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Summary
Students' ability to accurately self‐assess their performance and select a suitable subsequent

learning task in response is imperative for effective self‐regulated learning. Video modeling exam-

ples have proven effective for training self‐assessment and task‐selection skills, and—importantly

—such training fostered self‐regulated learning outcomes. It is unclear, however, whether trained

skills would transfer across domains. We investigated whether skills acquired from training with

either a specific, algorithmic task‐selection rule or a more general heuristic task‐selection rule in

biology would transfer to self‐regulated learning in math. A manipulation check performed after

the training confirmed that both algorithmic and heuristic training improved task‐selection skills

on the biology problems compared with the control condition. However, we found no evidence

that students subsequently applied the acquired skills during self‐regulated learning in math.

Future research should investigate how to support transfer of task‐selection skills across domains.
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1 | INTRODUCTION

Developing self‐regulated learning skills is important to prepare sec-

ondary education students for future learning in higher education

and workplace settings (Bransford, Brown, & Cocking, 2000). In learn-

ing environments in which students get the freedom to choose their

own learning tasks, two skills are crucial for self‐regulated learning to

be effective: self‐assessment and task selection. When students are

not able to accurately evaluate their own performance (self‐assess-

ment) and select an appropriate new learning task in response (task

selection), learning outcomes in the domain will be suboptimal, as stu-

dents will end up working on learning tasks that are either too easy or

too difficult for them. Because accurate self‐assessment and task

selection is difficult (e.g., Bjork, Dunlosky, & Kornell, 2013), researchers

in educational and (applied) cognitive psychology have been concerned

with finding means to support or scaffold self‐assessment and task

selection during self‐regulated learning (e.g., Azevedo & Hadwin,

2005; Bannert, 2006; Dabbagh & Kitsantas, 2005; Kramarski &
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the Creative Commons Attribution

d, the use is non‐commercial and

y Published by John Wiley & Sons
Gutman, 2006; Winne et al., 2006) or to train those skills prior to

self‐regulated learning (e.g., Azevedo & Cromley, 2004; Costa Ferreira,

Veiga Simão, & Lopes da Silva, 2015; Kostons, Van Gog, & Paas, 2012;

Leidinger & Perels, 2012; Perels, Gürtler, & Schmitz, 2005) with the

aim of enhancing students' learning outcomes.

One training method that has proven effective for training self‐

assessment and task‐selection skills, and for fostering domain‐specific

learning outcomes, is the use of video modeling examples (Kostons

et al., 2012; Raaijmakers et al., 2017). In those video modeling examples,

another person (the model) first performed the task (i.e., a problem‐

solving task in the domain of biology), then assessed his or her own

performance on the task (i.e., self‐assessment, by assigning a point for

each correctly performed problem‐solving step), and, finally, chose a suit-

able subsequent task from a database with tasks of different levels of

complexity and support (i.e., task selection, determiningwhether to select

a task with higher, equal, or lower levels of support or complexity, based

on a combination of self‐assessed performance and mental effort

invested to reach that performance). Students who were trained with
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these video modeling examples showed better domain‐specific learning

outcomes, as well as more accurate self‐assessments and task selections

after a self‐regulated learning phase (i.e., they had to work on eight

biology problem‐solving tasks that they could freely choose from the task

database) than students in the control condition (Kostons et al., 2012).

An important open question, however, is whether the trained self‐

regulated learning skills would transfer to other domains, other

environments, or other types of tasks (Koedinger, Aleven, Roll, & Baker,

2009; Roll, Wiese, Long, Aleven, & Koedinger, 2014). For example,

would students know how to decide what a suitable next learning task

would be in mathematics, when they have acquired task‐selection skills

in the context of biology problems? Raaijmakers et al. (2017) started to

address this question. Next to a no‐training control condition1 and the

algorithmic task‐selection training condition used by Kostons et al.

