DNA polymerase λ promotes error－free replication through Watson－Crick impairing N1－methyl－deoxyadenosine adduct in conjunction with DNA polymerase ζ

Received for publication，May 13，2021，and in revised form，June 6， 2021 Published，Papers in Press，June 10，2021，
https：／／doi．org／10．1016／j．jbc．2021．100868

Jung－Hoon Yoon，Debashree Basu©，Jayati Roy Choudhury，Satya Prakash©，and Louise Prakash＊©
From the Department of Biochemistry and Molecular Biology，University of Texas Medical Branch，Galveston，Texas，USA

Edited by Patrick Sung

In a previous study，we showed that replication through the N 1 －methyl－deoxyadenosine（ $1-\mathrm{MeA}$ ）adduct in human cells is mediated via three different Polı／Pol θ ，Pol η ，and Pol ζ－depen－ dent pathways．Based on biochemical studies with these Pols， in the Polt／Pol日 pathway，we inferred a role for Polt in the insertion of a nucleotide（nt）opposite 1－MeA and of Pol日 in extension of synthesis from the inserted nt；in the Poln pathway，we inferred that this Pol alone would replicate through 1－MeA；in the Pol弓 pathway，however，the Pol required for inserting an nt opposite $1-\mathrm{MeA}$ had remained unidentified． In this study，we provide biochemical and genetic evidence for a role for Pol λ in inserting the correct nt T opposite $1-\mathrm{MeA}$ ， from which Pol弓 would extend synthesis．The high proficiency of purified Pol λ for inserting a T opposite $1-\mathrm{MeA}$ implicates a role for Pol λ－which normally uses W－C base pairing for DNA synthesis－in accommodating $1-\mathrm{MeA}$ in a syn confirmation and forming a Hoogsteen base pair with T．The potential of Pol λ to replicate through DNA lesions by Hoogsteen base pairing adds another novel aspect to PolX＇s role in translesion synthesis in addition to its role as a scaffolding component of Poll．We discuss how the action mechanisms of Pol λ and Pol ζ could be restrained to inserting a T opposite $1-\mathrm{MeA}$ and extending synthesis thereafter，respectively．

Translesion synthesis（TLS）DNA polymerases（Pols） exhibit a high specificity for replicating through different types of DNA lesions．Whereas replication through certain DNA lesions can be performed by just one Pol，such as by Pol η opposite cyclobutane pyrimidine dimers（CPDs）（1－6），repli－ cation through a vast array of DNA lesions requires the sequential action of two Pols，wherein one Pol inserts a nucleotide（nt）opposite the DNA lesion and another Pol ex－ tends synthesis from the inserted nt．Biochemical and struc－ tural studies with yeast Pol ζ have provided strong evidence for its role in extending synthesis from nts inserted opposite DNA lesions by other TLS Pols（7－10），and genetic evidence accrued

[^0]from TLS studies opposite a number of DNA lesions in human cells aligns with such a Pol ζ role（ $5,6,11,12$ ）．

In yeast or cancer cells，Rev1 functions as a scaffolding component of Pol ζ and TLS by Rev1－Pol ζ operates in a highly error－prone manner（13－18）．In normal human cells，however， Rev1 functions as an indispensable scaffolding component of the Y－family Pols η ，t ，and κ ；and TLS studies opposite a number of DNA lesions have indicated that Rev1－dependent TLS by Y－family Pols operates in a much more error－free manner in human cells than indicated from the fidelity of the purified pols（11，19－21）．Furthermore，in a recent study we provided evidence for an indispensable role of $\operatorname{Pol} \lambda$ as a scaffolding component of Pol弓；and from TLS studies opposite a number of DNA lesions，we inferred that Pol λ－dependent TLS by Pol ζ operates in a predominantly error－free manner in human cells（22）．In that study we analyzed Pol入’s role in TLS opposite the UV lesions CPDs and（6－4）pyrimidine－ pyrimidone photoproducts（6－4）PPs，the oxidative DNA lesion thymine glycol（Tg），and the $1, \mathrm{~N}^{6}$－ethenodeox－ yadenosine（ $\varepsilon \mathrm{dA}$ ）lesion－formed in DNA through interaction with aldehydes derived from lipid peroxidation．In TLS opposite CPD，Tg，and $\varepsilon \mathrm{dA}, \mathrm{Pol} \zeta$ extends synthesis from the nt inserted opposite the lesion site by another DNA Pol；and although Pol λ is indispensable for Pol ζ＇s role in TLS opposite these DNA lesions，its DNA polymerase activity is not required．Thus，for TLS opposite these DNA lesions，only Pol λ＇s scaffolding activity is required（22）．For TLS opposite （6－4）PPs，however，Pol入’s polymerase activity is also required， and Pol λ promotes error－free replication through this lesion in human and mouse cells（22）．Since（6－4）TT PP induces a large structural distortion in DNA and since it impairs the ability of the 3 ＇ T to form a normal Watson－Crick（W－C）base pair with the correct nt（23－26），it remains unclear how Pol λ ， which uses W－C base pairing for normal DNA synthesis， manages error－free TLS opposite this DNA lesion．

