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Abstract

Although the developmental principles of sensory and cognitive processing have been

extensively investigated, their synergy has been largely neglected. During early life,

most sensory systems are still largely immature. As a notable exception, the olfactory sys-

tem is functional at birth, controlling mother–offspring interactions and neonatal survival.

Here, we elucidate the structural and functional principles underlying the communication

between olfactory bulb (OB) and lateral entorhinal cortex (LEC)—the gatekeeper of limbic

circuitry—during neonatal development. Combining optogenetics, pharmacology, and

electrophysiology in vivo with axonal tracing, we show that mitral cell–dependent discon-

tinuous theta bursts in OB drive network oscillations and time the firing in LEC of anesthe-

tized mice via axonal projections confined to upper cortical layers. Acute pharmacological

silencing of OB activity diminishes entorhinal oscillations, whereas odor exposure boosts

OB–entorhinal coupling at fast frequencies. Chronic impairment of olfactory sensory neu-

rons disrupts OB–entorhinal activity. Thus, OB activity shapes the maturation of entorhinal

circuits.

Author summary

Cognitive performance is maximized only through permanent interactions with the envi-

ronment, yet the contribution of sensory stimuli to cognitive processing has been largely

neglected. This is especially true when considering the maturation of limbic circuits

accounting for memory and executive abilities. Rodents are blind and deaf, do not whis-

ker, and have limited motor abilities during the first days of life, and therefore, the contri-

bution of sensory inputs to limbic ontogeny has been deemed negligible. As a notable

exception, olfactory inputs are processed already early in life and might shape the limbic

development. To test this hypothesis, we investigate the principles of communication

between the olfactory bulb (OB), the first processing station of olfactory inputs, and lateral

entorhinal cortex (LEC)—the gatekeeper of limbic circuits centered on hippocampus and
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prefrontal cortex—of mice during the first and second postnatal weeks. We show that

spontaneously generated patterns of electrical activity in the OB activate the entorhinal

circuits via mono- and polysynaptic axonal projections. The activity within the circuitry

connecting the OB to the LEC is boosted by odors and disrupted by chronic lesion of the

olfactory periphery. Thus, spontaneous and stimulus-induced activity in the OB controls

the maturation of neuronal networks in the LEC.

Introduction

Coordinated patterns of electrical activity entrain developing neuronal networks in rhythms

with a broad frequency spectrum. These patterns have been proposed to critically shape brain

maturation [1–3]. Experimental evidence supporting this hypothesis has been mainly provided

for sensory systems. For example, in the visual and auditory systems, spontaneous activity

from sensory periphery (i.e., retina or cochlea) controls the formation of cortical representa-

tions underlying stimulus perception [4,5]. Theta band (4–12 Hz) spindle bursts and gamma

(30–80 Hz) oscillations in the developing somatosensory system promote thalamocortical con-

nectivity and maturation of coupling with the motor system [6,7]. Overall, the discontinuous

oscillatory activity in sensory cortices during development has multifold origin, including

stimulus-independent activation in the periphery and entrainment of local cortical circuits via

chemical and electrical synapses [1,8].

Although less investigated, limbic circuits show similar patterns of coordinated activity dur-

ing early development, with discontinuous theta bursts (4–12 Hz) and superimposed fast fre-

quency episodes (20–40 Hz) [9–13]. Theta bursts facilitate unidirectional communication

from the CA1 area of intermediate/ventral hippocampus (HP) to the prelimbic subdivision of

the prefrontal cortex (PFC) via glutamatergic projections [14]. As a consequence of hippocam-

pal theta drive, pyramidal neurons in local prelimbic circuits generate beta–low gamma (20–

40 Hz) oscillations [15]. Theta coupling between neonatal PFC and HP is controlled by the lat-

eral entorhinal cortex (LEC), which densely projects to both areas [11]. The complex organiza-

tion of limbic circuits at an early age raises the question of which mechanisms control the

gatekeeper function of LEC during early development. Similar to sensory systems, the neonatal

LEC might be driven by spontaneous activity from the sensory periphery. Indeed, the adult

LEC receives direct input from the olfactory bulb (OB), which, in contrast to other sensory sys-

tems, bypasses the thalamus [16,17]. Mitral and tufted cells (MTCs) represent the sole OB out-

put neurons. Rather than simply relaying information, these neurons are embedded in a

complex network that controls odor information coding [18,19]. The axons of mitral cells

(MCs) terminate in entorhinal layer I on apical dendrites of layer II/III pyramidal and stellate

cells [20], which in turn form the perforant path projection to the hippocampal formation

[21,22]. Layer II/III neurons in LEC project back to OB [23], yet distinct entorhinal popula-

tions are differently engaged in feedforward and feedback signaling during odor processing

[24]. Thereby, odor-evoked activity in the adult controls the gateway function of LEC, which

interfaces HP and neocortical regions [25,26].

Whereas the sense of smell serves fundamental functions in newborn animals [27], the

role of olfactory inputs and OB activity for limbic circuit maturation remains unknown.

Since other sensory systems are still immature during early life—and thus their impact on

limbic circuits is negligible—this knowledge gap appears even more striking. Rodent pups

are blind and deaf and have limited sensorimotor abilities until the end of the second post-

natal week [28,29]. In contrast, the olfactory system that provides the major sensory input in
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neonatal rodents maturates earlier, yet it permanently evolves during the first 2 postnatal

weeks [30]. We hypothesize that both odor-dependent and odor-independent coordinated

activity in OB control the entrainment of entorhinal networks during neonatal development.

Combining anatomical tracing with optogenetics, electrophysiology, pharmacology, and

sensory manipulation in urethane-anesthetized and awake neonatal mice (postnatal day

[P]8–10) in vivo, we elucidate the olfactory control of functional maturation of entorhinal

circuits.

Results

OB and LEC are reciprocally connected in neonatal mice

In mice, MTCs mature during intrauterine life, and their axons reach cortical targets during

the first postnatal week [30]. This time window coincides with the period of strong gating of

prefrontal-hippocampal networks by entorhinal theta activity. To detail the spatial patterns of

connectivity between OB and LEC in P8–10 mice, we performed an in-depth investigation of

axonal projections from MTCs to LEC and, vice versa, of entorhinal projections to OB. First,

we used Tbet-cre;R26-tdTomato mice (n = 4) for intact-brain imaging of long-range projec-

tions by electrophoretic tissue clearing and confocal fluorescence microscopy (Fig 1A and 1B).

In these mice, MTCs are genetically tagged (Fig 1C) [31]. Already at P8, the lateral olfactory

tract (LOT) comprising MTC axons reached the posterior part of the cerebrum, including piri-

form cortex (PIR) and LEC (Fig 1A and 1D). As previously shown in adult rats [20], MTC

axons were mainly confined to layer I of neonatal LEC (Fig 1D). Retrograde tracing with

Fluorogold (FG) injected into LEC of P3–4 mice confirmed the direct connectivity (Fig 1E).

No differences between dorsal and ventral OB were detected with respect to the density of

MTC projections to LEC.

Second, we assessed the spatial organization of feedback projections from LEC to OB.

Unilateral injection of FG confined to OB of P3–4 mice (n = 12) led to bright fluorescent

back-labeling of parental cell bodies in ipsilateral LEC that project to OB of P8–10 mice (S1A

Fig). Their density was lower when compared to the cells detected in ipsilateral PIR (S1A

Fig). Most labeled neurons were located in layer II and III (88.40%, 259/293, 3 pups, 11 sec-

tions). To examine the neurochemical identity of entorhinal neurons projecting to OB, we

counterstained the LEC sections containing FG-labeled neurons for CamKII and GABA.

CamKII staining revealed that the large majority but not all FG-labeled cells were glutama-

tergic (S1B Fig). GABA staining confirmed these results. Whereas most OB-projecting neu-

rons (99.66%, 292/293) were negative for GABA, hence glutamatergic, a very small fraction

(0.34%, 1/293) was GABA-positive. These data indicate that top-down projections from LEC

to OB are mainly excitatory. The GABAergic projections seem to augment their density with

age [32].

Taken together, the results of morphological investigation show that, similar to connectivity

in adult mice [33,34], afferent and efferent projections couple neonatal LEC and OB. Whereas

glutamatergic MTC axons target entorhinal layer I, glutamatergic and very few GABAergic

neurons in superficial layers of LEC innervate the developing OB.

Continuous respiration-related activity and discontinuous theta bursts

entrain the neonatal OB

Despite abundant data on morphological development, the functional maturation of OB is still

largely unknown. In contrast to the retina and cochlea, which lack stimulus sensitivity at early
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Fig 1. Bottom-up connectivity between OB and LEC in neonatal mice. (A) Long-range projections of tdTomato

fluorescently labeled OB MTCs (left) when superimposed on a bright-field image showing the ventral (middle) and

lateral (right) view of the whole brain of a P10 Tbet-cre;tdTomato mouse. (B) Unprocessed (left) and cleared (right)

brain of a P10 mouse. (C) Cleared 500 μm–thick coronal section containing the OB of a Tbet-cre;tdTomato mouse

showing MTCs (red) when counterstained with the nuclear marker DRAQ5 (blue). Inset, tdTomato-stained MTCs

displayed at larger magnification. (D) MTC axons targeting LEC in a cleared 1 mm–thick coronal brain slice. Inset,

axons of tdTomato-expressing MTCs when counterstained with DRAQ5 (blue) and displayed at larger magnification.

(E) Photographs of a 100 μm–thick coronal section from a P8 mouse depicting retrogradely labeled neurons in the OB

(right) after injection of FG into the LEC (left) at P3. Inset, FG-labeled MTCs displayed at larger magnification. FG,

Fluorogold; LEC, lateral entorhinal cortex; MTC, mitral and tufted cell; OB, olfactory bulb; P, postnatal day; PIR,

piriform cortex.

https://doi.org/10.1371/journal.pbio.2006994.g001
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stages of postnatal development and only generate spontaneous activity, the OB processes

olfactory input already at birth [27]. To elucidate the patterns of activity in the neonatal OB,

we performed multisite extracellular recordings of local field potential (LFP) and multiunit

activity (MUA) from the MC layer (MCL) in the dorsal and ventral OB of P8–10 mice in vivo

(n = 148). Unless stated otherwise, data were obtained under light urethane anesthesia. The

signal reversal between the internal plexiform layer (IPL) and external plexiform layer (EPL)

(S2B and S2C Fig) as well as the large MC spikes served as physiological markers for confirm-

ing the position of the recording electrode set according to stereotaxic coordinates. In addi-

tion, the location of DiI-labeled electrodes was confirmed after histological investigation post

mortem (Fig 2A, S2A, S3A and S3B Figs).

Two patterns of coordinated activity were detected in OB (Fig 2B and 2C). First, we

recorded continuous low-amplitude oscillations with slow-frequency peaking at 2–4 Hz.

Given their temporal correlation and frequency overlap with respiration (median frequency:

2.37 Hz, interquartile range [iqr]: 2.12–2.70 of chest movements) (Fig 2C and 2D), we

defined this activity as respiration-related rhythm (RR). The RR reversed over the

MTC layer and had larger amplitudes in EPL and glomerular layer when compared to the

activity in MTC layer (S2B Fig). Its temporal relationship to the phase of the respiratory

cycle differed between layers: the rising phase of the RR cycle in the granule cell layer

(GCL) and the falling phase in EPL and glomerular layer correlated with exhalation (S2B

Fig). Second, we recorded discontinuous high-amplitude oscillatory events with spindle

shape in the neonatal OB (Fig 2B and 2C). These events had frequencies peaking within

theta frequency band (4–12 Hz) (Fig 2D) and showed a signal reversal between GCL and

EPL (S2C Fig). Given their resemblance in shape and frequency dynamics to previously

characterized oscillatory events in neonatal cortical areas [9–11,35], these events were classi-

fied as theta bursts.

