisans [16–18]. This work authenticates heavy
metal poisoning through occupational routes. Therefore, illiteracy and
engagement in non specialty occupation predisposes individuals (ex-
posed subjects) to heavy metal poisoning. The aim of this work is to
show that artisans can be exposed to carcinogenic heavy metals like
cadmium, chromium and nickel through scraped car paint dust. It will
assist in public health policy formulation and aid diagnostic skills of
medical and public health workers in Nigeria.

2. Materials and methods

56 cars were selected from 8 different auto-panel workshops
(workshops A–H) located in Awka, Nnewi, Onitsha and Enugu all in the
Southeastern part of Nigeria. Fig. 1. Workshops A and B were from
Awka, C and D from Nnewi, E and F from Onitsha and G and H were
from Enugu. Seven Japanese cars of over 10 years old were identified in
each of the auto-panel workshops. (Japanese cars were mostly available
at the time of visit to the workshops (sampling) and most Nigerian
middle class and those at the lower rung of the economy prefer Japa-
nese cars because they have both second hand value and fuel efficiency.
The paint flakes/dusts were collected from them and stored in black
polythene bags before digestion and analyses. The samples were ground
and sieved using meshes (metric test sieve BS 410 WS Tyler) with
geometric diameters of 100 μm and 45 μm on a mechanical shaker
(Retsch AS 200) for 15min at amplitude of 10mm/g to separate them
into two particle size fractions [19]. 2 g of paint dust was weighed into
a conical flask, adding 15ml of concentrated nitric and perchloric acid
at a ratio 1:1 and heating in a fume cupboard at a temperature of 105 °C
near to dryness, it was allowed to cool, and 10ml of distilled, de-io-
nized water was added, stirred, filtered and made up in a standard
volumetric flask. Standard solutions of cadmium, chromium and nickel
were prepared and assayed at their respective wavelengths with atomic
absorption spectrophotometry (AAS 200A), with a detection limit set at
0.001mg/l, and blank values reading as 0.00mg/l in de-ionized water,
electrical conductivity value lower than 5 μs/cm, standard graphs were
plotted, samples of the filtrates were extrapolated from the graphs,
analyzed in triplicates and results reported as Mean ± SD. The cali-
bration curves were prepared for each of the metals investigated using
the least square fitting method. Soil samples from the workshops were
also analyzed using the same method, soil control samples were col-
lected 200m away from the workshops while water samples were
collected within 500m away from each workshop. The accuracies of
this method have been evaluated by analysis of NBS standard reference

materials and were better than± 10%. A quality control program, in-
cluding reagent blanks, replicate samples and standard reference ma-
terials, was used to access data precision and accuracy. Blanks were
prepared in a procedure similar to that used for the dust samples and
routinely analyzed before each measurement as we have reported be-
fore (20)

3. Exposure and risk assessment method

The US Environmental Protection Agency [21] and Dutch National
Institute of Public Health and Environmental Protection exposure and
risk assessment model for paint dusts were employed [22,23].The
haphazardly situated workshops are without safety and public health
regulation. The exposure to pollutants is through inhalation, dermal
and ingestion, calculated using Eqs. ((1)–(3)) (21)
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The CDI is the chronic daily intake (mg kg−1 day-1); Ring is the in-
gestion rate at 60mg dust day−1 for children (1–6 years) and 30mg
day−1 for adults [22,23]; Rinh is the inhalation rate at 20m3 day-1 for
adults and 7.6 m3 for children [24]; Fexp is the exposure frequency, in
this study, 180 day year-1 [25,26]; Texp is the exposure duration, in this
study, 24 years for adults and 6 years for children [27]; Askin is the skin
area, in the study, 5700 cm2 for adults and 2800 cm2 for children [27];
SAF is the skin adherence factor, in this study, 0.7mg cm-2 h-1 for adults
and 0.07mg cm-2 h−1 for children [26–29]; DAF is the dermal ab-
sorption factor (unitless), in our study, 0.001 for both children and
adults; PEF is the particle emission factor, in the present study,
1.36×109 m3 kg-1 for both cases [27], body weight (ABW) at 15 kg for
children and 70 kg for adults [26,30,31]; and Tavrg = Texp × 365 days
is the averaging time for non-carcinogens.