N1－methyl－deoxyadenosine（1－MeA）is repaired by direct demethylation，primarily by the ABH 2 enzyme in human cells （27）．The evidence that $1-\mathrm{MeA}$ residues accumulate over time in the genomic DNA of the livers from ABH 2 null mice has indicated that endogenous DNA methylation contributes to their formation（27）．In human cells，TLS through the 1－MeA adduct is mediated via three independent pathways in which

TLS through 1－MeA by DNA polymerase λ

Polt and $\operatorname{Pol} \theta$ function in one pathway and Pols η and ζ function in the other two pathways，respectively（28）．TLS by all three pathways operates in a predominantly error－free manner in human cells．For the $\mathrm{Pol} / \mathrm{Pol} \theta$ pathway，following nt insertion by Polı opposite 1－MeA by forming a Hoogsteen base pair with the T residue（29）， $\mathrm{Pol} \mathrm{\theta}$ would extend synthesis， whereas in the Poln pathway，Poln would perform both the steps of TLS（28）．Our evidence for the requirement of Pol λ as an indispensable scaffolding component of Pol ζ strongly sug－ gested that it would be required for Pol ζ－dependent TLS opposite $1-\mathrm{MeA}$ ；further，it raised the possibility that Pol λ may insert the correct nt opposite $1-\mathrm{MeA}$ from which Pol ζ could extend synthesis．

Here we provide genetic and biochemical evidence for the role of Pol λ in conjunction with Pol ζ in mediating error－free replication through $1-\mathrm{MeA}$ by inserting the correct nt opposite it．We discuss how by adopting Hoogsteen base pairing as a mechanism for inserting the correct nt opposite $1-\mathrm{MeA}, \mathrm{Pol} \lambda$ could promote error－free replication through this adduct．

Results

Requirement of Pold for TLS opposite 1－MeA in conjunction with Pol弓

In our previous analyses of the genetic control of TLS opposite $1-\mathrm{MeA}$ in human cells，we identified the involve－ ment of three independent $\mathrm{Pol} / \mathrm{Pol} \theta, \mathrm{Pol} \eta$ ，and $\mathrm{Pol} \zeta$ path－ ways（28）．In the Pol弓 pathway，however，the identity of the Pol that could insert an nt opposite 1－MeA had remained unknown．To determine whether Pol λ functions together with Pol ζ ，we analyzed the effects of siRNA depletion of Pol λ alone and in combination with depletion of other TLS Pols on TLS frequency opposite $1-\mathrm{MeA}$ carried on the leading strand template in the duplex plasmid in which bidirectional replication initiates from an origin of replica－ tion（28）．

As shown in Table 1，TLS in normal human fibroblasts （HFs）treated with control（NC）siRNA occurs with a fre－ quency of $\sim 63 \%$ ．In Poln depleted cells，TLS frequency is reduced to $\sim 53 \%$ and depletion of Pol，Pol日，Rev3，or Pol λ reduced TLS frequency to 40 to 46% ．Our evidence that codepletion of Pol λ with Pol η ，Pol，or Pol θ reduces TLS fre－ quency nearly to $\sim 27 \%$ indicated a role for $\operatorname{Pol} \lambda$ in a TLS pathway independent of Pol η or $\operatorname{Poll} / \mathrm{Pol} \mathrm{\theta}$ pathways，and our observation that TLS frequency remains the same in cells codepleted for Pol λ and $\operatorname{Rev} 3(\sim 42 \%)$ as in cells depleted for either Pol alone implicated a role for Pol久 in TLS in conjunction with Pol ζ ．

To provide further evidence for the role of Pol λ in TLS with $\mathrm{Pol} \zeta$ ，we analyzed the effects or $\mathrm{Pol} \lambda$ depletion alone and in combination with the depletion of other TLS Pols in XPV HFs （Table 2）．In control siRNA－treated XPV HFs，TLS opposite 1－ MeA occurs with a frequency of $\sim 47 \%$ and as expected from the role of Polı／Pol θ and $\mathrm{Pol} \lambda / \mathrm{Pol} \zeta$ in Pol η－independent pathways，TLS frequency is reduced to $\sim 30 \%$ in XPV HFs depleted for Polt，Pol日，Rev3，or Pol λ（Table 2）．Our results

Table 1
Effects of siRNA knockdowns of Pold and other TLS Pols on repli－ cative bypass of 1－MeA carried on the leading DNA strand template in normal human fibroblasts

siRNA	Number of Kan $^{+}$colonies	Number of blue colonies among Kan $^{+}$colonies	TLS（\％）
NC	407	258	63.4
Pol η	368	196	53.3
Polı	356	165	46.3
Pol θ	475	189	39.8
Rev3	344	157	45.6
Pol λ	436	204	46.8
Pol $\eta+$ Pol λ	390	104	26.7
Polı＋Pol	408	114	27.9
Pol $\theta+$ Pol λ	417	112	26.9
Rev3＋Pol λ	317	134	42.3

that TLS frequency is reduced to $\sim 5 \%$ in XPV HFs codepleted for Pol λ either with Polı or with $\mathrm{Pol} \theta$ and that TLS frequency remains nearly the same（ $\sim 29 \%$ ）in XPV HFs codepleted for Pol λ and Rev3 as in cells depleted for either Pol alone add further support for the role of $\mathrm{Pol} \lambda$ in TLS opposite $1-\mathrm{MeA}$ together with Pol ζ and independent of Polı and Pol日．Alto－ gether from TLS analyses in WT HFs and XPV HFs，we conclude that TLS through 1－MeA operates via three inde－ pendent Polı／Pol θ ，Pol η ，and $\operatorname{Pol} \lambda / \mathrm{Pol} \zeta$ pathways（Fig．1）．