As reported for adult OB, prominent spiking characterized neonatal MTCs. Analysis of sin-

gle-unit activity (SUA) after principal component analysis (PCA)-based sorting of units

revealed that the majority (80%) of spikes occurred during theta bursts. The firing rate during

bursts (median: 1.36 Hz, iqr 0.25–3.23 Hz) was significantly (p = 3.65 × 10−7, Wilcoxon

signed-rank test, n = 34 cells from 14 animals) augmented when compared to nonbursting

periods (median: 0.44 Hz, iqr 0.09–1.48 Hz) (Fig 2E). To assess the temporal relationship

between oscillatory OB rhythms and MTC firing, we estimated the coupling strength between

SUA and RR as well as between SUA and theta bursts by calculating the pairwise phase consis-

tency (PPC), a bias-free measure of rhythmic neuronal synchronization [36]. Both rhythms

similarly timed MTC firing (RR: median PPC: 0.21, iqr 0.20–0.22 versus theta burst: median

PPC: 0.21, iqr 0.20–0.21, p = 0.1664, Wilcoxon signed-rank test, 2 outliers removed, n = 32

cells) to the oscillatory trough (Fig 2F).

In adults, dorsal and ventral OB subdivisions have distinct physiology and function. MTC

axons that originate in the dorsal OB strongly project to amygdala and mediate innate odor

responses, whereas ventral OB accounts for processing of learned odorants [37]. To assess

whether distinct activity patterns entrain the dorsal versus ventral OB at neonatal age, we com-

pared RR and theta bursts from both subdivisions (S3 Fig). The power of RR was similar in

both subdivisions (dorsal: median 233.12 μV2, iqr 153.42–418.09, n = 7; ventral: median

335.75 μV2, iqr 195.91–452.52, n = 10; p = 0.54, Wilcoxon rank-sum test, S3C Fig). Similarly,

theta burst occurrence (dorsal: median 4.65 bursts/min, iqr 3.87–5.55; ventral: median 5.09

bursts/min, iqr 4.27–5.30, p = 0.74, Wilcoxon rank-sum test), duration (dorsal: median 6.76 s,

iqr 4.44–8.86 s; ventral: median 3.54 s, iqr 1.65–5.01 s; p = 0.09, Wilcoxon rank-sum test),

amplitude (dorsal: median 73.80 μV, iqr 59.56–75.37; ventral: median 66.59 μV, iqr

Olfactory control of entorhinal development
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Fig 2. Continuous and discontinuous patterns of oscillatory activity in the neonatal OB. (A) Digital photomontage

reconstructing the track of the DiI-labeled multisite recording electrode (red) in a Nissl-stained (green) 100 μm–thick

coronal section including the OB from a P9 mouse. The dots (gray) show the position of the 16 recording sites of the

silicon probe and the recording channels (white) in the MCL and EPL that were used for spike and LFP analysis,

respectively. (B) LFP recording of the oscillatory activity in the OB of a P10 mouse displayed band-pass filtered in

different frequency bands and accompanied by the wavelet spectrogram (white line represents time-averaged power of

the trace; white arrows point toward peak frequency values) as well as simultaneously recorded MUA (high-pass filter

>400 Hz) and respiration. (C) Characteristic slow continuous oscillatory activity and theta bursts from the trace

shown in B when displayed at higher magnification. Insets, continuous oscillatory activity in relationship with

respiration (left, blue) and a discontinuous theta burst (right, red). (D) Power spectra (mean ± SEM) of LFP in OB

during nonburst activity (blue) and discontinuous bursts (red) as well as of theta bursts normalized to nonbursting

activity (purple). The respiration frequency was depicted as a horizontal bar and expanded at larger scale (top). (E)

Temporal relationship between neuronal firing and network oscillations in OB. Left, histogram showing the

percentage of spikes occurring during theta burst for all clustered units. Right, box plot depicting the firing rates of OB

units during nonburst periods and theta burst periods. Gray dots and lines correspond to individual cells (Wilcoxon

signed-rank test, ���p< 0.001). (F) Histograms depicting the phase locking of OB cells to RR (left) and theta activity

(right). Only significantly locked cells were used for analysis. Data are available in S1 Data. EPL, external plexiform

layer; LFP, local field potential; MCL, mitral cell layer; MTC, mitral and tufted cell; MUA, multiunit activity; OB,

olfactory bulb; P, postnatal day; RR, respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g002
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59.10–72.37; p = 0.67, Wilcoxon rank-sum test, S3D Fig), and relative power (dorsal: median

493.98, iqr 430.71–763.00; ventral: median 452.63, iqr 395.3–1,071.6, p = 0.96, Wilcoxon rank-

sum test, S3C Fig) were comparable between OB subdivisions. These data indicate that the

dorsal and ventral OB show similar activity at early postnatal age. Except when otherwise indi-

cated, further investigation focused on the ventral OB subdivision, taking into account its role

for learning processes in relation with the limbic system [37].

Coordinated patterns in the sensory periphery have been reported to critically depend on

the brain state, diminishing or even disappearing in the presence of anesthetics [38,39]. In con-

trast, early oscillations in the developing brain have often been investigated in the presence of

urethane anesthesia [9,35,40,41]. Rodent pups spend most of the time sleeping. The sleep-

mimicking action of urethane might explain the similar patterns of neuronal activity previ-

ously observed in anesthetized and sleeping rodent pups [14,42]. To assess the influence of

urethane on RR and theta bursts, we recorded from both ventral (n = 12) and dorsal OB

(n = 6) of neonatal mice before and after urethane injection. Anesthesia did not change the

overall structure of OB activity, with continuous RR and discontinuous theta bursts persisting

(S4A Fig and S1 Table). Both the power of RR and the occurrence of theta bursts remained

unchanged (S4B Fig). However, urethane anesthesia profoundly reduced theta burst duration

(S4B Fig), augmenting those time windows lacking theta band activity and therefore the frag-

mented appearance of neonatal activity in OB (S4B Fig).

These data indicate that, independent of OB subdivision and brain state, the neonatal OB

shows two main patterns of early oscillatory activity: continuous RR activity and discontinuous

theta bursts.

Mechanisms underlying the generation of continuous and discontinuous

oscillatory activity in the neonatal OB

To elucidate the mechanisms contributing to the generation of continuous RR and discontin-

uous theta bursts in the OB of neonatal mice, we used two experimental approaches. First,

the temporal coupling between respiration and continuous 2–4 Hz oscillations in OB sug-

gests that nasal air flow contributes to RR generation. To test this hypothesis, we reduced the

nasal air flow by unilateral naris occlusion with silicon adhesive in P8–10 pups (n = 12).

MUA and oscillatory activity of OB were recorded before and after naris occlusion. While

unilateral deprivation did not change the overall structure of OB activity patterns, it reduced

the RR power from 396.05 μV2 to 293.30 μV2 (baseline: iqr 232.58–570.88 μV2; occlusion: iqr

136.10–410.14 μV2, p = 0.0009, Wilcoxon signed-rank test). By contrast, the theta bursts in

OB were not affected by naris occlusion (baseline: median: 643.45 μV2, iqr 342.6–1,009.7;

occlusion: median 700.35 μV2, iqr 284.5–1,240.8; p = 0.91, Wilcoxon signed-rank test). Cor-

respondingly, the firing rate during RR (baseline: median 1.18 Hz, iqr 0.26–2.45) as well as

coupling strength (i.e., PPC) between units and RR (baseline: median 8.50 × 10−4, iqr

0–0.0084, 1 outlier removed) decreased after naris occlusion (firing rate: occlusion: median

0.75 Hz, iqr 0.25–1.91, p = 0.021, Wilcoxon signed-rank test; spike-LFP coupling strength:

occlusion: median −3.09 × 10−5, iqr −2.76 × 10−4 to 1.56 × 10−4; p = 0.049, Wilcoxon signed-

rank test, 1 outlier removed). The temporal structure of OB firing in relationship to theta

bursts remained unchanged after naris occlusion (spike-LFP coupling strength for baseline:

median 2.09 × 10−4, iqr −0.0001 to 0.0015; occlusion: median −1.19 × 10−4, iqr −3.54 × 10−4

to 1.59 × 10−4; p = 0.19, Wilcoxon signed-rank test, 1 outlier removed). Thus, RR activity, but

not theta bursts, critically depends on nasal air flow.
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The second experimental approach aimed at assessing the role of MTCs, the OB projection

neurons, to the generation of coordinated patterns of oscillatory activity. For this, we selec-

tively manipulated MTC firing by light in P8–10 pups bred from crossing hemizygous Tbet-

cre mice with R26-homozygous R26-ArchT-EGFP mice. By these means, MTCs of Cre+ mice

selectively expressed the proton pump ArchT fused with enhanced green fluorescent protein

(EGFP). Already at P8, the fusion protein expression was robust both in MTC somata (S5A

Fig) and axonal projections targeting the posterior part of the cerebrum (Fig 3A). Cre− mice

were used as controls.

In a first experiment, we tested the efficiency of light-dependent MTC silencing in neonatal

OB by performing whole-cell patch-clamp recordings from biocytin-filled EGFP-positive neu-

rons (n = 7 cells) in coronal slices containing the OB of P8–10 R26-heterozygous Tbet-cre;

R26-ArchT-EGFP mice (n = 5) (S5A Fig). Yellow light pulses (595 nm, 5 s, 0.2–0.6 mW) trig-

gered MC hyperpolarization from −49.96 mV to −58.39 mV (baseline: iqr −57.28 to 45.61 mV;

light administration: iqr −63.10 to 48.89 mV, Wilcoxon signed-rank test, p = 0.0078) and, con-

sequently, inhibition of firing (S5B Fig). Since MTCs are strongly interconnected within local

circuits, we tested whether light pulses caused MTC silencing also in the presence of synaptic

inputs. To mimic such inputs, we paired the light stimulation with depolarizing current pulses

of different intensities. Upon injections�60 pA, light stimulation still efficiently blocked

action potential discharge in ArchT-EGFP-expressing MCs (S5C Fig).

Next, we assessed the contribution of MTC firing to the patterns of oscillatory activity in

OB by performing extracellular recordings of LFP and MUA in OB of P8–10 R26-heterozy-

gous Cre+ (n = 12) and Cre− (n = 11) Tbet-cre;ArchT-EGFP mice in vivo. Upon light stimula-

tion, the majority (64.58%, 31/48) of MTCs responded with a pronounced firing rate decrease

from a median of 1.2 Hz (iqr 0.66–2.26) before to 0.45 Hz (iqr 0.13–0.99) during light expo-

sure. None of the units augmented the firing during illumination, and only a few units (4.14%,

2/48) showed a post-stimulus firing increase (Fig 3D). Some units (31.25%, 15/48), most likely

non-MTCs located close to the MCL, did not respond to light stimulation. Local silencing of

MTCs modified the coordinated activity of OB. The properties of RR and theta bursts (theta

burst power: p = 0.23, Wilcoxon rank-sum test) were largely similar in Cre+ and Cre− mice

under baseline conditions (i.e., before light stimulation). Only the power of RR activity was

slightly different (RR power: p = 0.03, Wilcoxon rank-sum test). Upon light stimulation, the

RR power in Cre+ pups did not change (prestimulus: median 92.27 μV2, iqr 80.12–122.36; dur-

ing stimulus: median 86.99 μV2, iqr 71.96–100.06, p = 0.2324, Wilcoxon signed-rank test, 2

outliers removed, Fig 3E). In contrast, theta power in Cre+ pups significantly decreased during

light stimulation (prestimulus: median 89.73 μV2, iqr 57.28–100.73; during stimulus: median

70.58 μV2, iqr 45.70–87.91, p = 0.0049, Wilcoxon signed-rank test, 1 outlier removed, Fig 3F).