The non-carcinogenic risk (Hazard Quotient) from the metals is
expressed as:

HQ = (CDI×BAF)/RFD (4)

Where CDI (E) = chronic daily intake (exposure), ‘RFDs’ = re-
ference dose of the metals (mg kg−1 day-1) and BAF=bio-accumula-
tion factor.

∑=
=

Hazard index CDI(E)k/RFD
k 1

n
(5)

Hazard index (HI) == sum total of more than one hazard quotient
if multiple substances or multiple exposure pathways, this study in-
volves exposure from different vehicles and three exposure pathways
(ingestion, inhalation and dermal contact) [32], where HI > 1, means
non- cancer risk is likely but when HI < 1, non-cancer may be im-
possible (32).

When a multiple pathways, total exposure hazard index (HIt) could
be used to communicate non-cancer risks expressed thus [22]:

∑=HIt HI(Exposure Pathway 1)
1

n
(6)

HIt ≤ 1, the assumption is that no chronic risks will occur, but
HIt> 1, non-cancer risks are possible.

The Incremental Lifetime Cancer Risk (ILCR) is the probability of an
individual developing cancer in his lifetime when exposed to potential
carcinogens. Calculated with [22]:

Incremental lifetime cancer risk=CD(ing / inh / dermal) × SLF (7)

Where SLF is known as the cancer slope factor, in this study,
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cadmium, chromium and nickel has SLF of 0.38; 0.5 and 0.00 respec-
tively [33].

4. Results

The heavy metal concentration (mg/kg) in Table 1 shows the level
of cadmium, chromium and nickel from scrapped car paint in different
workshop in the Southeastern Nigeria as follows: workshop F has the
highest concentration of Cd (3.58 ± 0.02), followed by workshop D
(3.36 ± 0.04), that of workshop B (2.27 ± 0.07), workshops E, G, A,
C and H are as follows (2.54 ± 0.04, 2.37 ± 0.08, 2.25 ± 0.003,
2.03 ± 0.10 and 1.95 ± 0.03) respectively. The concentration (mg/
kg) of chromium in workshops G (2.95 ± 0.06), F (2.87 ± 0.04), C
(2.84 ± 0.03), D (2.63 ± 0.03) which were higher than those of
workshops E (2.48 ± 0.04), B (2.45 ± 0.03), A (2.43 ± 0.02) and H
(2.29 ± 0.02) while the highest concentration (mg/kg) of nickel is
from workshop A (3.84 ± 0.04), followed by workshops F
(3.52 ± 0.01), D (3.34 ± 0.03), B (3.30 ± 0.02), C (3.23 ± 0.07).
The least values were in workshops G (2.88 ± 0.02), H (2.78 ± 0.04)
and E (2.75 ± 0.03). Table 1 also shows the highest soil cadmium
values of 3.63 ± 0.03 and 3.93 ± 0.01 (mg/kg) at workshops D and
F, highest soil chromium values of 3.53 ± 0.02 and 3.45 ± 0.02 in
workshops F and G. Highest soil nickel concentration of 4.31 ± 0.01
and 4.57 ± 0.01 (mg/kg) were in workshops A and F. Range of heavy
metal in surface water were Cd (Nd-0.03), Cr (Nd-0.05), Ni (Nd-0.03)
while that of borehole water were Cd (Nd-0.02), Cr (Nd-0.01) and Ni
(Nd-0.02)

Table 2 shows the chronic daily intake from exposure to cadmium,

chromium and nickel through ingestion, inhalation and dermal contact
exposures in adults and also the hazard quotient from the different
exposure pathways. The highest exposure pathway for the three metals
(cadmium, chromium and nickel) is through inhalation with a range
(1.85E-03 – 3.65E-03), ingestion (4.11E-07 -8.10E-07) and dermal
(9.86E-08 –1.0E-07).The highest hazard quotient through ingestion,
inhalation and dermal exposures in adults were workshop F (3.98E-05),
workshop F (1.79E-01) and workshop F (5.29E-06).