Requirement of Pol ${ }^{\prime}$＇s polymerase activity for TLS opposite 1－ MeA

To determine if Pol入＇s polymerase activity was required for TLS opposite 1－MeA，we analyzed the effects of the D427A， D429A mutations，which inactivate this activity．For these studies，we stably expressed siRNA－resistant wild－type human Pol λ or the D427A，D429A catalytic mutant Pol λ in WT HFs． As shown in Table 3，TLS opposite 1－MeA in Pol λ－depleted HFs harboring the vector plasmid occurs with a frequency of $\sim 45 \%$ ，and the frequency rises to $\sim 64 \%$ in cells expressing WT Pol λ ．Our results that TLS frequency is reduced to the same level（ $\sim 45 \%$ ）in cells expressing the D427A，D429A catalytic mutant as in cells harboring the vector plasmid establish the requirement of Pol λ＇s polymerase activity for TLS through 1－ MeA in human cells．Additionally，we confirmed the require－ ment of Pol入＇s polymerase activity for TLS through this adduct in Pol $\lambda^{-/-}$MEFs（Table 4）．

Pol ${ }^{\prime}$＇s BRCT domain is not required for TLS opposite 1－MeA

Pol λ is a 575 residue polypeptide that contains an N－ter－ minal BRCT domain．We have shown previously that N－ terminally deleted Pol λ comprised of residues 245 to 575 ， which lacks the BRCT domain and the proline－rich region， physically interacts with the Rev7 subunit of $\mathrm{Pol} \zeta$ and that this N－terminally deleted Pol λ supports TLS through（6－4）TT photoproduct in human cells（22）．Our results that expression of（245－575）Pol入 in HFs supports WT levels of TLS（Table 3） confirm that the N －terminal BRCT domain and the adjoining proline－rich region are also not required for PolX＇s role in TLS through 1－MeA in HFs（Table 3）；additionally，we confirmed these results in Pol $\lambda^{-/-}$MEFs（Table 4）．

Table 2
Effects of siRNA knockdowns of Pold and other TLS Pols on repli－ cative bypass of 1－MeA carried on the leading DNA strand template in XPV human fibroblasts

siRNA	Number of Kan $^{+}$ colonies	Number of blue colonies among Kan $^{+}$colonies	TLS $\mathbf{(\%)}$
NC	396	180	45.5
Polt	410	124	30.2
Pol θ	395	110	27.8
Rev3	426	129	30.3
Pol	502	145	28.9
Polt＋Pol λ	230	11	4.8
$\operatorname{Pol} \theta+\operatorname{Pol} \lambda$	426	23	5.4
$\operatorname{Rev} 3+\operatorname{Pol} \lambda$	472	136	28.8

Purified Pold conducts error－free TLS through 1－MeA

The requirement of Pol λ＇s polymerase activity for TLS through the $1-\mathrm{MeA}$ adduct in conjunction with Pol ζ in human cells suggested that Pol λ would insert an nt opposite $1-\mathrm{MeA}$ from which Pol ζ would extend synthesis．Hence，we exam－ ined purified Pol λ for its ability to insert dATP，dTTP，dGTP， or dCTP opposite 1－MeA and to synthesize DNA through the adduct in the presence of all four dNTPs．As shown in Figure 2，Pol λ replicates through the undamaged template residue A by inserting a T．Opposite 1－MeA also Pol λ inserts a T and then extends synthesis similar to that on undamaged DNA．

The high proficiency of Pol λ for inserting the correct nt opposite 1 －MeA stands in sharp contrast to the error－ proneness of purified Polı or Pol η opposite this adduct（28）． Thus in addition to the insertion of a T，Polı inserts an A or a C opposite $1-\mathrm{MeA}$ ，and steady－state kinetic analyses have indi－ cated that it does so with only an ~ 100－fold lower catalytic efficiency than for the insertion of correct T （29）．Likewise， compared with the catalytic efficiency for the insertion of a T ， Pol η inserts an A or a G opposite $1-\mathrm{MeA}$ with only an $\sim 40-$ fold reduction in catalytic efficiency，and it inserts a C oppo－ site 1 －MeA with only an ~ 100－fold reduction in catalytic efficiency（Table 5）．Nevertheless，in spite of their error－proneness in vitro，both these Pols conduct predomi－ nantly error－free TLS through 1－MeA in human cells（28）．

Figure 1．TLS pathways for replication through 1－MeA．In the Polt／Pol θ pathway，following nt insertion by Polı by Hoogsteen base pairing opposite 1－MeA，Pol日 would extend synthesis；in the Poln pathway，this Pol would act alone at both the steps of TLS．TLS by Polı and Poln requires the non－ catalytic and scaffolding role of Rev1．In the Pol $\lambda /$ Pol $/$ pathway，following the insertion of T opposite 1－MeA by Pol $\lambda, \mathrm{Pol} \zeta$ would extend synthesis．In this pathway，Pol λ＇s scaffolding role would be additionally required for as－ sembly with Poll．