The theta responses to light differed between Cre+ (median 0.84 μV2, iqr 0.81–0.89) and Cre−

pups (median 0.99 μV2, iqr 0.93–1.20, p = 0.0024, Wilcoxon rank-sum test, 3 outliers from

expression group removed), whereas RR during light stimulus was similar in the two groups

(cre+, median 0.91, iqr 0.82–1.0; cre− pups median 0.96, iqr 0.93–1.05, p = 0.3447, Wilcoxon

rank-sum test, 1 outlier from control group, 2 outliers from expression group removed) (Fig

3E and 3F).

To assess whether MTCs contribute to theta burst generation through intrinsic membrane

properties or as result of interactions within local circuits, we performed whole-cell patch-

clamp recordings from visually identified MCs in vitro. Analysis of power distribution of sub-

threshold membrane oscillations revealed no peak within theta frequency band. In line with

previous findings from adult cortical structures (e.g., LEC [43]), MCs showed membrane oscil-

lations between 2 and 4 Hz (S6 Fig). These data indicate that MTCs contribute to neonatal

theta oscillations through interactions within local circuits.
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Fig 3. Effects of optogenetic silencing of MTCs on the patterns of oscillatory activity in the neonatal OB. (A)

Photograph of the brain of a P8 cre+ Tbet-cre;ArchT-EGFP mouse (left) showing EGFP-fluorescent MTCs cell bodies

and their projections. (B) Left, photograph of a 100 μm–thick coronal section including the OB from a P8 cre+ Tbet-

cre;ArchT-EGFP mouse. The position of recording sites in MCL and EPL layers is marked by white squares. The light

guide ending just above the recording sites is shown in gray. The iso-contour lines of light spreading calculated using

Monte Carlo simulation are shown in yellow. Right, propagation of light intensity in the brain as predicted by Monte

Olfactory control of entorhinal development
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Taken together, these data show that RR and theta bursts in the neonatal OB have different

origin. Whereas RR critically depends on nasal air flow, MTC activity within local circuits is

necessary for the entrainment of OB in theta bursts.

Theta bursts in OB drive discontinuous oscillations and time the firing in

the neonatal LEC

The presence of both direct axonal MC-to-LEC projections and early patterns of oscillatory

activity in OB led to the question of their relevance for the emergence of functional assemblies

in the neonatal LEC. In contrast to the documented relevance of entorhinal output for devel-

oping limbic circuits [11], the role of sensory inputs for the functional maturation of LEC is

still unknown.

Multisite extracellular recordings of LFP and MUA from the layer II/III of LEC from P8–10

mice in vivo (n = 11) (Fig 4A) confirmed the previously reported presence of discontinuous

theta bursts with large amplitude (median 154.14 μV, iqr 101.10–191.65) and a duration of

5.15 s (iqr 4.13–8.48) (Fig 4B–4D). They appear superimposed on a slow rhythm (2–4 Hz) that

continuously entrains the neonatal LEC and has been overlooked in previous investigations.

This slow pattern of activity that was present both during theta bursts (median area power

526.25 μV2, iqr 307.68–1,171.85) and “silent” periods (median area power 86.57 μV2, iqr

52.55–344.43) temporally correlated with the simultaneously recorded respiration and was

therefore classified as entorhinal RR. These results demonstrate that the respiration-entrained

brain rhythms [44], a powerful mechanism of long-range coupling [45], emerge early during

development. Beside oscillatory patterns, neonatal LEC generates prominent firing concen-

trated during theta bursts (median 0.42 Hz, iqr 0.22–0.86 versus nonbursting periods median

0.07 Hz, iqr 0.04–0.19, p = 1.72 × 10−10, Wilcoxon signed-rank test, n = 54 cells from 11 mice)

(Fig 4E). We next assessed the coupling strength between firing and oscillatory activity. Similar

fractions of entorhinal neurons were phase-locked to RR (75.93%, 41/54 units) and theta

bursts (61.11%, 33/54 units, p = 0.1, χ2(1) = 2.7472). The strength of coupling assessed by PPC

was also stronger for RR (median: 0.208, iqr 0.202–0.217) than for theta (median: 0.205, iqr

0.196–0.211, p = 2.98 × 10−4, Wilcoxon rank-sum test, 4 outliers removed, n = 50 units), with

most cells being locked to the trough of RR and theta oscillation (Fig 4F).

Simultaneous recordings from OB and LEC (n = 9) of neonatal mice gave first insights into

their dynamic coupling (Fig 5A). Although both areas showed similar oscillatory activity, their

power significantly differed. Both RR power (OB: median 143.62 μV2, iqr 78.03–247.78; LEC:

median 109.91, iqr 26.72–110.51, p = 0.0499, Wilcoxon signed-rank test, 1 outlier removed)

and theta power (OB: median 193.39 μV2, iqr 97.47–262.01, LEC: median 112.37 μV2, iqr

43.38–127.36, p = 0.0273, Wilcoxon signed-rank test) were higher in OB as compared to LEC

Carlo simulation. Yellow lines correspond to the iso-contour lines for light power of 1 and 10 mW/mm2, respectively.

(C) Neuronal firing (SUA) and LFP band-pass filtered for different frequency bands (broad 1–100 Hz, RR 2–4 Hz,

theta 4–12 Hz) in response to light (yellow, 594 nm) stimulation of MTCs in a P8 cre+ Tbet-cre;ArchT-EGFP mouse.

Traces are accompanied by the color-coded wavelet spectrogram of LFP shown at an identical timescale. (D) Raster

plots and peristimulus time histograms displaying the firing of MTCs in response to light stimulation. The color-coded

bar (bottom) displays the fraction of cells that responded with a firing decrease during stimulus (red), constant firing

during stimulus but a firing increase post stimulus (blue), and unchanged firing rate (white). (E) Box plots displaying

the absolute power before and during light stimulation in cre+ pups (left) and the relative change of RR activity in

neonatal OB of cre+ and cre− mice (right). Gray dots and lines correspond to individual animals. (F) Same as E for

discontinuous theta bursts (��p< 0.01, left: signed-rank test, right: rank-sum test). Data are available in S1 Data.

EGFP, enhanced green fluorescent protein; EPL, external plexiform layer; LFP, local field potential; MCL, mitral cell

layer; MTC, mitral and tufted cell; OB, olfactory bulb; P, postnatal day; RR, respiration-related rhythm; SUA, single-

unit activity.

https://doi.org/10.1371/journal.pbio.2006994.g003
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(Fig 5B). Analysis of the temporal correspondence of theta bursts in OB and LEC revealed that

48.70% of them co-occurred with more than 60% temporal overlap. The coupling strength

assessed by imaginary spectral coherence, which excludes synchrony effects due to volume

conductance [46], revealed that the OB–LEC coupling is evident in both slow frequencies (i.e.,

Fig 4. Continuous and discontinuous patterns of oscillatory activity in the neonatal LEC. (A) Digital

photomontage reconstructing the track of the DiI-labeled multisite recording electrode (red) in a Nissl-stained (green)

100 μm–thick coronal section including LEC from a P9 mouse. The gray dots show the position of the 16 recording

sites. (B) LFP recording of the oscillatory activity in LEC of a P10 mouse displayed band-pass filtered in different

frequency bands and accompanied by the wavelet spectrogram (white line represents time-averaged power of the

trace) as well as simultaneously recorded MUA (high-pass filter> 400 Hz) and respiration. (C) Characteristic slow

continuous oscillatory activity and theta bursts from the trace shown in B when displayed at higher magnification. (D)

Power spectra (mean ± SEM) of LFP in LEC during nonburst activity (blue) and discontinuous bursts (red) as well as

of theta bursts normalized to nonbursting activity (purple). The respiration frequency was depicted as a horizontal bar

and expanded at a larger scale (top). (E) Temporal relationship between neuronal firing and network oscillations in

LEC. Left, histogram showing the percentage of spikes occurring during theta burst for all clustered units. Right,

box plot depicting the firing rates of LEC units during nonburst periods and theta burst periods. Gray dots and lines

correspond to individual cells (Wilcoxon signed-rank test, ���p< 0.001). (F) Histograms depicting the phase locking

of LEC neurons to RR (left) and theta activity (right). Only significantly locked cells were used for analysis. Data are

available in S1 Data. af, amygdaloid fissure; LEC, lateral entorhinal cortex; LFP, local field potential; MUA, multiunit

activity; P, postnatal day; PIR, piriform cortex; PRh, perirhinal cortex; rf, rhinal fissure; RR, respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g004
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Fig 5. Frequency-dependent functional coupling between neonatal OB and LEC. (A) Characteristic traces of band-

pass-filtered LFP recorded simultaneously in OB (top) and LEC (bottom) of a P9 mouse, displayed together with

wavelet spectrograms showing the frequency (“Freq.”) content. Note the temporal correlation between discontinuous

theta bursts in both areas. (B) Box plots displaying RR power (top, green) and theta burst power (bottom, purple) in

OB and LEC. Gray lines and dots correspond to individual pups. (�p< 0.05, Wilcoxon signed-rank test). (C) Plot of
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RR) and theta band (i.e., theta bursts) (Fig 5C). In line with anatomical data, we detected no

differences in the coupling of dorsal and ventral OB with LEC. Both relative occurrence of co-

occurring events (dorsal: median 27.04%, iqr 20.08–33.98%; ventral: median 21.83%, iqr

15.66–35.14%; p = 0.67, Wilcoxon rank-sum test) and mean imaginary coherence in both RR

(dorsal: median 0.11 Hz, iqr 0.09–0.14 Hz; ventral: median 0.08 Hz, iqr 0.05–0.10 Hz; p = 0.13,

Wilcoxon rank-sum test) and theta frequency range (dorsal: median 0.07 Hz, iqr 0.06–0.11 Hz;

ventral: median 0.06 Hz, iqr 0.06–0.09 Hz; p = 0.54, Wilcoxon rank-sum test) were similar for

dorsal and ventral OB in relationship to LEC (S3 Fig). These data are in line with anatomical

investigations in adult mice [47] as well as with our tracing data (Fig 1), showing that FG injec-

tion into neonatal LEC leads to homogenous MTC labeling throughout the OB.

To assess the influence of anesthesia on entorhinal activity patterns and coupling between

LEC and OB, we recorded both areas in mouse pups before and after urethane intraperitoneal

(i.p.) injection (n = 18). Urethane did not change the overall spectral distribution of activity

patterns in LEC. As in the nonanesthetized state, RR and theta bursts were the main patterns

of entorhinal activity, yet the RR power decreased and theta power augmented under urethane

action (S7A Fig and S1 Table). Urethane affected the duration of theta bursts and slightly

increased their occurrence (S7B Fig). The synchrony between OB and LEC varied in magni-

tude but not frequency distribution. The imaginary coherence peaked at 2–4 Hz and at 5–20

Hz, corresponding to RR and theta–beta frequencies, respectively. Whereas mean RR coher-

ence did not differ between states (p = 0.17, Wilcoxon rank-sum test, 2 outliers removed),

theta coherence was higher in the presence of urethane (p = 0.0034).