Table 3 shows the chronic daily exposure to Cd, Cr and Ni in chil-
dren through inhalation, ingestion and dermal routes. The highest ex-
posure pathway in children is through inhalation with a range of
(3.32E-03 – 6.53E), ingestion (3.84E–06 – 7.56E-06) and dermal
(1.26E-08 – 2.47E-08). The highest values for hazard quotient through
ingestion, inhalation and dermal exposures in children were 3.72E – 04
(workshop F), 3.21E – 01 (workshop F) and 1.61E-06 (workshop F).

Table 4 shows hazard index for cadmium for both adult and children
through inhalation were 1.043 and 1.869 respectively, when cadmium,
chromium and nickel are added (linear summation), the values were
1.469 and 2.631, and these values were above one [1], thereby making
exposure through inhalation very hazardous. Total linear exposure for
adult (children) through ingestion and dermal routes were 3.263E-04
(3.036E-03) and 4.335E-05 (1.967E-05), these were below one [1] and
does not constitute health hazard.

Table 5 the total hazard index (HI) of the three heavy metal from
exposure to scrap car paint dusts. The adult is highest in the range of
4.82E-06 –.1.64E-01, that of children1.11E-06 – 2.93E-01 (workshop
A). Adult and children range were 5.53E-06 – 1.88E-01 and 1.27E-06 –
3.36E-01 (workshop B). The highest for adult and children in workshop

Fig. 1. Showing location of the workshops in municipal cities of Southeastern Nigeria.
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C were 4.69E-06 – 1.59E – 01 and 1.08E-06 – 2.55E-01, for workshop D,
adult highest range from 6.55E-06 – 2.22E-01 and children 1.51E-06 –
3.98E-01.

The highest range of 5.23E-06 – 1.77E-01 (adult) and (children)
1.2E-06 – 3.1E-01 (workshop E).In workshop F, adult ranged from
7.10E-06 – 2.38E-01 while children ranged from1.61E-06 to 4.26E-01.
Adult and children total exposure range for workshop G were 5.24E-06
– 1.78E-01 and 1.21E06 - 3.18E-01. In workshop H, adult exposure
ranged from 4.25E-06 – 1.44E-01 while that of children ranged from
9.79E-07 – 2.58E-01. In all the workshops, inhalational route had the
highest metal exposure dose of total hazard index while dermal contact
had the least.

The carcinogenic risk of Cd and Cr were calculated as seen in
Table 6, that of nickel tended to zero (0), since cancer slope factor (SLF)
for nickel is zero (0). For children, the highest carcinogenic cadmium
risk levels were 2.17E-03, 2.68E-06 and 8.78E-09 for inhalation, in-
gestion and dermal exposure respectively for workshops D and F. The
highest cadmium carcinogenic risks for adult were 9.88E-04, 2.87E-07
and 3.80E-8 for inhalation, ingestion and dermal exposures for work-
shops B and F. The highest carcinogenic chromium risk levels for
children were 2.51E-03, 2.91E-06 and 9.25E-9 for inhalation, ingestion
and dermal exposures all in workshop G. The highest carcinogenic
chromium risk levels for adults were 1.41E-03, 3.11E-07 and 4.13-08
for inhalation, ingestion and dermal exposures respectively, all in
workshop G.

5. Discussions

In our first attempt at chronicling hazardous effect of non-cancer
causing metals from scraped car paint dust in Nigeria [20], literature
search using PubMed, Scopus, Google Scholar and other online search
engines show that our work may be first of its kind. The high con-
centration of carcinogenic heavy metals in this study is an important
public health concern (Table 1). A careful look at Table 1, is evident
that our work can add Cd, Cr and Ni to the environment. The health and
environmental effect of heavy metals with regard to their concentration
makes this important, for toxicity of heavy metals is mainly a function
of concentration [34].