Table 3
Effects of catalytically active（WT）Pol λ ，catalytically inactive D427A， D429A Pol λ ，N－terminally deleted（245－575）Pol λ ，catalytically active （WT）Rev1，catalytically inactive D570A，E571A Rev1，catalytically active（WT）Rev3，or catalytically inactive D2781A，D2783A Rev3 on TLS opposite $1-\mathrm{MeA}$ carried on the leading DNA strand template in normal human fibroblasts

Vector expressing	siRNA	Number of colonies	Number of blue colonies among Kan $^{+}$colonies	TLS（\％）
No Pol久（control）	Pol入	372	166	44.6
WT（1－575）Pol入	Pol入	326	208	63.8
D427A，D429A Pol入	Pol入	306	138	45.1
（245－575）Pol久	Pol入	334	216	64.7
No Rev3（control）	Rev3	294	124	42.2
WT Rev3	Rev3	242	161	66.5
D2781A，D2783A Rev3	Rev3	409	180	44.0
No Rev1（control）	Rev1	354	106	29.9
WT Rev1	Rev1	484	302	62.4
D570A，E571A Rev1	Rev1	248	158	63.7

Requirement of Pol弓 polymerase activity for TLS through the 1－MeA adduct in human cells

The ability of purified $\operatorname{Pol} \lambda$ for replicating through the 1－ MeA adduct with nearly the same proficiency as for repli－ cating undamaged DNA raised the question of whether Pol弓＇s polymerase activity was required for TLS through this adduct in human cells．To examine this，we expressed full－length WT Rev3，or the D2781A，D2783A mutant Rev3，defective in its polymerase activity，in HFs．In Rev3－depleted HFs harboring the vector plasmid，TLS opposite $1-\mathrm{MeA}$ occurs with a fre－ quency of $\sim 42 \%$ and TLS frequency rises to $\sim 66 \%$ in cells expressing WT Rev3．Our results that in cells expressing the D2781A，D2783A Rev3 catalytic mutant，TLS is reduced to the same level $(\sim 44 \%)$ as in cells harboring the vector control （Table 3）confirm that the Rev3 DNA polymerase activity is，in fact，required for TLS through 1－MeA in human cells．

Requirement of noncatalytic role of Rev1 for TLS opposite 1－ MeA in conjunction with Polı and Poln

In previous studies opposite a number of DNA lesions，we have provided evidence for a scaffolding role of Rev1 in TLS by Y－family Pols（11，19－21）．To confirm that Rev1 plays a similar role in TLS by Polı and Pol η opposite $1-\mathrm{MeA}$ ，we analyzed the epistatic relationship of Rev1 with these Pols．Our results that TLS occurs at the same frequency in Rev1 depleted HFs （ $\sim 30 \%$ ）as in cells depleted for Rev1 together with Poln or with Polt and that TLS frequency is reduced to $\sim 6 \%$ in cells depleted for Rev1 together with Rev3 or with $\operatorname{Pol} \lambda$（Table 6）

Table 4
Effects of catalytically active（WT）Pol λ ，catalytically inactive D427A， D429A Pol λ ，or N－terminally deleted（245－575）Pol λ on TLS opposite 1－MeA carried on the leading DNA strand template in PoIX－／－MEFs

Vector expressing	Number of Kan $^{+}$colonies	Number of blue colonies among Kan $^{+}$colonies	TLS（\％）
No Pol λ（control）	340	146	42.9
WT Pol	318	194	61.0
D427A，D429A Pol λ	375	153	40.8
（245－575）Pol λ	276	170	61.6

Figure 2．Deoxynucleotide incorporation by Pol $\boldsymbol{\lambda}$ opposite undamaged A and 1－MeA template．Pol $\lambda(10 \mathrm{nM})$ was incubated with template DNA （ 5 nM ）and with $100 \mu \mathrm{M}$ of a single nucleotide（ $\mathrm{A}, \mathrm{T}, \mathrm{G}$, or C）or $100 \mu \mathrm{M}$ of each of the four dNTPs（N）for 15 min at $37^{\circ} \mathrm{C}$ ．A schematic representation of the DNA template and primer used is shown above the gel；the asterisk indicates the site of an A or $1-\mathrm{MeA}$ in the template DNA．
concur with a role of Rev1 in TLS in Polı and Pol η－dependent pathways that operate independently or $\mathrm{Pol} \lambda / \mathrm{Pol} \zeta$ pathway．To confirm that Rev1＇s polymerase activity is not required for TLS opposite 1－MeA，we expressed full－length WT Rev1，or D570A，E571A Rev1 defective in its DNA polymerase activity， in HFs．Our results that the catalytic mutant Rev1 supports the same level of TLS（ $\sim 64 \%$ ）as the WT Rev1（ $\sim 62 \%$ ）（Table 3） confirmed that Rev1＇s polymerase activity was not required． Thus，only the scaffolding role of Rev1 is required for the Polt and Poly TLS pathways．