(2012), which combined self‐assessed performance and mental effort

into a specific task‐selection advice (i.e., should a student go forward

or backward in support/complexity and how far), they implemented a

more general, heuristic task‐selection training (e.g., “when performance

is high and invested effort is low, select a task that offers less support or

is more complex”). They expected that the heuristic training condition

would be more conducive to transfer as it is less dependent on the

specific task details or database characteristics (number of support/

complexity levels). Using a similar design and materials as Kostons

et al. (2012), students first engaged in training, then engaged in self‐

regulated learning, followed by a problem‐solving posttest (biology

problems similar to the learning phase), and finally a transfer test (i.e.,

task selection in a different domain). Transfer of task‐selection skills

was assessed by means of scenarios, in which students had to select a

new task for a fictitious peer student in a different domain (math

instead of biology as in the trained tasks), in which the problems some-

times differed in the number of problem‐solving steps (eight instead of

five as in the trained tasks), and the task database sometimes had a

different layout (with 32 instead of 75 problems with different com-

plexity and support levels). Results showed that both the heuristic

and algorithmic training of self‐assessment and task‐selection skills

improved posttest performance on the biology problem‐solving tasks

after a self‐regulated learning phase (replicating and extending the

findings of Kostons et al., 2012). Importantly, both training conditions

also showed better transfer of task‐selection skills (i.e., self‐assessment

skills were not measured during the transfer test) than the control

condition (however, they did not differ from each other).

Note though, that although these scenarios did measure whether

a learner had understood the task‐selection rule and could apply it in

a different domain, the degree of transfer required was arguably

rather limited. Learners were given the input they needed to make a

decision (self‐assessed performance, self‐assessed invested mental

effort, and the complexity and support level of the previously per-

formed task) and could fully devote their attention to task selection,

which is much less cognitively demanding than having to engage in

performing these novel math tasks and having to select a new task

for yourself from a different‐looking database. According to cognitive

load theory, a secondary task (such as monitoring performance or
1Students in the control condition observed the performance phase of the

modeling examples, but not the self‐assessment and task‐selection phase.
thinking about task‐selection rules while working on the primary,

problem‐solving task) can harm performance because the additional

load involved in processing the secondary task would exceed the lim-

ited capacity of our working memory (Van Gog, Kester, & Paas, 2011;

Van Merriënboer & Sweller, 2005). Having to perform a task yourself

and having to select new tasks might therefore harm performance.

Finally, having to assess your own performance and select a new task

for yourself may differ from doing this for a peer (Panadero, Brown, &

Strijbos, 2016). For decision making in general, the consensus is that

decisions made for oneself are more risk averse (or less risk prone) than

decisionsmade for others (Polman, 2012). Applied to task selection, this

would mean that learners would be more inclined to select easy tasks

when selecting tasks for themselves and would be more inclined to

select difficult tasks when selecting tasks for others (i.e., choosing

difficult tasks increases the risk of failing). Thus, task selection on the

transfer tasks in Raaijmakers et al. (2017) using scenarios with fictitious

peers might be biased due to these factors. Therefore, it is crucial to

determine if task‐selection skills also transfer when learners select tasks

for themselves (after performing the problem‐solving task).
1.1 | The present study

In the present study, we investigated if self‐assessment and task‐

selection skills trained with video modeling examples (cf. Kostons

et al., 2012; Raaijmakers et al., 2017) in one domain (biology) would

transfer to a different domain (mathematics) in the sense that learners

would reach higher domain‐specific learning outcomes after self‐

regulated learning inmathwhen theywere trained comparedwithwhen

they were not trained. We included two training conditions: one in

which the model used the algorithm for task selection (i.e., specific

advice on complexity/support level) and one in which the model used

a more general heuristic (e.g., when performance is high and perceived

effort is low, select a task that offers less support or is more complex).

We hypothesized that self‐assessment and task‐selection training in

the context of biology problem solving would result in better task‐

selection skills (i.e., on a transfer test without self‐assessment; cf.