Global public health issue has led to restrictions in environmental
protection in developed countries [35,36], but in Nigeria auto-panel
workshops which has created direct and indirect job opportunities for
self-employed young artisans through fairly used vehicular spare parts
sales and repair, battery chargers, auto-painters, body work (panel-
beating), auto-electricians, engine oil and diesel sales, car wash, tire
pumping and repair, wheel balancing, taxi cab etc., implying that auto-
artisans may be exposed to carcinogenic heavy metals (Cd, Cr and Ni)
are not regulated.

By inspection, it is evident that metal values of soil from all the
workshops were higher than that of paint dust matrix (Table 1), this is
despite the fact that soil heavy metal can percolate into the soil or may
be affected by dilution factor from rain or redistribution by flood, this
can be attributed to the fact that as vehicles are repaired and taken
away, more are brought into the workshops for the same purpose, the
workshop soil therefore keep accumulating these metals as against
control samples taken 200m away from the workshops, though with
insignificant metal value. In water samples, in which heavy metals were
detected, the levels in surface water were slightly higher than that of
borehole (underground water), this may be attributed to the high fil-
tering capacity of clay soil underlying the geologic formation of the
study area [37]. Established cadmium, chromium, and nickel are con-
tacted from scrapped paint dust through ingestion, nose inhalation of
mobile particles of paint dust and absorption of these heavy metals by
skin adhered dust/particles (CDIing, CDIinh, CDIdermal). Literatures of
exposure pathway that could be used to compare with our study in-
clude: ingestion exposure [38–41]; skin and dermal exposures [42],
inhalational (nose) exposure [43,44], and the findings of this study canTa
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Table 2
Health risk from heavy metals exposure in adults from scrapped car paint dust (n=56 samples, n= 7 samples from each workshop).

Workshops CDI Mg/kg day−1 HAZARD QUOTIENT (HQ)

A Cadmium Chromium Nickel Cadmium Chromium Nickel
Inhalation 2.14 E-03 2.31 E-03 3.65 E-03 1.13 E-01 4.49 E-02 5.9 E-03
Ingestion 4.75 E-07 5.13 E-07 8.10 E-07 2.51 E-05 9.96 E-06 1.31 E-06
Dermal 6.3 E-08 6.80 E-08 1.08 E-07 3.36 E-06 1.32 E-06 1.74 E-07
B
Inhalation 2.6 E-03 2.32 E-03 3.14 E-03 1.37 E-01 4.52 E-02 5.08 E-03
Ingestion 5.78 E-07 5.17 E-07 6.96 E-07 3.05 E-05 1.0 E-05 1.12 E-06
Dermal 7.67 E-08 6.86 E-08 9.24 E-08 4.05 E-06 1.33 E-06 1.49 E-07
C
Inhalation 1.93 E-03 2.69 E-03 3.07 E-03 1.01 E-01 5.24 E-02 4.97 E-03
Ingestion 4.28 E-07 5.99 E-07 6.82 E-07 2.26 E-05 1.16 E-05 1.1 E-06
Dermal 5.68 E-08 7.95 E-08 9.04 E-08 3.0 E-06 1.55 E-06 1.47 E-07
D
Inhalation 3.19 E-03 2.49 E-03 3.17 E-03 1.69 E-01 4.85 E-02 5.14 E-03
Ingestion 7.09 E-07 5.55 E-07 7.05 E-07 3.74 E-05 1.08 E-05 1.14 E-06
Dermal 9.41 E-08 7.36 E-08 9.35 E-08 4.97 E-06 1.43 E-06 1.52 E-07
E
Inhalation 2.41 E-03 2.36 E-03 2.61 E-03 1.27 E-01 4.58 E-02 4.23 E-03
Ingestion 5.36 E-07 5.23 E-07 5.8 E-07 2.83 E-05 1.02 E-05 9.4 E-07
Dermal 7.11 E-08 6.94 E-08 7.70 E-08 3.76 E-06 1.34 E-06 1.25 E-07
F
Inhalation 3.4 E-03 2.73 E-03 3.34 E-03 1.79 E-01 5.29 E-02 5.42 E-03
Ingestion 7.55 E-07 6.05 E-07 7.43 E-07 3.98 E-05 1.17 E-05 1.2 E-06
Dermal 1.0 E-07 8.04 E-08 9.86 E-08 5.29 E-06 1.56 E-06 1.59 E-07
G
Inhalation 2.25 E-03 2.81 E-03 2.74 E-03 1.19 E-01 5.45 E-02 4.43 E-03
Ingestion 5.0 E-07 6.22 E-07 6.08 E-07 2.64 E-05 1.21 E-05 9.84 E-07
Dermal 6.64 E-08 8.26 E-08 8.06 E-08 3.50 E-06 1.60 E-06 1.31 E-07
H
Inhalation 1.85 E-03 2.18 E-03 2.64 E-03 9.78 E-02 4.23 E-02 4.28 E-03
Ingestion 4.11 E-07 4.83 E-07 5.87 E-07 2.17 E-05 9.39 E-06 9.5 E-07
Dermal 5.46 E-08 6.41 E-08 7.78 E-08 2.88 E-06 1.25 E-06 1.26 E-07