Discussion

Hoogsteen base pairing as a mechanism for nt insertion opposite 1－MeA by Pol入

Since the addition of a methyl group to the N1 atom of deoxyadenosine disrupts W－C base pairing（29），the insertion of T opposite $1-\mathrm{MeA}$ by $\mathrm{Pol} \lambda$ could occur only if the adduct is accommodated in a syn conformation in its active site and the adduct forms a Hoogsteen base pair with T．Thus Pol λ active site，which normally accommodates template residues in an anti conformation and forms a W－C base pair with the incoming nt（30），would stabilize $1-\mathrm{MeA}$ in a syn conforma－ tion．Such an ability of Pol λ active site to accommodate a W－C impairing DNA lesion in a syn conformation would add another novel aspect to Pol入＇s function in TLS－in addition to
its role as a scaffolding component of Pol for TLS in human cells．

Modulation of the action mechanism of Pol入 and Pol弓 for TLS through 1－MeA

Even though purified Pol λ inserts a T opposite $1-\mathrm{MeA}$ and extends synthesis，Polऍ＇s polymerase activity is still required for replication through $1-\mathrm{MeA}$ in human cells．The requirement of both the Pol λ and Pol ζ polymerase activities strongly sug－ gests that their polymerase activities are restrained to act at the nt insertion or the extension step of TLS in human cells．We presume that in the multiprotein ensemble of $\mathrm{Pol} \lambda-\mathrm{Pol} \zeta$ ，the action mechanism of the two Pols is restrained such that Pol λ＇s action is limited to inserting a T opposite $1-\mathrm{MeA}$ and $\mathrm{Pol} \zeta$ functions at the extension step．The decipherment of the ac－ tion mechanism of these Pols in human cells would require the identification of the components of the Pol λ－Pol ζ multiprotein ensemble and biochemical analyses of Pol久＇s and Pol＇＇s role in TLS opposite $1-\mathrm{MeA}$ in the $\mathrm{Pol} \lambda-\mathrm{Pol} \zeta$ ensemble．

Role of Rev1 in the formation of multiprotein ensembles of Y－ family Pols

Our evidence that similar to the requirement of Rev1 as a scaffolding component of Y－family Pols for TLS opposite CPDs，（6－4）PPs，3－methyl deoxyadenosine，$\varepsilon \mathrm{dA}$ ，and other DNA lesions，Rev1＇s scaffolding role is required for TLS opposite 1 －MeA by Polı and Pol η suggests that Rev1 would effect the assembly of these Y－family Pols with the other protein components and that the fidelity of Polı and Poly for TLS opposite $1-\mathrm{MeA}$ would be elevated in the respective multiprotein ensemble thus formed．

Hoogsteen base pairing by Polı for TLS opposite 1－MeA and modulation of its fidelity in human cells

Polı differs from other Y－family Pols in that its active site accommodates a template purine A or G in a syn conforma－ tion，which then forms a Hoogsteen base pair with the incoming nt（31－33）．This allows Polı to accommodate DNA lesions，such as $\varepsilon \mathrm{dA}$ ，which impair W－C base pairing，in a syn conformation and to form a Hoogsteen base pair with the incoming nt（9）．However，biochemical studies with Polı have indicated that it can insert not only the correct nt T opposite $\varepsilon \mathrm{dA}$ but also the incorrect nt C with only a few－fold reduction in catalytic efficiency，and structure studies have shown that $\varepsilon \mathrm{dA}$ in Polı active site adopts a syn conformation and that it Hoogsteen base pairs with the incoming dTTP or dCTP（9）． Nevertheless，in spite of the penchant of Polı for inserting a C opposite $\varepsilon d A$ ，Polı conducts error－free TLS opposite this adduct in human cells（11）．Similar to $\varepsilon \mathrm{dA}, 1-\mathrm{MeA}$ is accommodated in a syn conformation in Pol＇s active site，and it forms a Hoogsteen base pair with T （29）；however，even though purified Polı misincorporates an A or a C at a fre－ quency of $\sim 10^{-2}$（29），it promotes error－free TLS through $1-\mathrm{MeA}$ in human cells．The adoption of entirely error－free TLS opposite $\varepsilon \mathrm{dA}$ and of predominantly error－free TLS opposite $1-\mathrm{MeA}$ in human cells could be explained if Poll＇s error－

Table 5
Steady-state kinetic analyses of nucleotide incorporation opposite undamaged A or 1-MeA by human Poln

Template residue	Incoming nucleotide	$k_{\text {cat }}\left(\mathrm{min}^{-1}\right)$	$K_{m}(\mu \mathrm{M})$	$k_{\text {cat }} / K_{m}$	Catalytic efficiency relative to T
A	T	7.4 ± 0.2	0.39 ± 0.08	19	1
	A	2.2 ± 0.1	2.4 ± 0.4	0.9	5×10^{-2}
	G	2.9 ± 0.2	5.3 ± 1.3	0.54	3×10^{-2}
	C	2.2 ± 0.18	13.46 ± 2	0.16	0.8×10^{-2}
1-MeA	T	5.8 ± 0.3	1.05 ± 0.2	5.8	1
	A	2.3 ± 0.5	14.99 ± 6	0.15	2.6×10^{-2}
	G	1.6 ± 0.2	10.58 ± 3.7	0.15	2.6×10^{-2}
	C	1.9 ± 0.09	35.9 ± 5.3	0.05	1×10^{-2}

Poly $(0.25 \mathrm{nM})$ was incubated with primer:template DNA substrate (10 nM) and increasing concentrations of dNTPs for 10 min , at $37{ }^{\circ} \mathrm{C}$. The nucleotide incorporation rate was plotted against dNTP concentration and the data were fit to the Michaelis-Menten equation. Apparent K_{m} and $\mathrm{k}_{\mathrm{cat}}$ values were obtained from the fit and used to calculate the efficiency of deoxynucleotide incorporation ($\mathrm{k}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$).
proneness is annulled in the multiprotein ensemble that the scaffolding role of Rev1 would assemble.