Raaijmakers et al. 2017) in the same context (Hypothesis 1) and would

result in higher posttest problem‐solving performance in math after a

self‐regulated learning phase in math (i.e., algorithmic and heuristic

training > no training; Hypothesis 2a) as well as higher self‐assessment

and task‐selection accuracy on the posttest (Hypothesis 3a).

Presumably, the general heuristic will function as a bridge

between the two contexts (i.e., biology domain and mathematics

domain; Salomon & Perkins, 1989) that allows for better transfer of

task‐selection skills. However, as Raaijmakers et al. (2017) did not find

this advantage of the heuristic over the algorithmic rule with students

selecting tasks for fictitious peers, it is still an open question if transfer

could be improved by the heuristic. Having to solve problems yourself

might increase the cognitive load to such an extent that the heuristic

will become necessary to lower the cognitive load. If this is correct,

we would expect that the heuristic task‐selection training condition

would show better transfer of task‐selection skills, as evidenced by

better performance on the math posttest, than the algorithmic group

(Hypothesis 2b) and higher self‐assessment and task‐selection

accuracy on the posttest (Hypothesis 3b).
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2 | METHOD

2.1 | Participants and design

A total of 84 students in their first year of Dutch secondary education

(senior general secondary and preuniversity education) participated in

this study. Six participants did not manage to finish the experiment

within the two available lesson periods and had to be excluded, leaving

78participants (meanage=12.22years, standarddeviation [SD]age=0.44;

28 boys and 50 girls). Participants were randomly assigned to one out of

three conditions: (a) a control condition (n = 26): video modeling exam-

ples in which the model performed a problem‐solving task, (b) an algo-

rithmic training condition (n = 24): video modeling examples in which

the model performed a problem‐solving task, rated invested mental

effort, self‐assessed performance, and used an algorithm to select a sub-

sequent task, and (c) a heuristic training condition (n = 28): videomodel-

ing examples in which the model performed a problem‐solving task,

rated invested mental effort, self‐assessed performance, and used a

heuristic to select a subsequent task. The timing in the curriculum was

chosen, so the participants had no prior knowledge of the specific prob-

lem‐solving procedure of both themath problems and the biology prob-

lems but were ready to acquire it.
2.2 | Materials

All materials were presented online through a learning environment

specifically designed for this study.
FIGURE 1 Algorithm used for task‐selection advice used in the video
modeling examples (for the five‐step biology problems) showing the

jump size and direction in the task database (− indicates one or two
rows to the left and + indicates one or two rows to the right) for the
combination of self‐assessed performance and mental effort
2.2.1 | Training phase: Video modeling examples and
manipulation check (biology)

The training consisted of four video modeling examples previously

used in Raaijmakers et al. (2017) and based on Kostons et al. (2012).

The video modeling examples were screen recordings that showed

the model (male or female, see Table 1) performing a problem‐solving

task in the domain of biology (i.e., monohybrid cross problem at the

first or second level of complexity; see Table 1), self‐assessing their

performance and invested mental effort (an indicator of experienced

cognitive load), and selecting a subsequent task. The biology task data-

base consisted of five levels of complexity, with three levels of support

within each complexity level, and five isomorphic tasks for each com-

bination of complexity and support, creating a total of 75 problems.

The biology tasks were five‐step problem‐solving tasks that were solv-

able using a set procedure. The models used the same problem‐solving

procedure in each video modeling example. Performance was rated by

the models using a 6‐point scale ranging from 0 to 5, and mental effort

was rated using a 9‐point scale with labels at the uneven numbers: (1)

very, very little mental effort, (3) little mental effort, (5) neither little nor
TABLE 1 Features of the video modeling examples

Example # Model Complexity level # of st

1 Female Level 1 5 steps

2 Male Level 1 5 steps

3 Female Level 2 4 steps

4 Male Level 2 3 steps
much mental effort, (7) much mental effort, and (9) very, very much men-

tal effort (Paas, 1992). To ensure variability in self‐assessment and task

selection between the video modeling examples, performance was var-

ied (i.e., models did not complete the task in two cases; see Table 1).