These data indicate that, independent of brain state and anatomical subdivision, OB and

LEC are tightly coupled at neonatal age both being synchronized in continuous RR and dis-

continuous theta oscillations.

Since feedforward projections from MCs to LEC are dense, whereas feedback projections

from LEC to OB are rather sparse, we asked whether the functional coupling between the two

areas is directed and, if so, whether directionality is frequency specific. To estimate the direc-

tionality of OB–LEC coupling, we used two approaches. First, we assessed the phase lag

between LFP in OB and LEC. Although the phase lag for continuous RR was centered to 0, it

peaked in negative range for theta bursts, indicating that OB theta bursts most likely drive LEC

theta oscillations (Fig 5D). Second, we analyzed the temporal relationship between spiking

activity in one area and either LFP or spiking in the other area. For RR, a similar number of

clustered units in OB and LEC were phase-locked to RR in LEC (31.48%, 17/54) and OB

(25.27%, 23/91, p = 0.54, χ2(1) = 0.38, χ2 test of proportions), respectively, and their coupling

strengths were comparable (OB cells to LEC RR: median 0.21, iqr 0.19–0.23; LEC cells to OB

imaginary part of coherence between OB and LEC showing prominent peaks in RR and theta band. The gray line

corresponds to the significance threshold as assessed by Monte Carlo simulation. (D) Histograms of phase differences

between RR (left, green) and theta (right, purple) activity recorded simultaneously in OB and LEC. (E) Left, bar

diagram displaying the percentage of OB units coupled to the RR (green) and theta bursts (purple) in LEC and the

percentage of LEC units coupled to the RR (green) and theta bursts (purple) in OB. Right, box plot showing the

coupling strength of OB cells significantly locked to LEC oscillations (green: RR, purple: theta bursts) and of LEC cells

significantly locked to OB oscillations (green: RR, purple: theta bursts). Gray dots correspond to individual cells (χ2

test of proportions, ���p< 0.001). (F) Histograms showing the distribution of preferred phases of LEC cells

significantly locked to RR (left) and OB theta bursts (right) in neonatal OB. For comparison, histograms of OB cells

locked to the respective OB rhythm are plotted as white bars. (G) Histograms showing the distribution of preferred

phases of OB cells significantly locked to RR (left) and theta bursts (right) in neonatal LEC. For comparison,

histograms of LEC cells locked to the respective LEC rhythm are plotted as white bars. Data are available in S1 Data.

LEC, lateral entorhinal cortex; LFP, local field potential; MC, mitral cell; OB, olfactory bulb; P, postnatal day; RR,

respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g005
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RR: median 0.22, iqr 0.19–0.28, p = 0.35, Wilcoxon rank-sum test, Fig 5E). In contrast, a signif-

icantly higher fraction of LEC neurons were phase-locked to theta bursts in OB (42.47%, 31/

73) when compared to OB neurons timed by entorhinal theta phase (10.20%, 5/49, p =

1.28 × 10−4, χ2(1) = 14.67, χ2 test of proportions, Fig 5E). The coupling strengths of these neu-

ronal populations, however, were comparable (OB cells to LEC theta: median: 0.22, iqr 0.19–

0.24; LEC cells to OB theta: median: 0.23, iqr 0.20–0.26, p = 0.44, Wilcoxon rank-sum test, 1

outlier removed from OB theta–LEC units group). MTCs preferentially fire during the trough

of RR activity and theta bursts in OB, whereas LEC cells preferentially fire on the rising phase

after the trough of OB rhythms, indicating that MTC firing precedes LEC cell firing by about a

third of a cycle (Fig 5F and 5G).

Together, these data suggest that the continuous RR rhythm is not involved in directed

information flow within OB–LEC circuits, whereas theta bursts in OB drive the oscillatory

entrainment of LEC.

Pharmacological blockade of OB firing diminishes the slow and fast

oscillatory activity in OB–LEC circuits

To confirm that OB theta bursts are necessary for the generation of LEC theta bursts, we

pharmacologically abolished the neuronal activity by unilateral pressure injection of the volt-

age-dependent sodium channel (hence action potential) blocker lidocaine (4% in sterile saline)

into OB. Extracellular recordings of LFP and MUA were performed simultaneously from OB

and LEC of mice (n = 8) before and after lidocaine injection in vivo (Fig 6A). The injected lido-

caine volume of 4 μl was proven to not spread across the borders of OB (Fig 6B). Lidocaine

abolished OB firing within 10 min of injection from a median baseline firing rate of 1.97 Hz

(iqr 0.77–2.80) to 0.00 Hz (iqr 0.00–0.02). A partial recovery was observed after 30–40 min

(χ2(7) = 45.04, p = 1.34 × 10−7, Friedman test, with Wilcoxon signed-rank post hoc test with

Bonferroni correction) (Fig 6D). The firing of entorhinal neurons was also significantly

reduced after lidocaine treatment in OB from a median baseline firing rate of 2.4 Hz (iqr 1.46–

3.60) to 0.52 Hz (iqr 0.32–1.09) within the first 10 min after injection (χ2(7) = 135.50,

p = 4.45 × 10−26, Friedman test, with Wilcoxon signed-rank post hoc test with Bonferroni cor-

rection). The decrease of firing rates in both areas was accompanied by changes of oscillatory

network activity. In OB, the power of RR (baseline: median 91.05 μV2; iqr 70.66–224.40; lido-

caine: median 8.88, iqr 3.90–20.16; p = 0.0078, Wilcoxon signed-rank test) as well as the occur-

rence (baseline: median 4.76 bursts/min, iqr 3.58–5.93; lidocaine: 1.03 bursts/min, iqr 0.76–

1.56, p = 0.0234, Wilcoxon signed-rank test), duration (baseline: median 4.41 s, iqr 3.78–4.77;

lidocaine: median 2.35, iqr 1.89–2.88, p = 0.0078, Wilcoxon signed-rank test), and power

(baseline: median 202.07 μV2, iqr 163.62–261.95; lidocaine: median 33.19, iqr 24.14–109.00,

p = 0.0156, Wilcoxon signed-rank test) of theta bursts were reduced. In LEC, the power of RR

(baseline: median 55.88 μV2, iqr 42.48–134.05; lidocaine: median 17.71, iqr 9.07–53.80,

p = 0.0391, Wilcoxon signed-rank test) as well as the duration (baseline: median 4.41 s, iqr

3.74–4.58; lidocaine: median 3.24, iqr 3.14–3.56, p = 0.0156, Wilcoxon signed-rank test, 1 out-

lier removed) and power (baseline: median 148.11 μV2, iqr 115.76–191.62; lidocaine: median

75.50, iqr 65.99–116.63, p = 0.0313, Wilcoxon signed-rank test, 2 outliers removed) of theta

bursts were decreased after blockade of OB firing. Moreover, the lidocaine-induced changes in

theta burst occurrence were highly correlated between OB and LEC (r = 0.88, p = 0.0039, Pear-

son correlation, Fig 6G).

These data indicate that blocking of neuronal firing in OB causes massive diminishment of

coordinated activity in both OB and LEC.

Olfactory control of entorhinal development

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006994 January 31, 2019 14 / 36

https://doi.org/10.1371/journal.pbio.2006994


Fig 6. Effects of pharmacological blockade of neuronal firing in OB on patterns of oscillatory activity in OB–LEC

circuits. (A) Schematic drawing of experimental protocol. (B) Photograph of the brain of a P10 mouse showing the

confinement of injections to one hemisphere of the OB. For visualization, the same volume of methylene blue was

used. (C) Characteristic LFP traces (black, filtered 1–100 Hz) recorded in OB (top) and LEC (bottom) of a P9 mouse

before (left) and after (right) lidocaine infusion, displayed together with the wavelet spectrograms of the LFP and
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Optogenetically evoked OB theta bursts lead to neuronal firing and

network oscillations in neonatal LEC

To prove the role of OB oscillatory activity for the entrainment of LEC, we transfected MTCs

with a channelrhodopsin 2 (ChR2) mutant using a viral strategy. For this, we injected the con-

struct pAAV-Ef1a-DIO hChR2(E123T/T159C)-EYFP (AAV9) unilaterally into the OB of

Tbet-cre mice at P0–1 (n = 10 Cre+, n = 10 Cre−). At P8, hChR2-EYFP was expressed in OB

MTCs (S8A Fig) and in the entire LOT, reaching LEC superficial layers (Fig 7A). In vitro

whole-cell patch-clamp recordings from biocytin-filled enhanced yellow fluorescent protein

(EYFP)-positive neurons (n = 4) confirmed that MCs were able to follow blue light pulses (470

nm, 3 ms duration, 0.77 mW) applied at frequencies between 2 and 32 Hz (S8B and S8C Fig).

Stimulation of MTCs with 3 ms–long light pulses at 8 Hz was performed simultaneously

with LFP and MUA recordings from LEC in vivo. During baseline recordings (prior to light

stimulation), RR power was comparable between Cre− (controls) and Cre+ pups in OB (Cre−

pups: median: 485.50 μV2, iqr 339.81–778.70; Cre+ pups: median: 349.67 μV2, iqr 325.62–

416.51, p = 0.32, Wilcoxon rank-sum test, 2 outliers removed) and LEC (Cre− pups: median:

369.72 μV2, iqr 165.76–776.32; Cre+ pups: median: 214.78 μV2, iqr 156.66–248.04, p = 0.08,

Wilcoxon rank-sum test, 1 outlier removed). Similarly, the power of theta bursts was compara-

ble between Cre− and Cre+ pups in OB (Cre− pups: median: 333.25 μV2, iqr 168.13–537.81;

Cre+ pups: median: 198.13 μV2, iqr 149.60–574.66, p = 0.68, Wilcoxon rank-sum test) and

LEC (Cre− pups: median: 327.24 μV2, iqr 143.33–503.64; Cre+ pups: median: 206.17 μV2, iqr

116.36–235.02, p = 0.21, Wilcoxon rank-sum test, 1 outlier removed). Light stimulation trig-

gered MTC spiking shortly (3–5 ms) after stimulus onset as well as at longer delays (S9 Fig).

Light stimulation evoked oscillatory activity peaking in the theta frequency band in both the

OB and LEC of Cre+ pups (Fig 7B and 7C), whereas in Cre−, a weak light artifact was present

in OB but not LEC (Fig 7C). The magnitude of light-evoked entorhinal activity was lower than

that of OB oscillations. Correspondingly, the optogenetic modulation index (OMI) of theta

band power in OB was significantly higher in Cre+ pups (median: 0.9964, iqr 0.9861–0.9979,

p = 0.0002, Wilcoxon rank-sum test) when compared to Cre− mice (median: 0.09, iqr −0.02 to

0.41). A similar augmentation of OMI was detected for LEC (Cre+: median: 0.87 iqr 0.67–0.92;

Cre−: median: −0.05, iqr −0.12 to 0.24, p = 0.0004, Wilcoxon rank-sum test). Moreover, light

stimulation increased the OB–LEC coupling by synchrony, measured by imaginary coherence

in the theta band (Cre+ pups median: 0.22, iqr 0.19–0.30; Cre− pups median: 0.17, iqr 0.15–

0.18, p = 0.021, Wilcoxon rank-sum test) (Fig 7D) and maximal cross-correlation at the same

frequencies (Cre+ pups: median: 0.83, iqr 0.79–0.92, Cre− pups: median: 0.11, iqr 0.09–0.14,

p = 0.0002, Wilcoxon rank-sum test) (Fig 7E). These results show that theta bursts generated

through MTC activation in OB cause theta band entrainment in LEC of neonatal mice.