RfDO = Cd (0.0005); Cr (0.005); Ni (0.02); BAF=Cd (52.8); Cr (5.83); Ni (32.4).

Table 3
Health risk from heavy metals exposure in Children from scrapped car paint dust (n=56 samples, n= 7 samples from each workshop).

Workshops CDI Mg/kg day−1 HAZARD QUOTIENT (HQ)

A Cadmium Chromium Nickel Cadmium Chromium Nickel
Inhalation 3.83 E-03 4.13 E-03 6.53 E-03 2.02 E-01 8.03 E-02 1.06 E-02
Ingestion 4.43 E-06 4.79 E-06 7.56 E-06 2.34 E-04 9.3 E-05 1.23 E-05
Dermal 1.44 E-08 1.57 E-08 2.47 E-08 7.65 E-07 3.04 E-07 1.11 E-06
B
Inhalation 4.66 E-03 4.17 E-03 5.61 E-03 2.46 E-01 8.09 E-02 9.09 E-03
Ingestion 5.39 E-06 4.83 E-06 6.5 E-06 2.85 E-04 9.4 E-05 1.05 E-05
Dermal 1.77 E-08 1.58 E-08 2.13 E-08 9.32 E-07 3.07 E-07 1.27 E-06
C
Inhalation 3.45 E-03 4.83 E-03 5.49 E-03 1.82 E-01 9.38 E-02 8.89 E-03
Ingestion 3.99 E-06 5.59 E-06 6.36 E-06 2.11 E-04 1.08 E-04 1.03 E-05
Dermal 1.31 E-08 1.83 E-08 2.08 E-08 6.9 E-07 3.55 E-07 1.08 E-06
D
Inhalation 5.71 E-03 4.47 E-03 5.68 E-03 3.02 E-01 8.69 E-02 9.19 E-03
Ingestion 6.62 E-06 5.18 E-06 6.58 E-06 3.49 E-04 1.0 E-04 1.07 E-05
Dermal 2.16 E-08 1.69 E-08 2.15 E-08 1.14 E-06 3.29 E-07 1.51 E-06
E
Inhalation 4.32 E-03 4.22 E-03 4.68 E-03 2.28 E-01 8.19 E-02 7.57 E-03
Ingestion 5.0 E-06 4.89 E-06 5.42 E-06 2.64 E-04 9.49 E-05 8.78 E-06
Dermal 1.64 E-08 1.59 E-08 1.77 E-08 8.64 E-07 3.1 E-07 1.20 E-06
F
Inhalation 6.09 E-03 4.88 E-03 5.98 E-03 3.21 E-01 9.48 E-02 9.69 E-03
Ingestion 7.05 E-06 5.65 E-06 6.93 E-06 3.72 E-04 1.09 E-04 1.12 E-05
Dermal 2.31 E-08 1.85 E-08 2.27 E-08 1.22 E-06 3.59 E-07 1.61 E-06
G
Inhalation 4.03 E-03 5.02 E-03 4.89 E-03 2.13 E-01 9.74 E-02 7.93 E-03
Ingestion 4.67 E-06 5.81 E-06 5.67 E-06 2.47 E-04 1.13 E-04 9.19 E-06
Dermal 1.53 E-08 1.89 E-08 1.85 E-08 8.06 E-07 3.69 E-07 1.21 E-06
H
Inhalation 3.32 E-03 3.89 E-03 4.73 E-03 1.75 E-01 7.56 E-02 7.66 E-03
Ingestion 3.84 E-06 4.51 E-06 5.48 E-06 2.03 E-04 8.77 E-05 8.87E-06
Dermal 1.26 E-08 1.47 E-08 1.79 E-08 6.63 E-07 2.87 E-07 9.79 E-07
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compromise body immunity (Tables 1–3). Heavy metals can accumu-
late and build up in cells, bones, glands and hair [45]. Scrap car paint
dusts, soil aerosols and fugitive dust laden heavy metals less than 10μml
been tiny, microscopic and less dense than air can travel far and wide