Participants in the algorithmic condition were shown a model

selecting a subsequent task—while thinking aloud—using the algorithm

also used byKostons et al. (2012) and Raaijmakers et al. (2017). This algo-

rithm combines scores on self‐assessed performance and mental effort

into a specific task‐selection advice (see Figure 1 and Table 1). For exam-

ple, if a learner gave his or her performance a self‐assessed score of 4 and

the invested mental effort a rating of 2, this would result in a task‐selec-

tion advice of +2 (i.e., go two columns to the right in the task database).

Participants in the heuristic condition were shown a model

selecting the same subsequent task, but now, task selection was based

on a general heuristic (underlying the algorithm). Using the above

example (self‐assessed performance of 4 and invested mental effort

of 2), the model would say “I attained a high score on performance

with a very low amount of effort, so I am ready for a more difficult task

or one with less support.” During the time that participants in the

experimental conditions watched the second and third part of the

video modeling examples, participants in the control condition were

asked to describe what the five steps of the problem‐solving task in

the video modeling example were (i.e., typing them in step‐by‐step;

cf. Stark, Mandl, Gruber, & Renkl, 2002).

To check if participants had indeed acquired task‐selection skills

from the video modeling examples, eight scenarios were used in which

students had to indicate what a suitable next task would be for a ficti-

tious peer student who had just completed a five‐step heredity prob-

lem‐solving task (i.e., similar to the tasks used in the video modeling
eps correct/self‐assessment Effort Task selection

2 +2

5 +1

7 0

8 −1
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examples). Participants were given a fictitious peer student's self‐

assessed performance and invested effort on a problem from the task

database andwere shown the complexity and support level of that prob-

lem (highlighted in the task database). With this information, participants

had to select an appropriate subsequent task for the fictitious peer by

clicking on that task in the task database. An example of a scenario is
Eve has just performed a biology problem of complexity

level 2 without any support, consisting of 5 steps. She

rated her invested mental effort with a 2 on a scale from

1 to 9. She performed 1 step incorrectly. What kind of

task should Eve select next from this task database?
2.2.2 | Math problem‐solving tasks

The tasks used to assess whether the self‐assessment and task‐selec-

tion skills acquired from the training in the context of biology problems

would transfer to another domain were math problems in which stu-

dents needed to find the linear equation of a given line. The problems

could be solved in three steps: (a) identify the slope using two known

points, (b) find the y‐intercept, and (c) use the slope and the y‐intercept

to complete the equation. Appendix 1 shows an example of a task from

the third level of complexity with high support.

The task database withmath problems contained 40 problems at five

levels of complexity, with two levels of support within each complexity

level (see Figure 2b). The levels of complexity (top row of Figure 2b) were

designed in collaboration with mathematics teachers and pilot‐tested on

a separate group of participants. Tasks at Complexity Level 1 only

contained an intercept. Tasks at Complexity Level 2 only contained pos-

itive slopes. Tasks on Complexity Level 3 contained both an intercept and

positive slopes. Tasks at Complexity Level 4 introduced negative slopes.

Finally, in tasks at Complexity Level 5, the y axis was not visible in the

graph, which meant that the intercept could not be read of off the graph

directly and had to be deduced. Each level of complexity contained two

levels of support (see the second row in Figure 2b): high support, where

the first two steps were worked out, leaving one step for the learner to

complete, and no support, where no steps were worked out and the

learner had to solve the entire problem without any assistance. The com-

bination of five levels of complexity and two levels of support created 10

columns in which the tasks were organized. In each column, four isomor-

phic tasks were presented, resulting in a total of 40 tasks.

2.2.3 | Pretest

The math pretest was used to check whether students were indeed

novices regarding the topic at hand. It consisted of three problem‐solv-

ing tasks without support (one task at each of the first three complex-

ity levels, ordered from low to high complexity). These tasks had the

same structure as the tasks in the database but contained different

slopes and intercepts. After each problem, participants were asked to

rate their invested mental effort and to self‐assess their performance.