To investigate in more detail the coupling interactions between the two areas, we focused

on the spiking activity of OB and LEC in relationship to the oscillatory phase and quantified

both the number of phase-locked cells and the locking strength assessed by the mean resultant

simultaneously recorded MUA. (D) Top, mean MUA firing rate in OB (left) and LEC (right) before and after lidocaine

infusion. The time of infusion is considered 0. Bottom, box plots displaying the mean MUA in OB (left) and LEC

(right) before and after lidocaine infusion (Friedmann test, Wilxocon signed-rank test with Bonferroni correction for

post hoc comparison, �p< 0.0071). (E) Box plots displaying the power of RR activity in OB and LEC in the RR band

before and after lidocaine infusion. Gray dots and lines correspond to individual animals (Wilcoxon signed-rank test,
�p< 0.05; ��p< 0.01). (F) Same as E for the theta burst activity in neonatal OB and LEC. (G) Scatterplot displaying the

relationship between the occurrence changes (percent of baseline) of OB and LEC theta bursts (r = 0.008, p = 0.0039,

Pearson correlation). Data are available in S1 Data. LEC, lateral entorhinal cortex; LFP, local field potential; MUA,

multiunit activity; OB, olfactory bulb; P, postnatal day; RR, respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g006
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Fig 7. Effects of rhythmic optogenetic MTC activation on LEC oscillatory activity and single-unit entrainment. (A) Left, photograph

of the ventral side of a brain from a P8 Cre+ Tbet-cre mouse showing EYFP-fluorescent MTC bodies in OB and their projections

reaching PIR and LEC. Middle, photograph of the DiI-labeled optrode track into a 100 μm–thick coronal section of the OB from a P8

Cre+ Tbet-cre mouse. Right, photograph of the DiI-labeled electrode track into a 100 μm–thick coronal section of the LEC from a P8

Cre+ Tbet-cre mouse. (B) Spike trains from clustered units recorded simultaneously with the band-pass filtered (1–100 Hz, RR 2–4 Hz,

theta 4–12 Hz) LFP in response to pulsed light (blue, 473 nm) stimulation of MTCs in OB (top) and LEC (bottom) of a P8 Cre+ Tbet-cre

mouse. Traces are accompanied by the color-coded wavelet spectrograms of LFP shown at identical timescale. (C) Left, power spectra

showing the relative LFP power change in OB (top) and LEC (bottom) after pulsed (8 Hz) light stimulation of MTCs in Cre− and Cre+

mice. Inset, power spectra shown at higher magnification. Right, box plot showing OMI of theta power in OB (top) and LEC (bottom) of

Cre− and Cre+ mice (OB: p = 0.0002, LEC: p = 0.0004, Wilcoxon rank-sum test). For all plots, the red dotted line corresponds to

unchanged power. (D) Left, plots of imaginary coherence between OB and LEC during pulsed (8 Hz) light stimulation of MTCs in Cre−

and Cre+ mice. Right, box plot displaying mean theta coherence during light stimulation of MTCs (p = 0.021, Wilcoxon rank-sum test).

(E) Left, plots of cross-correlation between OB and LEC during light stimulation of MTCs in Cre− and Cre+ mice. Right, box plot

showing maximal cross-correlation during light stimulation of MTCs (p = 0.0002, Wilcoxon rank-sum test). (F) Left, coupling strength

calculated as mean resultant vector length for LEC units to the OB theta rhythm during light stimulation of MTCs in Cre− and Cre+ mice

(p = 0.0055, Wilcoxon rank-sum test). Right, histograms showing the phase preference of LEC units (p = 0.01, Kuiper two-sample test).

(G) Same as (F) for LEC units to LEC theta phase. (H) Spike trains in relationship to LFP in OB and LEC. Note the presence of both short

and long delays between spikes from the two areas. (I) Mean standardized spike–spike cross-covariance of significant OB–LEC unit pairs

from Cre+ mice (n = 27 pairs) and Cre− mice (n = 61 pairs). Black dashed lines indicate the significance threshold. A negative time lag

corresponds to OB! LEC. Data are available in S1 Data. EPL, external plexiform layer; EYFP, enhanced yellow fluorescent protein; LEC,
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vector length. In Cre− pups, 0% (0/28) of units from LEC were locked to the OB theta rhythm

during light stimulation. In contrast, 31.25% (10/32) of units from the LEC of Cre+ mice were

locked to the OB theta rhythm (p = 0.0012, χ2(1) = 10.5, χ2 test of proportions). The locking

strength was significantly higher in Cre+ (median: 0.27, iqr 0.19–0.75) when compared to Cre−

mice (median: 0.19, iqr 0.17–0.21, p = 0.0055, Wilcoxon rank-sum test). Moreover, the distri-

bution of preferred phases differed between Cre− and Cre+ mice (p = 0.01, Kuiper two-sample

test), with stronger locking of LEC units to the OB theta trough in Cre+ mice (Fig 7F). Next,

the entrainment of LEC SUA by the evoked LEC theta rhythm was investigated. During the

light stimulation period, 0% (0/28) of units from Cre− mice were locked to theta, whereas

18.75% (6/32) units from LEC of Cre+ mice were significantly locked to LEC theta (p = 0.0157,

χ2(1) = 5.8333, χ2 test of proportions). The locking strength of LEC units to LEC phase was sig-

nificantly higher in Cre+ mice (median: 0.26, iqr 0.19–0.55) when compared to Cre− mice

(median: 0.19, iqr 0.17–0.23, p = 0.0013, Wilcoxon rank-sum test) (Fig 7G). However, the dis-

tribution of preferred LEC theta phases of LEC units during the light stimulation did not differ

between the two groups of mice (p> 0.05, Kuiper two-sample test, Fig 7G).

To determine whether OB entrains LEC via mono- or polysynaptic connections, we isolated

51 single units recorded in the MCL of OB and calculated the standardized spike–spike cross-

covariance between OB and LEC using previously developed algorithms [48]. Of a total of

202 unit pairs from Cre+ mice and 274 unit pairs from Cre− mice (188 and 236 pairs, respec-

tively) had sufficiently high firing rates (>0.05 Hz) and were used for further analysis. The

mean standardized cross-covariance (Fig 7I) of all significant unit pairs (27 pairs from Cre+

mice, 61 pairs from Cre− mice) peaked at −5 ms and −36 ms in Cre+ mice. A negative time lag

corresponds to shifting LEC backwards in time; i.e., OB drives LEC. The first peak indicates

monosynaptic connectivity, whereas the longer time lag of cross-covariance peak corresponds

to polysynaptic connections, possibly involving the PIR, which has been reported to be tightly

connected to both OB and LEC in adults [49]. These data indicate that MTC firing drives ento-

rhinal activity via both mono- and polysynaptic projections. To investigate the role of neonatal

PIR for OB–LEC coupling, we recorded simultaneously OB–LEC (n = 18 pups), OB–PIR

(n = 7 pups), and LEC–PIR (n = 5 pups) and performed cross-covariance analysis of the corre-

sponding spike train pairs. Previous studies showed that adult PIR receives strong innervation

mostly from MCs, with tufted cells only targeting the ventrorostral part of the anterior PIR

[16]. Our tracing experiments revealed that these projections are present already in neonatal

mice (Fig 7A). Clustering of MUA led to identification of 61, 106, and 32 single units from OB,

LEC, and PIR, respectively. Spike train pairs with firing rates >0.05 Hz (OB–LEC 251, OB–

PIR 62, and LEC–PIR 142) were considered for analysis. Although spike trains from PIR and

LEC were highly correlated, they lacked a preferred directionality as shown by the 0 ms lag of

cross-covariance peak (S10A Fig, left plot). In contrast, OB–LEC and OB–PIR spike cross-

covariance showed multiple peaks, yet they were of lower magnitude (S10A Fig, right plot). In

line with the results of light stimulation of MTCs (Fig 7I), the first peak of OB–LEC cross-

covariance had a negative 7 ms lag, indicating that monosynaptic projections from OB drive

LEC firing. Additional peaks at longer delay reflect polysynaptic interactions corresponding to

both OB! LEC and LEC!OB. OB–PIR spike cross-covariance peaked both at a shorter

negative (i.e., most likely monosynaptic connection OB! PIR) and a longer positive (i.e.,

most likely polysynaptic connection PIR!OB) lag (S10A Fig). Quantification of mono- ver-

sus polysynaptic coupling among spike train pairs revealed that monosynaptic coupling

lateral entorhinal cortex; LFP, local field potential; MC, mitral cell; MTC, mitral and tufted cell; OB, olfactory bulb; OMI, optogenetic

modulation index; P, postnatal day; PIR, piriform cortex; RR, respiration-related rhythm; SUA, single-unit activity.

https://doi.org/10.1371/journal.pbio.2006994.g007
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occurred for 11% (28/251) of OB–LEC pairs and for 11% (7/62) of OB–PIR pairs, whereas

polysynaptic coupling occurred for 8% (19/251) of OB–LEC and for 2% (1/62) of OB–PIR

pairs. The highest extent of monosynaptic coupling has been observed for LEC–PIR pairs

(68%, 97/142). These data indicate that in neonatal mice, OB drives LEC as well as PIR via

monosynaptic projections with no direct functional feedback, despite the presence of sparse

projections. Since more OB–LEC cell pairs were monosynaptically than polysynaptically cou-

pled, and the spike-timing delay between PIR and LEC was 0 ms, we suggest that the indirect

pathway from OB to LEC via PIR does not play a major role in the entrainment of neonatal

activity.

Odors boost the oscillatory activity in neonatal OB and LEC and augment

their fast frequency coupling

In contrast to other sensory systems that lack peripheral sensitivity for environmental stimuli

during early postnatal development, the olfactory system processes inputs already at birth.

Therefore, the characterized coordinated patterns of oscillatory activity, RR, and theta bursts

might have a dual origin, i.e., resulting from both spontaneous and/or stimulus-evoked activa-

tion of OB neurons. To gain first insights into the relevance of environmental stimuli on oscil-

latory activity and long-range entrainment of OB and LEC, we recorded brain activity evoked

by odors inhaled via respiration of the anesthetized P8–10 mouse. Prominent oscillatory dis-

charge with slow and fast frequencies and MUA were induced in OB by olfactometer-con-

trolled exposure to odors, such as octanal (10%) (Fig 8A). We observed odor-evoked responses

also in LEC, albeit at lower magnitude. Compared to theta bursts recorded in absence of sti-

muli (i.e., baseline) and to responses to saline, these octanal-evoked responses had a higher

amplitude in RR frequency range both in OB (χ2 (2) = 36.05, p = 1.49 × 10−8, Kruskal-Wallis

test, Wilcoxon rank-sum test with Bonferroni correction as post hoc test, removed outliers:

baseline 2, saline 1) and LEC (χ2 (2) = 13.80, p = 0.001, Kruskal-Wallis test, Wilcoxon rank-

sum test with Bonferroni correction as post hoc test, removed outliers: baseline 2, saline 1).