Hoogsteen base pairing by Poln for nt insertion opposite 1MeA

Pol η uses W-C base pairing for replicating undamaged DNA (34) and for replicating through the two covalently linked pyrimidines of a CPD (2, 4, 35-37). And Pol η can replicate through both the guanines of a cisplatin GG intrastrand cross-link with both the Gs in the cross-link forming a W-C base pair with the incoming dCTP $(38,39)$. Hence, the hallmark of Pol η has been its ability to accommodate two template residues in its active site and to form a W-C base pair with the incoming nt. The proficiency of purified Pol η for incorporating a T opposite 1-MeA and the genetic evidence that Pol η replicates through this adduct in human cells strongly suggest that Pol η accommodates $1-\mathrm{MeA}$ in its active site in a syn conformation, which then Hoogsteen base pairs with the correct nt T or with incorrect nts. We presume that the intrinsic error-proneness of Poln for TLS through 1-MeA is attenuated in the Pol η multiprotein ensemble.

Experimental procedures

Construction of plasmid vectors containing 1-MeA

The heteroduplex vectors containing 1-MeA on the leading or the lagging strand template were constructed as described previously (28).

Cell lines and cell culture

Normal human fibroblasts (Coriell Institute Cell Repository, GM00637), XPV fibroblasts (Coriell Institute Cell Repository, GM03617), Pol $\lambda^{-/-}$MEFs, and big blue mouse embryonic fibroblasts (Agilent) were grown in DMEM medium (GenDEPOT)

Table 6

Effects of siRNA knockdowns of Rev1 and other TLS Pols on replicative bypass of 1-MeA carried on the leading DNA strand template in normal human fibroblasts

siRNA	Number of Kan $^{+}$colonies	Number of blue colonies among Kan $^{+}$colonies	TLS (\%)
NC	476	307	64.5
Rev1	340	104	30.6
Pol + Rev1	378	112	29.6
Polt + Rev1	402	120	29.9
Rev3 + Rev1	382	22	5.8
Pol + Rev1	420	24	5.7

containing 10% fetal bovine serum (GenDEPOT) and 1% antibiotic-antimycotic (GenDEPOT). Cells were grown on plastic culture dishes at $37^{\circ} \mathrm{C}$ in a humidified incubator with $5 \% \mathrm{CO}_{2}$.

Translesion synthesis assays in HFs and Pold ${ }^{-/-}$MEFs

The siRNA sequences, the siRNA knockdown efficiency of TLS Pols, as well as the detailed methods for TLS assays and for mutational analyses have been described previously $(6,11,22,40)$.

Stable expression of wild-type and catalytic mutant Rev1, Rev3, and Pol λ, and N-terminally deleted Pol λ

Stable expression of siRNA resistant WT or D570A E571A mutant Rev1 has been described previously (19). Stable expressions of siRNA-resistant WT Pol入, catalytic mutant (D427A D429A) Pol λ, N-terminally deleted (245-575) Pol λ, and of siRNA-resistant WT Rev3 or catalytic mutant (D2781A D2783A) were done as described (22).

DNA polymerase assays with PolX

The template 75 -mer oligonucleotide contained the sequence 5^{\prime} AGC AAG TCA CCA ATG TCT AAG AGT TCG TAT AAT GCC TAC ACT GGA GTA CCG GAG CAT CGT CGT $\bar{G} A C$ TGG GAA AAC- 3^{\prime}, and it harbored an undamaged A or a $1-\mathrm{MeA}$ at the underlined position. For examining the incorporation of dATP, dTTP, dCTP, or dGTP nucleotides individually, or of all four dNTPs, a 44 mer primer 5^{\prime} GTT TTC CCA GTC ACG ACG ATG CTC CGG TAC TCC AGT GTA GGC AT-3' was annealed to the abovementioned 75 mer template. The specific details of DNA synthesis assays are stated in Figure 2 legend, and the general methods for DNA synthesis assays were as described before $(22,28)$.

Steady-state kinetic analyses

Steady-state kinetic analyses for deoxynucleotide incorporation opposite undamaged A or 1-MeA by Poln were performed as described (21, 41). The specific details for kinetic analyses are described in Table 5 legend.

Data availability

All relevant data are contained within the article.

Acknowledgments-This work was supported by grants from the National Institutes of Health (R01 GM126087). The content is

TLS through 1-MeA by DNA polymerase λ

solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions-J.-H. Y., J. R. C., and S. P. formal analysis; J.-H. Y., D. B., J. R. C., and S. P. investigation; J.-H. Y. methodology; J.-H. Y., D. B., J. R. C., S. P., and L. P. writing-review and editing; S. P. and L. P. conceptualization; S. P. and L. P. supervision; S. P. validation; S. P. writing-original draft; S. P. and L. P. project administration; L. P. funding acquisition.