2.2.4 | Self‐regulated learning phase

In the self‐regulated learning phase, participantswere instructed to select

and perform (successively) eight tasks of their own choice from the math

task database. Participants were asked to rate how much mental effort
they invested in solving the problem on the 9‐point rating scale (Paas,

1992) and how well they performed on a 4‐point rating scale ranging

from 0 to 3. Next, they selected the task they would work on next from

the math task database. When they had chosen and performed eight

tasks, participants automatically went through to the posttest.
2.2.5 | Posttest

The math posttest consisted of five different problems, one from each

level of complexity. The problems were structurally similar to the tasks

in the database but contained different surface features. After each

problem, participants were asked to rate their invested mental effort,

self‐assess their performance, and indicate what a suitable subsequent

task would be. They did not actually get this task, and the posttest was

the same for all participants, but this allowed us to calculate task‐selec-

tion accuracy on the posttest. Participants were informed that they

would not actually get the selected tasks on the posttest.
2.3 | Procedure

Test sessions took approximately 90 min (two lesson periods). Four

classes participated, and participants were randomly assigned to condi-

tions within each class by means of login codes that allocated them to

the different conditions (i.e., all conditions were present in each class).

During a session, the experimenter first explained the general proce-

dure of the experiment after which students were allowed to log in

to the learning environment. After performing the pretest, students

watched the four video modeling examples. Which specific parts of

the videos the participants got to see depended on their assigned con-

dition. After the videos, participants received the task‐selection skills

training check, and this was followed by a self‐regulated learning

phase. During the self‐regulated learning phase, students repeated

the following cycle eight times: They chose and performed a prob-

lem‐solving task, rated their mental effort and performance on this

task, and chose a next task, which they would receive to repeat the

cycle. Finally, students completed the posttest.
2.4 | Data analysis

Performance on the math pretest and posttest problem‐solving tasks

was scored by assigning 1 point for each correct step (i.e., range per

problem: 0–3 points); a performance score on the pretest and posttest

was then calculated by averaging the scores on the three (pretest) and

five (posttest) problems (i.e., performance score range: 0–3).

Task‐selection accuracy on the manipulation check scenarios was

determined by calculating the absolute difference between the task

that should have been selected based on the algorithm (for the

five‐step biology problems; see Figure 1) and the actual task selected

by the participant in the biology task database (i.e., a self‐assessed

performance of 5 and a mental effort of 1 result in a task‐selection

advice of +2). On the posttest, task‐selection accuracy was calculated

in a similar manner but with an algorithm adapted for the three‐step

problems. Low performance was defined as zero steps performed

correctly, medium performance as one or two steps performed

correctly, and high performance as three steps performed correctly



FIGURE 2 (a) Biology task database containing the 75 problem‐solving tasks showing the different levels of complexity, the different levels of
support, and the different surface features of the learning tasks. (b) Mathematics task database containing the 40 math problem‐solving tasks
showing the different levels of complexity and the different levels of support
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(i.e., a self‐assessed performance of 3 and a mental effort of 1 would

result in a task‐selection advice of +2).
3 | RESULTS

Table 2 shows the pretest, posttest, and transfer test data per condi-

tion. Data were analyzed with analyses of variance (ANOVAs) or with
TABLE 2 Mean (M and standard deviation [SD]) of performance and menta
task‐selection accuracy on biology scenarios after training), and performanc
on the math posttest, per condition

Control (n = 26)