(distance covered is dependent on meteorological condition of geo-
graphical area) and when inhaled can be trapped in the trachea-bron-
chial and alveolar-bronchial system, but infiltration of inhaled particles
into air-track has an inverse relation with particle size for those greater
than 0.5 μm [46]. Biologic and physic-chemical factors influence the
movement of settled particulates in the respiratory tract coupled with
dissolution and movement into body fluid and blood by phagocytosis
and simultaneous mobility with mucus [47], adhesion and dispersion
process of accumulated particles differs at different section of the re-
spiratory track [48].

The hazard indices of cadmium for children and adults through
inhalation were 1.869 and 1.043, inferring health risk associated with
scrap car paint dust. Total non-carcinogenic hazard indices (adult and
children) for both ingestion and dermal contact are below the hazard
threshold value of one [1] set by the US EPA [22,23] (Table 4). Al-
though the values are minimal and suggest insignificant risk when
singly considered but when the three exposure routes are summed up,
as they may occur simultaneously, the effect can compromise public
health.

The total hazard indices (Table 5) of the three heavy metal from
scrap car paint dust reveal there may be reasonable level of toxicity
through inhalation mostly in children followed by adult than through
ingestion and dermal contact, this agrees with the work of Orisakwe
and co-workers [18] wherein the respiratory abnormalities associated
with occupational exposure to particulate insults in “Okada” (motor-
cycle) operators in Nigeria reveal serious health implications. Cadmium
has no healthy body function but has been recognized as an endocrine
disruptor for its adverse effect on reproduction [49], disruption of
spermatogenesis in vivo and in laboratory animals [50] and binding
with androgen and estrogen receptors [51], prostrate and testicular
toxicity and infertility [52,53]. There are reported cases of cognitive
reduction with osteoporotic effect in aged sick resulting from presence
of lead, a metal of charge similarity with cadmium, nickel, calcium
(Pb+2, Cd+2, Ni+2, Ca+2) in the bloodstream implies bone defect
[54,55]. Chromium (Cr+3) is not very toxic, hexavalent chromium
(Cr+6) is carcinogenic, corrodes skin and causes denaturation and
precipitation of tissue proteins [56]. Occupational exposure to chro-
mium is mostly by inhalation, but gastrointestinal tract and skin can
occur [57], hence respiratory tract is the primary target organ for Cr+6

and its compounds. Nickel is absorbed through the lungs [58,59],
gastrointestinal tract [60] and skin [61], but excreted in the urine [62].
A careful look at our work, shows that it may be significant in public
health issues through occupational exposure considering the work of

Table 4
Hazard index (HI) from individual heavy metal exposure to scrapped car paint
dust.