Similarly, octanal augmented the amplitude of theta bursts in both regions (OB: χ2(2) = 36.30,

p = 1.31 × 10−8, Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni correction as

post hoc test, LEC: χ2(2) = 20.52, p = 0.000035, Kruskal-Wallis test, Wilcoxon rank-sum test

with Bonferroni correction as post hoc test, removed outliers: baseline 2, saline 1) (Fig 8B and

8C and Table 1). In contrast to coordinated theta burst activity recorded in the absence of

olfactory stimulation, evoked responses included beta band (15–30 Hz) activity. Similar activ-

ity has been reported in the adult rodent olfactory system in Go/No-Go tasks [50,51], in

response to predator odors [52,53], and in response to highly volatile odorants [54]. The

amplitude of beta activity was significantly higher in the presence of octanal than during base-

line or saline exposure both in OB (χ2(2) = 56.52, p = 5.33 × 10−13, Kruskal-Wallis test, Wil-

coxon rank-sum test with Bonferroni correction as post hoc test, 1 outlier removed) and LEC

(χ2(2) = 31.94, p = 1.16 × 10−7, Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni

correction as post hoc test) (Fig 8B and 8C and Table 1). The presence of odor-driven OB

activity confirms the maturity of receptor cells and odor-processing mechanisms in the olfac-

tory system at early postnatal age. Moreover, the presence of odor-driven LEC activity indi-

cates that coordinated activity from OB drives the oscillatory entrainment of LEC. To

determine which oscillatory patterns are mainly involved in these directed OB–LEC interac-

tions, we calculated the imaginary coherence between the two areas upon exposure to either

saline or octanal. While the coherence increase in RR frequency band was higher for odor-trig-

gered events as compared to baseline events, it was similar for saline and octanal (χ2(2) =

23.22, p = 9.06 × 10−6, Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni correction
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as post hoc test, removed outliers: baseline 1, saline 1, octanal 2) (Fig 8D and Table 1). In con-

trast, the coherence in fast frequencies significantly augmented in the presence of octanal

when compared to saline-evoked or baseline events (theta: χ2(2) = 43.99, p = 2.81 × 10−10,

Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni correction as post hoc test, beta:

Fig 8. Odor-triggered activity patterns in OB and LEC of neonatal mouse. (A) Characteristic LFP traces (band-pass

filtered 1–100 Hz) recorded in OB (top) and LEC (bottom) of a P9 mouse before (baseline, left) and after application of

odors (saline, middle; octanal, right) displayed together with simultaneously recorded MUA. (B) Box plots showing

odor-evoked changes in the amplitude of RR (left), theta (middle), and beta (right) activity in OB when normalized to

baseline. (C) Same as B for LEC. (D) Box plots showing odor-evoked relative changes in OB–LEC coherence in RR

(left), theta (middle), and beta (right) band when normalized to baseline. Gray dots correspond to individual trials

(Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni correction as post hoc test, �p< 0.0167). Data are

available in S1 Data. LEC, lateral entorhinal cortex; MUA, multiunit activity; OB, olfactory bulb; P, postnatal day; RR,

respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g008
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χ2(2) = 48.48, p = 2.98 × 10−11, Kruskal-Wallis test, Wilcoxon rank-sum test with Bonferroni

correction as post hoc test) (Fig 8D and Table 1). These data suggest that discontinuous bursts,

either spontaneous or odor-induced, facilitate the long-range OB–LEC coupling and boost

local entrainment in beta band of entorhinal circuits.

Chronic manipulation of olfactory periphery disrupts the development of

functional coupling between OB and LEC

The tight functional coupling between OB and LEC, as well as the impact of olfactory stimuli

on the entorhinal activity, suggests that early activation of the olfactory periphery might be

critical for the maturation of LEC as the gatekeeper of limbic circuits. To test this hypothesis,

we chronically lesioned the nasal epithelium at P3 using methimazole (n = 11 pups) [55].

When compared to controls (i.e., saline-treated age-matched pups, n = 13), the power of oscil-

latory activity in the OB of methimazole-treated P8–10 animals was reduced for both RR

(saline: median: 756.86 μV2, iqr 322.8–1,814.3; methimazole: median: 349.92 μV2, iqr 230.49–

513.90, p = 0.0489, Wilcoxon rank-sum test) and theta bursts (saline: median: 708.38 μV2, iqr

569.1–1,731.9; methimazole: median: 497.9195 μV2, iqr 329.81–715.83, p = 0.0277, Wilcoxon

rank-sum test) (Fig 9B and 9C). Even if methimazole decreased the oscillatory power in LEC

of some pups, this effect did not reach significance level (Fig 9D). However, the neuronal firing

was affected in both areas after degeneration of olfactory epithelium. The spiking frequency in

MCL was lower in methimazole-treated pups when compared with saline-treated pups (saline:

median: 0.52 Hz, iqr 1.79–2.58; methimazole: median: 1.52 Hz, iqr 0.53–1.72, p = 0.0038,

Wilcoxon rank-sum test). Correspondingly, entorhinal neurons fired less after methimazole

treatment (saline: median: 0.36, iqr 0.25–1.06; methimazole: median: 0.14, iqr 0.11–0.31,

p = 0.0326, Wilcoxon rank-sum test, 2 outliers removed) (Fig 9E). These findings suggest that

an intact olfactory periphery and the corresponding stimuli during the first postnatal week are

necessary for the development of neuronal patterns in LEC.

Discussion

The assembly of neurons into functional networks during development is the prerequisite for

behavioral performance in adults. Entrainment of neurons into coordinated oscillatory

rhythms represents a powerful assembling principle that has been initially identified to control

the topographic organization of sensory systems [6,8,56,57]. More recently, patterns of coordi-

nated activity have been characterized in the developing limbic system [9,14,15,58,59]. How-

ever, it is still unclear whether sensory and limbic circuits adhere to similar assembling

principles and how they interact during early development. In the present study, we tested the

Table 1. Quantification of odor responses in neonatal OB–LEC networks (related to Fig 8).

OB amplitude (relative change) LEC amplitude (relative change) OB–LEC coherence (relative change)

No odor Saline Octanal p No odor Saline Octanal p No odor Saline Octanal p
RR 1.34

1.00–1.61

2.78

1.17–3.20

3.41

2.41–4.50

<0.001 1.59

1.17–3.31

2.27

1.29–4.45

5.38

2.21–8.94

0.001 0.69

0.50–1.0

1.18

0.76–1.49

1.38

0.90–1.73

<0.001

Theta 1.90

1.05–2.93

4.22

2.72–6.80

5.79

3.82–14.57

<0.001 2.01

1.48–4.43

1.19

1.48–2.71

4.87

2.64–7.18

<0.001 0.71

0.55–0.79

0.93

0.78–1.05

1.33

1.03–1.51

<0.001

Beta 1.37

1.14–1.68

2.10

1.62–3.31

5.61

4.50–9.79

<0.001 1.52

1.15–2.66

1.76

1.18–2.34

3.74

2.60–6.03

<0.001 0.61

0.42–0.76

1.03

0.91–1.19

1.32

1.19–1.44

<0.001

The values are given as median and interquartile ranges and p-values correspond to the difference between the three conditions (Kruskal-Wallis test).

Abbreviations: LEC, lateral entorhinal cortex; OB, olfactory bulb; RR, respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.t001

Olfactory control of entorhinal development

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006994 January 31, 2019 21 / 36

https://doi.org/10.1371/journal.pbio.2006994.t001
https://doi.org/10.1371/journal.pbio.2006994


Fig 9. Effects of pharmacological lesioning of the nasal epithelium on the development of OB–LEC activity. (A)

Schematic drawing of experimental protocol. (B) Power spectra (mean ± SEM) of LFP recorded in OB (left) and LEC

(right) of methimazole- (gray) and saline-treated (black) mice. (C) Box plots displaying power of RR (green) and theta

bursts (purple) recorded in OB of methimazole- (gray) and saline-treated (black) mice. (D) Same for RR and theta

bursts recorded in LEC. (E) Box plots displaying MUA frequency in OB and LEC of methimazole- (gray) and saline-
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hypothesis that coordinated activity patterns in the neonatal OB contribute to the oscillatory

entrainment of LEC, the gatekeeper of limbic circuits during development. Combining ana-

tomical tracing with in vivo electrophysiology, optogenetics, pharmacology, and sensory

manipulations, we demonstrate that (1) two major patterns of coordinated activity entrain the

neonatal OB: continuous slow frequency oscillations temporally related to respiration and dis-

continuous theta band oscillations critically depending on MTC activity; (2) both rhythms

temporally couple the neonatal OB and LEC, with OB theta bursts boosting the oscillatory

entrainment and firing within entorhinal circuits via mono- and polysynaptic projections;

(3) olfactory stimuli augment oscillatory power, induce activity in fast frequency bands, and

strengthen the coupling within OB–LEC circuits; and (4) olfactory activation during the first

postnatal week is critical for the functional development of entorhinal circuits. These data

reveal that endogenously generated and stimulus-driven activities in OB control the oscillatory

entrainment of LEC (Fig 10).

Brain development has been extensively investigated in rodents because they enable insights

into a time window that remains inaccessible in humans. As altricial species, rodents are born

at an immature stage of brain development. They are blind and deaf, do not whisker, and have

limited motor abilities during the first postnatal days. Before the onset of the ability to actively

respond to sensory stimuli, coordinated activity patterns, typically characterized by rhythmic

burst discharge separated by periods of quiescence, emerge endogenously. Such patterns have

been described in developing somatosensory, visual, and auditory systems. Their onset,

treated (black) animals. (Wilcoxon rank-sum test, �p< 0.05; ��p< 0.01). Data are available in S1 Data. I.P.,

intraperitoneal; LEC, lateral entorhinal cortex; LFP, local field potential; MUA, multiunit activity; OB, olfactory bulb;

RR, respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g009

Fig 10. Schematic diagram of structural and functional coupling within OB–LEC networks of neonatal mice.

Mutual axonal projections (red) connect neonatal OB and LEC. Dotted line corresponds to weak anatomical

connectivity. In OB of neonatal mice, continuous air flow–dependent RR and discontinuous MTC-driven theta

bursts represent the two major patterns of oscillatory activity. They are augmented by olfactory stimuli (blue) that

additionally evoke beta oscillations. OB activity boosts the oscillatory entrainment of neonatal LEC that, in turn, might

drive the limbic circuits during development. HP, hippocampus; LEC, lateral entorhinal cortex; MTC, mitral and

tufted cell; OB, olfactory bulb; PFC, prefrontal cortex; RR, respiration-related rhythm.

https://doi.org/10.1371/journal.pbio.2006994.g010
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properties, and underlying mechanisms are relatively well understood. For example, retinal

waves emerge before the onset of light sensitivity and vision as local patterns of coordinated

activity mediated by gap junctions and cholinergic and glutamatergic circuits [60,61]. Retinal

waves synaptically propagate along the visual tract to primary visual cortex [35,62,63] and are

mandatory for the refinement of visual maps [64]. Similarly, cochlear burst activity emerges

before the onset of hearing as a result of coordinated firing and propagates along auditory

pathways [65,66]. These cochlear bursts are crucial for the establishment of precise tonotopic

maps [5,56]. The precision of whisker maps in the primary somatosensory cortex seems to be

equally controlled by coordinated activity evolving during postnatal development [8,67]. In

the absence of a sensory periphery with bursting activity before the onset of active whisking,

passive activation of whiskers is replayed within thalamocortical circuits and contributes to

refinement of topographic maps [6].

At the same postnatal age, the sense of smell is of particular relevance for pup survival. At

birth, the olfactory system is considered to be more mature than the other sensory systems, yet

its functional development still continues postnatally. This early maturity poses the question of

whether the mechanisms of organization differ between developing olfactory pathways and

other sensory systems. Whereas patterns of oscillatory activity are ubiquitous in the immature

brain, their features and underlying mechanisms in the olfactory system seem to be unique.