Conflict of interest-The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations-The abbreviations used are: 1-MeA, N1-methyldeoxyadenosine; (6-4) PPs, (6-4) pyrimidine-pyrimidone photoproducts; CPD, cyclobutane pyrimidine dimer; NC, negative control; nt, nucleotide; Pol, DNA polymerase; TLS, translesion synthesis; W-C, Watson-Crick.

References

1. Johnson, R. E., Kondratick, C. M., Prakash, S., and Prakash, L. (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263-265
2. Johnson, R. E., Prakash, S., and Prakash, L. (1999) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polף. Science 283, 1001-1004
3. Johnson, R. E., Washington, M. T., Prakash, S., and Prakash, L. (2000) Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447-7450
4. Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700-704
5. Yoon, J. H., McArthur, M. J., Park, J., Basu, D., Wakamiya, M., Prakash, L., and Prakash, S. (2019) Error-prone replication through UV lesions by DNA polymerase theta protects against skin cancers. Cell 176, 1295-1309
6. Yoon, J.-H., Prakash, L., and Prakash, S. (2009) Highly error-free role of DNA polymerase η in the replicative bypass of UV induced pyrimidine dimers in mouse and human cells. Proc. Natl. Acad. Sci. U. S. A. 106, 18219-18224
7. Johnson, R. E., Haracska, L., Prakash, S., and Prakash, L. (2001) Role of DNA polymerase η in the bypass of a (6-4) TT photoproduct. Mol. Cell. Biol. 21, 3558-3563
8. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., and Prakash, L. (2000) Eukaryotic polymerases I and ζ act sequentially to bypass DNA lesions. Nature 406, 1015-1019
9. Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2006) Hoogsteen base pair formation promotes synthesis opposite the 1, N6-ethenodeoxyadenosine lesion by human DNA polymerase iota. Nat. Struct. Mol. Biol. 13, 619-625
10. Malik, R., Kopylov, M., Gomez-Liorente, Y., Jain, R., Johnson, R. E., Prakash, L., Prakash, S., Ubarretxena-Belandia, I., and Aggarwal, A. K. (2020) Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nat. Struct. Mol. Biol. 27, 913924
11. Yoon, J. H., Johnson, R. E., Prakash, L., and Prakash, S. (2019) DNA polymerase theta accomplishes translesion synthesis opposite $1, \mathrm{~N}(6)$ ethenodeoxyadenosine with a remarkably high fidelity in human cells. Genes Dev. 33, 282-287
12. Yoon, J.-H., Bhatia, G., Prakash, S., and Prakash, L. (2010) Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases κ and ζ in human cells. Proc. Natl. Acad. Sci. U. S. A. 107, 14116-14122
13. Acharya, N., Johnson, R. E., Prakash, S., and Prakash, L. (2006) Complex formation with Rev1 enhances the proficiency of yeast DNA polymerase ζ
for mismatch extension and for extension opposite from DNA lesions. Mol. Cell. Biol. 26, 9555-9563
14. Baynton, K., Bresson-Roy, A., and Fuchs, R. P. P. (1998) Analysis of damage tolerance pathways in Saccharomyces cerevisiae: A requirement for Rev3 DNA polymerase in translesion synthesis. Mol. Cell. Biol. 18, 960-966
15. Doles, J., Oliver, T. G., Cameron, E. R., Hsu, G., Jacks, T., Walker, G. C., and Hemann, M. T. (2010) Suppression of Rev3, the catalytic subunit of Pol ζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 107, 20786-20791
16. Gibbs, P. E. M., McDonald, J., Woodgate, R., and Lawrence, C. W. (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol η, Pol ζ, Rev1 protein and Pol32 in the bypass and mutation inductiion of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer. Genetics 169, 575-582
17. Nelson, J. R., Gibbs, P. E. M., Nowicka, A. M., Hinkle, D. C., and Lawrence, C. W. (2000) Evidence for a second function for Saccharomyces cerevisiae Rev1p. Mol. Microbiol. 37, 549-554
18. Xie, K., Doles, J., Hemann, M. T., and Walker, G. C. (2010) Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl. Acad. Sci. U. S. A. 107, 20792-20797
19. Yoon, J. H., Hodge, R. P., Hackfeld, L. C., Park, J., Roy Choudhury, J., Prakash, S., and Prakash, L. (2018) Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct. J. Biol. Chem. 293, 2949-2958
20. Yoon, J. H., Park, J., Conde, J., Wakamiya, M., Prakash, L., and Prakash, S. (2015) Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, t , and к but not DNA polymerase ζ. Genes Dev. 29, 2588-2662
21. Yoon, J. H., Roy Choudhury, J., Park, J., Prakash, S., and Prakash, L. (2017) Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine. J. Biol. Chem. 292, 18682-18688
22. Yoon, J. H., Basu, D., Sellamuthu, K., Johnson, R. E., Prakash, S., and Prakash, L. (2021) A novel role of DNA polymerase lambda in translesion synthesis in conjunction with DNA polymerase zeta. Life Sci. Alliance 4, e202000900