Cd Cr Ni Total Hazard Index (THI)

Inhalation
Adult 1.043 0.387 3.945E-02 1.469
Children 1.869 0.692 7.062E-02 2.631
Ingestion
Adult 2.318E-04 8.575E-05 8.744E-06 3.263E-04
Children 2.165E-03 7.996E-04 7.176E-05 3.036E-03
Dermal
Adult 3.081E-05 1.138E-05 1.163E-06 4.335E-05
Children 7.08E-06 2.62E-06 9.969E-06 1.967E-05

Table 5
Total hazard index (HI) of three heavy metals from exposure to car paint dust.

Workshops Inhalation Ingestion Dermal

A
Adult 1.64 E-01 3.63 E-05 4.82 E-06
Children 2.93 E-01 3.39 E-04 1.11 E-06
B
Adult 1.88 E-01 4.17 E-05 5.53 E-06
Children 3.36 E-01 3.89 E-04 1.27 E-06
C
Adult 1.59 E-01 3.54 E-05 4.69 E-06
Children 2.85 E-01 3.3 E-04 1.08 E-06
D
Adult 2.22 E-01 4.94 E-05 6.55 E-06
Children 3.98 E-01 4.61 E-04 1.51 E-06
E
Adult 1.77 E-01 3.94 E-05 5.23 E-06
Children 3.17 E-01 3.68 E-04 1.2 E-06
F
Adult 2.38 E-01 5.29 E-05 7.01 E-06
Children 4.26 E-01 4.93 E-04 1.61 E-06
G
Adult 1.78 E-01 3.95 E-05 5.24 E-06
Children 3.18 E-01 3.69 E-04 1.21 E-06
H
Adult 1.44 E-01 3.21 E-05 4.25 E-06
Children 2.58 E-01 2.99 E-04 9.79 E-07

Table 6
Incremental Lifetime Cancer Risk (ILCR) for adult and children from three metals in scrapped car paints in Southeastern Nigeria.

Carcinogenic metal Route of exposure Workshops

A B C D E F G H

Cadmium Inhalation
Adult 8.31E-4 9.88E-4 7.33E-4 1.21E-3 9.16E-4 1.29E-3 8.55E-4 7.03E-4
Children 1.46E-3 1.77E-3 1.31E-3 2.17E-3 1.64E-3 2.31E-3 1.53E-3 1.26E-3
Ingestion
Adult 1.81E-7 2.19E-7 1.63E-7 2.69E-7 2.04E-7 2.87E-7 1.90E-7 1.56E-7
Children 1.68E-6 2.05E-6 1.52E-6 2.52E-6 1.90E-6 2.68E-6 1.77E-6 1.46E-6
Dermal
Adult 2.39E-8 2.91E-8 2.16E-8 3.58E-8 2.70E-8 3.8E-8 2.52E-8 2.07E-8
Children 5.47E-9 6.73E-9 4.98E-9 8.21E-9 6.23E-9 8.78E-9 5.81E-9 4.79E-9

Chromium Inhalation
Adult 1.16E-3 1.16E-3 1.35E-3 1.25E-3 1.18E-3 1.37E-3 1.41E-3 1.09E-3
Children 2.07E-3 2.09E-3 2.42E-3 2.24E-3 2.11E-3 2.44E-3 2.51E-3 1.95E-3
Ingestion
Adult 2.57E-7 2.59E-7 2.99E-7 2.78E-7 2.62E-7 3.03E-7 3.11E-7 2.42E-7
Children 2.39E-6 2.42E-6 2.79E-6 2.57E-6 2.45E-6 2.83E-6 2.91E-6 2.26E-6
Dermal
Adult 3.40E-8 3.43E-8 3.98E-7 3.68E-8 3.47E-8 4.02E-8 4.13E-8 3.21E-8
Children 7.85E-9 7.90E-9 9.15E-9 8.45E-9 7.95E-9 9.25E-9 9.45E-9 7.35E-9
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Orisakwe et al [17] and that of Vitayavirasuk et al [63] which shows
that subjects exposed to heavy metal in a paint factory and automobile
paint spray may have compromised health status.