On the one hand, the continuous RR is timed by respiration/air flow and largely independent

of neuronal firing in OB. In contrast to other patterns of slow oscillations described in the

adult brain, the RR is independent of brain state and does not change in the presence of anes-

thesia. On the other hand, discontinuous theta bursts result from the activation of MTCs

within OB local circuits. These findings support previous observations in vitro [68]. In adult

mice, network activity in theta band emerges from respiration-coupled sensory input in the

glomerular layer [69], and MTCs are mainly involved in the generation of fast oscillatory activ-

ity in gamma band [70–73]. Similarly, fast rhythms are absent in the developing OB [74], and

beta band activity was induced only in the presence of odors. The protracted emergence of fast

oscillations might result from late integration of OB interneurons into local circuits and from

age-dependent intrinsic biophysical properties of MTCs. As a consequence, it has been postu-

lated that the developing OB encodes only first-order (e.g., odor identity) but not second-

order sensory information (e.g., odor context) [75,76].

The presence of both stimulus-related and endogenous network activity raises the question

of whether and, if so, how both activity types either concurrently or independently shape the

maturation of the olfactory system. Already the role of spontaneous activity endogenously gen-

erated in the sensory periphery has been the subject of debate. Discontinuous OB bursts in

neonatal mice might have a permissive role in the establishment of precise connectivity that

is inherent in an olfactory map [77]. However, it remains unclear how the spontaneous and

stimulus-evoked activities in OB create a coherent sensory representation lacking mutual per-

turbations. In other sensory systems, the two types of activity are temporally separated. For

example, spontaneous retinal waves and cochlear bursts diminish and disappear with the onset

of light sensitivity and hearing. Therefore, they do not interfere with stimulus-evoked activity.

In OB, the two spontaneous and stimulus-evoked activities coexist. Elucidation of their mecha-

nisms, as initiated in the present study, will enable us to disentangle their function(s) along the

developing olfactory pathway.

In sharp contrast to most sensory pathways, the olfactory system bypasses a thalamic relay

and directly conveys information from OB to cortical areas. Much research has focused on the

PIR, where the bulbar topography is largely discarded and dense inputs from OB are inte-

grated to form odor percepts [78–81]. However, also LEC neurons respond to odors [82,83]

and have been proposed to act as a modulator of olfactory coding through interactions with
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the PIR [24,84,85]. The present results show that already at neonatal age, a tight coupling links

the OB with LEC. MC axons target layer I of neonatal LEC as previously shown for adults

[86,87]. These projections mediate the coupling by synchrony between the two areas as well as

the early drive from OB to LEC. The neonatal LEC and OB show similar patterns of oscillatory

activity, RR, and theta bursts, albeit with lower power in LEC. The coupling by synchrony

between the two areas peaked within the same frequency bands, 2–4 Hz and 4–12 Hz. Given

the measures used for the assessment of synchrony, it is unlikely that similarities result from

volume conduction. Reflecting the more pronounced OB-to-LEC innervation as compared

with feedback projections, the entorhinal firing was more strongly timed by the phase of RR

and theta bursts in the OB than the OB firing was driven by the entorhinal activity. The cross-

covariance analysis of spike trains demonstrated that the OB drives LEC via monosynaptic

and polysynaptic projections. Therefore, OB controls LEC not only directly but also via addi-

tional brain areas such as PIR, which is driven by OB and strongly coupled with LEC. Medial

septum might be another brain area involved in the indirect OB–LEC coupling, since it has

been shown to control the synchronization of sniffing frequency and limbic theta oscillations

[88]. This multifold gating may augment the efficiency of olfactory control on limbic circuits.

In the long term, the olfactory control seems to shape these circuits during development.

Chronic lesioning of olfactory receptors during the first postnatal week that decreases the abil-

ity of neonatal pups to process olfactory information diminished the entorhinal firing. There-

fore, even though MC axonal projections reach the entorhinal cortex prenatally, the functional

coupling within OB–LEC networks is still refined during the first postnatal week.

Although feedback projections from LEC (and PIR) to OB emerge early in life, they do not

play a role in the entrainment of neonatal activity, as monosynaptic top-down coupling was

absent. Possibly, this is due to the delayed development of the OB interneuronal circuitry,

which receives most of the top-down projections. Hence, their function seems to mature post-

natally to reach the anticipatory top-down modulation and optimal input discrimination that

have been identified at adult stage [33]. Recent findings revealed that the cellular substrate of

feedforward and feedback interactions between OB, LEC, and PIR of adult mice are highly

complex [24]. We hypothesize that, under the influence of excitatory inputs from OB, the local

entorhinal circuitry is activated. MC axons target layer I, where they terminate on dendrites of

multipolar and pyramidal cells based in layers II and III [20], suggesting that coordinated OB

activity may cause an overall excitation in LEC that might facilitate the formation and refine-

ment of local circuits.

Olfactory information reaches the adult HP (CA1 and dentate gyrus) via reelin-positive

neurons in LEC [24,89]. Along these axonal projections, the oscillatory activity is synchronized

and enables directed functional interactions between OB, LEC, and HP. In turn, HP unidirec-

tionally projects to PFC. At a functional level, the communication across areas involves

oscillatory activity that temporally coordinates the neuronal assemblies. For example, respira-

tion-related slow activity has recently been found to occur simultaneously with theta oscilla-

tions [90] and moreover entrain faster beta and gamma oscillations in LEC, HP, and PFC

[45,91,92]. Taking into account the role of HP and PFC for cognitive processing [93], the OB

activity that directly entrains the limbic circuit via LEC activation might represent a powerful

control mechanism of memory and executive performance of adult [94,95].

It is tempting to speculate about the potential functions of OB-driven entrainment of LEC

during neonatal development, before the emergence of cognitive abilities. Our previous results

demonstrated that LEC acts as gatekeeper of prefrontal–hippocampal interactions shortly after

birth [11]. Discontinuous theta bursts in LEC drive the oscillatory entrainment and time the

firing of both prelimbic subdivision of PFC and CA1 area of the intermediate/ventral HP

(Fig 10). Here, we show that MTC-dependent theta activity of neonatal OB boosts RR and
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theta bursts in LEC. On the other hand, olfactory stimuli elicit even faster entrainment of OB–

LEC circuitry, with beta band oscillations being only detectable in the presence of odors, such

as octanal. This is in line with LEC–hippocampal coupling at beta frequency in adult rats dur-

ing odor learning [96]. An important issue that remains to be elucidated is whether specific

scents that the pups naturally encounter during development, such as maternal odors, shape

the network function even stronger than “artificial” odors. The effects of maternal odor on

physical, neuroendocrine, and behavioral development of pups have been extensively investi-

gated [27,97,98], yet very little is known about the underlying cellular and circuit mechanisms.

We propose that endogenously generated and odor-evoked OB activity, especially as a result of

maternal odor, might increase the level of excitability within entorhinal–prelimbic–hippocam-

pal networks and strengthen their wiring. By these means, the olfactory system could facilitate

the postnatal maturation of limbic circuitry and, ultimately, the emergence of cognitive

abilities.

Materials and methods

Ethics statement

All experiments were performed in compliance with the German laws (Tierschutzgesetz) and

the guidelines of the European Union for the use of animals in research (European Union

Directive 2010/63/EU) and were approved by the local ethical committee (Behörde für

Gesundheit und Verbraucherschutz, ID 15/17).

Experimental model and subject details

Mice. Timed-pregnant C57Bl/6J and Tbet-cre mice from the animal facility of the University

Medical Center Hamburg-Eppendorf as well as B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J

mice (Ai40[RCL-ArchT-EGFP]-D, Jackson Laboratory, stock no.: 02118) and Tbet-cre;Arch-

T-EGFP mice (bred by the animal facility of the University Medical Center Hamburg-

Eppendorf) were housed individually in breeding cages at a 12 h light / 12 h dark cycle and fed

ad libitum. Mouse lines used for CLARITY experiments (Tbet-cre mice, B6.Cg-Gt(ROSA)
26Sortm9(CAG-tdTomato)Hze/J (Ai9(RCL-tdT), Jackson Laboratory, stock no: 007909 and Tbet-cre;

tdT mice) were bred in the animal facility at RWTH Aachen University under similar conditions.

The day of vaginal plug detection was defined as E0.5, and the day of birth was assigned as P0.

Male mice underwent sensory manipulation, light stimulation, pharmacological treatment, and

multisite electrophysiological recordings at P8–10. For CLARITY experiments, male and female

mice were used. Genotypes were determined using genomic DNA and following primer sequence

(Metabion, Planegg/Steinkirchen, Germany): for Cre in Ai40(RCL-ArchT-EGFP)-D mice: PCR

forward primer 50-ATCCGAAAAGAAAACGTTGA-30 and reverse primer 50-ATCCAGGTTAC

GGATATAGT-30; for ROSA26-wt PCR forward primer 50-AAAGTCGCTCTGAGTTGTTAT-30

and reverse primer 50-GGAGCGGGAGAAATGGATATG-30; for GFP-tg PCR forward primer

50-CTGGTCGAGCTGGACGGCGACG-30 and reverse primer 50-GTAGGTCAGGGTGGTCAC

GAG-30; for Cre in Ai9(RCL-tdT) mice: forward primer 50-CATGTCCATCAGGTTCTTGC-30

and reverse primer 50-AGAGAAAGCCCAGGAGCAG-30; for tdTomato forward primer 50-

GGCATTAAAGCAGCGTATCC-30 and reverse primer 50 CTGTTCCTGTACGGCATGG-30.

The PCR reactions were as follows: 10 min at 95 ˚C, 30 cycles of 45 s at 95 ˚C, 90 s at 54 ˚C, and

90 s at 72 ˚C, followed by a final extension step of 10 min at 72 ˚C (Cre-tg and ROSA26-wt), 10

min at 95 ˚C, 30 cycles of 45 s at 95 ˚C, 90 s at 68 ˚C, and 90 s at 72 ˚C, followed by a final exten-

sion step of 10 min at 72 ˚C (GFP-tg). In addition to genotyping, EGFP expression in OB prior to

surgery was detected using a dual fluorescent protein flashlight (Electron microscopy sciences,

Hatfield, PA, USA).
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Surgical procedures

Surgical preparation for electrophysiology and light delivery in vitro. For patch-clamp

recordings, pups were decapitated, and brains were sliced in 300 μm–thick coronal sections.

Slices were incubated in oxygenated ACSF containing (in mM) 119 NaCl, 2.5 KCl, 1

NaH2PO4, 26.2 NaHCO3, 11 glucose, 1.3 MgSO4 (320 mOsm) at 37 ˚C. Prior to recordings,

slices were maintained at room temperature and superfused with oxygenated ACSF.

Surgical preparation for electrophysiology and light delivery in vivo. For recordings in

nonanesthetized state, 0.5% bupivacain / 1% lidocaine was locally applied on the neck muscles.

For recordings under anesthesia, mice were injected i.p. with urethane (1 mg/g body weight;

Sigma-Aldrich, St. Louis, MO, USA) prior to surgery. For both groups, under isoflurane anes-

thesia (induction: 5%, maintenance: 2.5%) the head of the pup was fixed into a stereotaxic

apparatus as previously reported [9].

Viral transfection of MTCs. Transfection of MTCs with a ChR2 derivate was achieved by

injecting 200–400 μl of the construct (pAAV-Ef1a-DIO hChR2(E123T/T159C)-EYFP, 100 μl

at a titer� 1 × 1013 vg/mL, Addgene, Watertown, MA, USA) unilaterally in the OB of P0–1

pups.

The surgery protocols are described in detail in the Supporting Information.