M SD

Pretest performance (range: 0–3) 0.10 0.23

Pretest mental effort (range: 1–9) 6.56 2.13

Task‐selection check (range: 0–9)a 2.69 1.00

Posttest performance (range: 0–3) 0.63 0.60

Posttest mental effort (range: 1–9) 5.77 2.34

Posttest SA accuracy (range: 0–3)a 1.21 0.92

Posttest TS accuracy (range: 0–9)a 2.87 1.10

aLower = better; SA = self‐assessment; TS = task selection.
Kruskal–Wallis tests when Shapiro–Wilk's test showed that the

assumption of normality was violated. Partial eta‐squared (η2
p ) and

Pearson's correlation (r) are reported as measures of effect size for

ANOVA and Kruskal–Wallis tests, respectively. The cutoffs for small,

medium, and large effects are .01, .06, and .14, respectively, for partial

eta‐squared, and .10, .30, and .50, respectively, for Pearson's correla-

tion (Cohen, 1988).
l effort on the math pretest, the task‐selection manipulation check (i.e.,
e, mental effort, self‐assessment accuracy, and task‐selection accuracy

Heuristic (n = 28) Algorithmic (n = 24)

M SD M SD

0.02 0.09 0.10 0.21

5.45 2.45 6.50 1.58

1.67 0.81 1.28 1.11

0.76 0.82 0.98 0.61

5.23 2.62 4.93 2.51

1.24 1.05 1.44 0.77

2.25 1.40 2.25 1.28
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3.1 | Task‐selection skills training manipulation
check

To determine whether the training with video modeling examples had

been effective, we compared performance on the task‐selection

manipulation check (biology problem scenarios), expecting the training

conditions to outperform the no‐training condition (Hypothesis 1). An

independent‐samples Kruskal–Wallis test showed that the task‐selec-

tion accuracy scores differed between conditions, χ2(2) = 21.639,

p < .001, r = .53. Post hoc Mann–Whitney U tests showed that the

heuristic training, U = 152.0, p < .001, r = .50, and algorithmic training,

U = 111.0, p < .001, r = .55, showed significantly higher task‐selection

accuracy than the control group (i.e., lower scores indicate better task‐

selection accuracy, see Table 2). Moreover, algorithmic training led to

significantly higher task‐selection accuracy than heuristic training,

U = 219.5, p = .032, r = .30.
3.2 | Math pretest performance (randomization and
prior knowledge check)

As expected, overall performance on the math pretest problems was

very low (mean = 0.07 out of 3, SD = 0.18). As a randomization check,

pretest performance and self‐reported mental effort invested in the

pretest were compared between conditions. An independent‐samples

Kruskal–Wallis test revealed no significant differences between condi-

tions in pretest performance, χ2(2) = 2.500, p = .287, r = .18, or effort

investment, χ2(2) = 3.437, p = .179, r = .21.
3.3 | Math posttest

Average performance on the math posttest problems across conditions

was 0.78 (out of 3; SD = 0.70). To test if posttest performance differed

between conditions, with performance being higher in the trained

conditions than in the control condition (Hypothesis 2a) and higher in

the heuristic than in the algorithmic training condition (Hypothesis 2b),

an independent‐samples Kruskal–Wallis test was performed, which

revealed that posttest performance did not differ significantly between

conditions, χ2(2) = 3.512, p = .173, r = .21.Moreover, mental effort ratings

did not differ between conditions, F(2, 75) = 0.74, p = .481, η2
p = .019.

To test if self‐assessment and task‐selection accuracy on the math

posttest differed between conditions (Hypothesis 3a,b), we performed

an independent‐samples Kruskal–Wallis test on the self‐assessment

accuracy data and a one‐way ANOVA on the task‐selection accuracy

data. These analyses showed no significant differences between condi-

tions in self‐assessment, χ2(2) = 1.757, p = .415, r = .15, or task selec-

tion F(2, 75) = 2.06, p = .135, η2
p = .052.
4 | DISCUSSION

Prior research has shown that training self‐assessment and task‐selec-

tion skills with video modeling examples improved learning outcomes

after a self‐regulated learning phase in which students worked on the

same kind of problems as demonstrated in the examples (Kostons

et al., 2012; Raaijmakers et al., 2017). Moreover, some evidence was

found that these skills might transfer; students who had received
training and engaged in self‐regulated learning in biology made more

accurate task‐selection choices for fictitious peers (based on accurate

information on the peer's performance and invested effort on math

problems that had a different number of steps and came from a task

database with a different structure; Raaijmakers et al., 2017). This

was a rather limited form of transfer, though, and we would want

learners to be able to apply the self‐regulated learning skills that they

learned in one domain also when studying in a different domain.