23. Kemmink, J., Boelens, R., Koning, T., van der Marel, G. A., van Boom, J. H., and Kaptein, R. (1987) ${ }^{1} \mathrm{H}$ NMR study of the exchangeable protons of the duplex $\mathrm{d}(\mathrm{GCGTTGCG}) . \mathrm{d}(\mathrm{CGCAACGC})$ containing a thymine photodimer. Nucleic Acids Res. 15, 4645-4653
24. Kim, J.-K., and Choi, B.-S. (1995) The solution structure of DNA duplexdecamer containing the (6-4) photoproduct of thymidyl $\left(3^{\prime}->5^{\prime}\right)$ thymidine by NMR and relaxation matrix refinement. Eur. J. Biochem. 228, 849-854
25. Kim, J.-K., Patel, D., and Choi, B.-S. (1995) Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: Implication in mutagenesis and repair activity. Photochem. Photobiol. 62, 44-50
26. Lee, J.-H., Hwang, G.-S., and Choi, B.-S. (1999) Solution structure of a DNA decamer duplex containing the stable 3^{\prime} T.G base pair of the pyrimidine(6-4)pyrimidone photoproduct [(6-4) adduct]: Implications for the highly specific $3^{\prime} \mathrm{T} \rightarrow$ C transition of the (6-4) adduct. Proc. Natl. Acad. Sci. U. S. A. 96, 6632-6636
27. Ringvoli, J., Nordstrand, L. M., Vagbo, C. B., Talstad, V., Reite, K., Aas, P. A., Lauritzen, K. H., Liabakk, N. B., Bjork, A., Doughty, R. W., Falnes, P. O., Krokan, H. E., and Klungland, A. (2006) Repair deficient mice reveal mABH 2 as the primary oxidative demethylase for repairing 1 meA and 3meC lesions in DNA. EMBO J. 25, 2189-2198
28. Conde, J., Yoon, J. H., Roy Choudhury, J., Prakash, L., and Prakash, S. (2015) Genetic control of replication through N1-methyladenine in human cells. J. Biol. Chem. 290, 29794-29800
29. Jain, R., Choudhury, J. R., Buku, A., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2017) Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-iota. Sci. Rep. 7, 43904
30. Garcia-Diaz, M., Bebenek, K., Krahn, J. M., Kunkel, T. A., and Pedersen, L. C. (2005) A closed conformation for the Pol lambda catalytic cycle. Nat. Struct. Mol. Biol. 12, 97-98
31. Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2005) Human DNA polymerase । incorporates dCTP opposite template G via a G.C+ Hoogsteen base pair. Structure 13, 1569-1577
32. Nair, D. T., Johnson, R. E., Prakash, S., Prakash, L., and Aggarwal, A. K. (2004) Replication by human DNA polymerase ı occurs via Hoogsteen base-pairing. Nature 430, 377-380
33. Nair, D. T., Johnson, R. E., Prakash, S., Prakash, L., and Aggarwal, A. K. (2006) An incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-ı active site. Structure 14, 749-755
34. Washington, M. T., Helquist, S. A., Kool, E. T., Prakash, L., and Prakash, S. (2003) Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase η. Mol. Cell. Biol. 23, 5107-5112
35. Biertumpfel, C., Zhao, Y., Kondo, Y., Ramon-Maiques, S., Gregory, M., Lee, J. Y., Masutani, C., Lehmann, A. R., Hanaoka, F., and Yang, W. (2010) Structure and mechanism of human DNA polymerase η. Nature 465, 1044-1048
36. Johnson, R. E., Prakash, L., and Prakash, S. (2005) Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase η. Proc. Natl. Acad. Sci. U. S. A. 102, 12359-12364
37. Silverstein, T. D., Johnson, R. E., Jain, R., Prakash, L., Prakash, S., and Aggarwal, A. K. (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465, 1039-1043
38. Ummat, A., Rechkoblit, O., Jain, R., Roy Choudhury, J., Johnson, R. E., Silverstein, T. D., Buku, A., Lone, S., Prakash, L., Prakash, S., and Aggarwal, A. K. (2012) Structural basis for cisplatin DNA damage tolerance by human polymerase eta during cancer chemotherapy. Nat. Struct. Mol. Biol. 19, 628-632
39. Zhao, Y., Biertumpfel, C., Gregory, M. T., Hua, Y. J., Hanaoka, F., and Yang, W. (2012) Structural basis of human DNA polymerase etamediated chemoresistance to cisplatin. Proc. Natl. Acad. Sci. U. S. A. 109, 7269-7274
40. Yoon, J.-H., Prakash, L., and Prakash, S. (2010) Error-free replicative bypass of (6-4) photoproducts by DNA polymerase ζ in mouse and human cells. Genes Dev. 24, 123-128
41. Johnson, R. E., Prakash, L., and Prakash, S. (2006) Yeast and human translesion DNA synthesis polymerases: Expression, purification, and biochemical characterization. Methods Enzymol. 408, 390-407

[^0]: ＊For correspondence：Louise Prakash，loprakas＠utmb．edu．
 Present address for Debashree Basu：Ultragenyx Pharmaceuticals，Inc， Woburn，Massachusetts，USA．
 Present address for Jayati Roy Choudhury：NASA Johnson Space Center， Houston，Texas，USA．