Table 6 shows the possibility of exposed subjects developing cancer
from lifetime exposure to carcinogenic metals. Cadmium and chromium
in children and adult are at a higher risk through inhalation but chil-
dren are marginally at risk than adult through ingestion, dermal contact
does not constitute threat been below the regulatory range of 1× 10−6

to 1× 10-4 [32]. Hazard index (HI) is the total calculated hazard
quotients (HQ) and greater than 1 show that non-carcinogenic effects
may occur but lower than one [1] shows no significant risk of non-
carcinogenic effect, higher HI value means the occurrence of non-
cancer effect [27], several studies have linked cadmium, chromium,
arsenic, lead and other heavy metals to cancer, diabetes, osteoporosis,
bronchitis, respiratory and pulmonary symptoms, allergenic effect,
nephrotoxicity, keratoconjunctivitis, cardiovascular disease, neu-
roendocrine disruption, hypertension and infertility [6–10,12,49,64].

In comparison, some study proves that inhaled particles exhibit
synonymic health effects as ingested ones [65,21]. HQ value below
1×10−6 is a negligible cancer risk but HQ values greater than 1× 10-
4 is high. Cancer risks equal or above 1×10-4 is a health threat [31],
cadmium, chromium and nickel exposures for children through in-
halation for workshops A–H are in exponents of 10-1, 10-2 and 10-3

while that of adults are 10-1, 10-2 and 10-3, is a serious health issue
(Tables 2 and 3). That of adults through ingestion and dermal contact
varied exponentially from 10-7 to 10-5 and 10-7 to 10-6 while that of
children ranged from 10−6 to 10-4 and 10-7 to 10-6 · These may not be
regarded as public health catastrophe. Zhao et al [66] posit that short
time but reasonable dose exposure to heavy metal may not be the only
cause of cancer but persistent low dose exposure possibly as seen in
scrap auto- paint dust plays key role in tumor formation, as Cr, Cd, As,
Pb and Hg were found in tissues of lung, liver and gastric cancer suf-
ferers.

In this study, cancer risk for cadmium through inhalation were in
the high risk range of 1.26×10−3 – 2.31×10−3, and 9.88×10-4 -
1.29×10−3 (children and adult) and that of chromium is in the range
of 1.95×10−3 – 2.51×10−3 and 1.09× 10-3 – 1.41× 10−3 for
children and adult respectively (Table 6), all above the US EPA reg-
ulatory value (1× 10-6 to 1× 10-4). Exposure of cadmium through
ingestion and dermal contact were in the lower risk range of 1.46× 10-
6 - 2.68× 10-6 and 4.79×10-9 - 8.78× 10-9 for children and that of
adults were in the range of 1.56×10-7 - 2.87× 10-7 and 2.07×10-8 -
3.58×10-8. Chromium exposure through ingestion and dermal routes
were in the range of 2.26× 10-6 - 2.91×10-6 and 7.35×10-9 -
9.45×10-9 for children while both routes for adults were in the range
of 2.42× 10-7 – 3.11× 10-7 and 3.21× 10-8 – 4.13× 10-8 (Table 6).
This implies negligible risk for cadmium and chromium for the exposed
subjects within the study area. For nickel every value tended to zero
because its cancer slope factor is zero. Apart from heavy metals (Cd, Cr
and Ni) contained in the paint, paint aerosols can be hazardous posing
similar effect as microscopic welding particles which can extremely
compromise human health [67]. The findings here correlates with other
literature [68,69] that despite advantages automobile transportation
offers to the populace, it surely has negative public health impact. This
work amongst others [16,18] is an indication that occupational and
direct local exposures [70] is the most self-evident scenario of heavy
metal or chemical risk, that may be associated with scrap car paint dust.

In Conclusion, the artisans and the resident population working or
residing near auto-panel workshops may be exposed to heavy metal
risks, from car paint dust matrix and this can compromise their body
immunity.
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