Therefore, the aim of the present experiment was to establish

whether self‐assessment and task‐selection skills trained in one

domain (biology) would transfer, that is, would be applied during self‐

regulated learning, and therefore lead to better posttest performance

in a different domain (mathematics). Secondary education students

first engaged in self‐assessment and task‐selection training with video

modeling examples (or not, in the control condition) followed by a

manipulation check. Then they engaged in self‐regulated learning in

math followed by a math posttest.

The manipulation check on whether participants acquired task‐

selection skills from the training with video modeling examples indeed

confirmed that training improved task‐selection accuracy, with partici-

pants in the algorithmic condition being most accurate in selecting new

biology tasks, followed by the heuristic condition that, in turn, was

more accurate than the control condition (Hypothesis 1). However,

there was no evidence of transfer: There were no differences among

conditions in math posttest performance (or self‐assessment and

task‐selection accuracy at posttest; Hypotheses 2a/b and 3a/b), sug-

gesting that students failed to apply the skills trained with biology

tasks during the self‐regulated learning phase with mathematics tasks.

One possible explanation for why task‐selection skills did not

transfer is that students might have been unable to map what they

had learned with five‐step biology problems and a task database with

five complexity levels and three levels of support within each complex-

ity level, onto three‐step math problems and a task database with five

complexity levels and two support levels. Using different metrics for

the assessment of performance creates difficulties for transfer by

increasing the distance between the source (here: biology self‐assess-

ment/task selection) and target (here: mathematics self‐assessment/

task selection) of transfer (Kimball & Holyoak, 2000; Salomon &

Perkins, 1989). We had expected the heuristic to increase the similarity

between source and target by transforming the five problem‐solving

steps into three reference categories (i.e., high/medium/low perfor-

mance) making it less dependent on the specific task (number of prob-

lem‐solving steps) or database characteristics (number of support/

complexity levels) than the algorithmic training condition but found

no indications that this was the case.

However, mapping problems would not explain why prior research

(Raaijmakers et al., 2017) did find evidence of transfer. In a prior study,

students were found to make more accurate task‐selection choices for

fictitious peers in scenarios about the peer's performance and effort

investment on math problems that had a different number of steps and

came from a task databasewith a different structure. A potential explana-

tion for this discrepancy is that the cognitive load experienced during the

self‐regulated learning phase in math could have left students with insuf-

ficient cognitive resources to simultaneously think about what they had

learned during the training and how that would translate to these new
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tasks (cf. Van Gog et al., 2011). That is, selecting a task for a fictitious stu-

dent, based on information that is already given, is presumably much less

cognitively demanding than having to keep inmind and adapt self‐assess-

ment and task‐selection rules while also working on novel and difficult

problems (which can be seen as a secondary task).

In conclusion, although prior findings showed that example‐based

learning of self‐assessment and task‐selection skills can be an effective

and relatively easy to implement method for improving students' self‐

regulated learning outcomes, secondary school students might not be

able to apply these skills when they are engaging in self‐regulated

learning in a different domain. Because it is rare for spontaneous trans-

fer to occur, especially under conditions of high cognitive load, more

explicit instruction might be necessary for task‐selection skills to trans-

fer from domain to domain (Salomon & Perkins, 1989). For instance,

maybe students would need explicit prompts during self‐regulated

learning in math, instructing them to think back about what they

learned about self‐assessment and task selection in the context of biol-

ogy. How to scaffold the transfer of self‐regulated learning skills

remains an important question for future research.
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APPENDIX 1: EXAMPLE OF PROBLEM‐SOLVING TASK (THIRD LEVEL OF COMPLEXITY WITH
HIGH SUPPORT)