Electrophysiology

Electrophysiological recordings in vivo. One-shank electrodes (NeuroNexus, MI, USA)

with 16 recording sites were inserted into dorsal (depth 0.5–1.2 mm, angle 0˚) or ventral OB

(1.4–1.8 mm, angle 0˚) as well as in LEC (depth: 2 mm, angle: 10˚ from the vertical plane).

Two-shank optoelectrodes (Buzsaki16-OA16LP, NeuroNexus, Ann Arbor, MI, USA) with 8

recordings sites on each shank aligned with an optical fiber ending 40 μm above the top

recording site were inserted into ventral OB. Extracellular signals were band-pass filtered (0.1

Hz–9 kHz) and digitized (32 kHz) by a multichannel amplifier (Digital Lynx SX; Neuralynx,

Bozeman, MT, USA) and Cheetah acquisition software (Neuralynx).

Electrophysiological recordings in vitro. Whole-cell patch-clamp recordings were per-

formed from MCs identified by their location in the MCL and visualized by membrane-bound

EGFP. All recordings were performed at room temperature. Recording electrodes (4–9 MO)

were filled with K-gluconate based solution containing (in mM): 130 K-gluconate, 10 HEPES,

0.5 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 8 NaCl (285 mOsm [pH 7.4]), and 0.5% biocytin for post

hoc morphological identification of recorded cells. Recordings were controlled with the Ephus

software [99] in the MATLAB environment (The MathWorks, Natick, MA, USA).

Morphological investigation

CLARITY. Brains from neonatal mice of both sexes were sliced in 1 mm–(for LEC) and

500 μm–thick (for OB) coronal sections. To maintain the structural integrity, the tissue was

fixed overnight at 4 ˚C in hydrogel fixation solution containing 4% acrylamide, 0.05% bis-

acrylamide, 0.25% VA-044 Initiator, 4% PFA in PBS−/−. After polymerization and embedding,

the nuclear marker DRAQ5 (1:1,000) was added to the samples. After washing steps, the sam-

ples were incubated for 24 h in RIMS80 containing 80 g Nycodenz, 20 mM PS, 0.1% Tween

20, and 0.01% sodium acid.

Retrograde tracing. For retrograde tracing, anesthetized P3–4 mice received unilateral

FG (Fluorochrome, Denver, CO, USA) injections into OB (0.8 mm anterior from the fronto-

nasal suture, 0.8 mm from midline) or LEC (0 mm posterior to bregma, 5 mm from midline).

After 4–5 d, pups were deeply anesthetized and perfused at P8.

All staining protocols are described in detail in the Supporting Information.
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Manipulations

Light stimulation in vitro. Whole-cell current-clamp recordings were performed from

ArchT-EGFP- or Chr2-EYFP-expressing MTCs in coronal slices from neonatal Tbet-cre;

ArchT mice or Tbet-cre mice transfected with a cre-dependent virus carrying ChR2. Yellow

light pulses (595 nm) of different light intensities (1.5–19.3 mW mm−2) were applied to test

the effect of ArchT stimulation on the membrane potential. Trains of blue light pulses (470

nm, 3 ms) of different frequencies where applied to induce action potential firing in

ChR2-transfected MTCs.

Light stimulation in vivo. For light-induced inhibition of MTC activity, trapezoid light

stimulation was applied using a diode-pumped solid-state (DPSS) laser (Cobolt Mambo, 594

nm, Omicron Laserage, Rodgau-Dudenhofen, Germany). For activation of MTCs, pulsed

(laser on-off) light stimulations generated with a diode laser (473 nm; Omicron Laserage, Rod-

gau-Dudenhofen, Germany) were used. Resulting light power was in the range of 38.2–103.8

mW mm−2 at the tip of optical fiber. Both lasers were controlled with an arduino uno (Ardu-

ino, Ivrea, Italy).

Naris occlusion. One naris was closed using silicon adhesive (Kwik-Sil, World Precision

Instruments, Sarasota, FL, USA). After a recovery period of 5 min, the recording was pursued

while one naris was sealed.

Pharmacological inactivation. To block the firing of OB neurons, lidocaine hydrochlo-

ride 4% in 0.9% NaCl, ([pH 7.0] with NaOH) was slowly infused into the OB.

Odor stimulation. An eight-channel dilution olfactometer (Aurora Scientific, Aurora,

ON, Canada) was used for stimulus delivery.

Lesion of nasal epithelium. Methimazole (Sigma-Aldrich, 100 mg/kg in sterile saline) or

saline was injected i.p. at P3.

All manipulation protocols are described in detail in the Supporting Information.

Quantification and statistical analysis

Immunohistochemistry quantification. Images were analyzed using ImageJ.

Detection of respiration frequency. Respiration was monitored using a piezo-electric

sensor placed under the pup’s chest.

LFP analysis. Data were analyzed offline using custom-written scripts in the MATLAB

environment (Version 9, MathWorks, Natick, MA, USA).

For details, see the Supporting Information.

Statistics. Statistical analysis was performed using SPSS Statistics 22 (IBM, Armonk, NY,

USA) or MATLAB. Gaussian distribution of the data was assessed using the Kolmogorov-

Smirnov test. None of the data sets were normally distributed. Therefore, data were tested for

significance using Wilcoxon signed-rank test (2 related samples), Wilcoxon rank-sum test (2

unrelated samples), Friedman test (>2 related samples; Wilcoxon signed-rank post hoc test

with Bonferroni correction), and Kruskal-Wallis test (>2 unrelated samples; Wilcoxon rank-

sum test post hoc test with Bonferroni correction). Differences in proportions were tested

using χ2 test. For classification of single-unit responses to light stimulation, significant firing

rate changes were assessed statistically using Wilcoxon signed-rank test. Data are represented

as median and iqr. Values were considered as outliers and removed when their distance from

the 25th or 75th percentile exceeded 1.5 times the interquartile interval.

Supporting information

S1 Fig. (Related to Fig 1). Top-down connectivity between OB and LEC in neonatal mice.

(A) Photographs of a 50 μm–thick coronal section from a P8 mouse depicting retrogradely
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labeled neurons in LEC (middle) after injection of FG into OB (100 μm–thick coronal section,

left) at P4. Right, counterstaining for CamKII of the same section. (B) Coronal section shown

in (A) when displayed at higher magnification. CamKII staining (left) enables identification of

LEC sublayers IIa and IIb as well as laminar dissecans (“l.d.”). FG-labeled cell bodies (middle)

have been found in layers IIa and IIb as well as layer III. Most but not all FG-labeled cells over-

lapped with CamKIII staining (right). FG, Fluorogold; LEC, lateral entorhinal cortex; OB,

olfactory bulb; P, postnatal day; PIR, piriform cortex; rf, rhinal fissure.

(TIF)

S2 Fig. (Related to Fig 2). Reversal of RR and theta burst activity in OB of neonatal mice.

(A) Digital photomontage reconstructing the track of the DiI-labeled recording electrode in

the ventral OB of a P10 mouse in a 100 μm–thick coronal section stained with green fluores-

cent Nissl. (B) Laminar recording of band-pass (2–4 Hz) LFP activity in OB accompanied by

respiration as detected by a piezo-electric sensor. Gray boxes indicate the exhalation period.

(C) Left, laminar recording of band-pass (4–12 Hz) LFP activity in OB. Right, LFP activity

(gray dotted box) shown at larger magnification. Red line marks signal reversal. EPL, external

plexiform layer; GCL, granule cell layer; GL, glomerular layer; IPL, internal plexiform layer;

LFP, local field potential; MCL, mitral cell layer; OB, olfactory bulb; P, postnatal day.

(TIF)

S3 Fig. (Related to Fig 2). Characterization of activity patterns in the dorsal and ventral

OB of neonatal mice. (A) Left, digital photomontage reconstructing the track of the DiI-

labeled recording electrode (red) in the dorsal OB of a green fluorescent Nissl-stained

100 μm–thick coronal section. The gray dots correspond to multiple recording sites spanning

all OB layers. Right, the corresponding LFP recording of the oscillatory activity in EPL of a P10

mouse displayed band-pass filtered and accompanied by the wavelet spectrogram. (B) Same as

A for ventral OB. (C) Box plots displaying the power of RR (green) and theta bursts (purple) in

the dorsal and ventral OB. (D) Box plots displaying the occurrence, duration, and amplitude of

theta bursts in dorsal and ventral OB. (E) Box plots displaying the mean imaginary coherence

of RR (green) and theta bursts (purple) between dorsal OB and LEC as well as between ventral

OB and LEC. In (C)–(E), gray dots correspond to individual animals. (Wilcoxon rank-sum

test). Data are available in S1 Data. EPL, external plexiform layer; GCL, granule cell layer; GL,

glomerular layer; IPL, internal plexiform layer; LFP, local field potential; MCL, mitral cell

layer; OB, olfactory bulb; P, postnatal day.

(TIF)

S4 Fig. (Related to Fig 2). Effects of urethane anesthesia on the network activity in neonatal

OB. (A) Power spectra (mean ± SEM) of LFP recorded in the neonatal OB before (blue)

and during (red) urethane anesthesia when calculated for the entire trace (left) and for

concatenated time windows of theta bursts (right). Insets, box plots displaying RR and theta

area power before and during urethane anesthesia (n = 12, 1 outlier removed). (B) Box plots

displaying the occurrence and duration of theta bursts as well as the level of discontinuity of

theta bursts measured as fraction of recording time with activity in theta band in neonatal OB

(n = 18). Gray dots and lines correspond to individual animals. (�p< 0.05; ���p< 0.001, Wil-

coxon signed-rank test). Data are available in S1 Data. LFP, local field potential; OB, olfactory

bulb; P, postnatal day; RR, respiration-related rhythm.

(TIF)

S5 Fig. (Related to Fig 3). Optogenetic silencing of MCs in vitro. (A) Top, digital photomon-

tage reconstructing by high-resolution confocal imaging the morphology of a biocytin-filled

(red), EGFP-stained (green) ArchT-positive MC in the OB of a P9 mouse. Bottom, same MC
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displayed at higher magnification. (B) Whole-cell current-clamp recording of an MC in the

OB of a P10 mouse before (top) and during repeated stimulation with 3 s–long yellow light

pulses (bottom). Note that the light caused hyperpolarization of RMP and abolished firing. (C)

Whole-cell current-clamp recordings of an MC in the OB of a P10 mouse during simultaneous

light stimulation (595 nm, 3 s yellow) and current injection (60 pA, 3 s) meant to mimic synap-

tic inputs. Note the efficient silencing of firing even in the presence of a depolarizing current

pulse. EGFP, enhanced green fluorescent protein; MC, mitral cell; OB, olfactory bulb; P, post-

natal day; RMP, resting membrane potential.

(TIF)

S6 Fig. (Related to Fig 3). Membrane potential oscillations of MCs in vitro. Top, representa-

tive current-clamp recording from a P9 MC (−48 mV) showing membrane potential oscilla-

tions. Bottom, power spectrum (blue, mean ± SEM) of membrane voltage oscillations of MCs

with firing rates < 0.1 Hz (blue). Power spectra of individual MCs are shown in gray. MC,

mitral cell.

(TIF)

S7 Fig. (Related to Fig 4). Effects of urethane anesthesia on the network activity in neonatal

LEC. (A) Power spectra (mean ± SEM) of LFP recorded in the neonatal LEC before (blue)

and during (red) urethane anesthesia when calculated for the entire trace (left) and for

concatenated time windows of theta bursts (right). Insets, box plots displaying RR and theta

power before and during urethane anesthesia (n = 12, 1 outlier removed, n = 13). (B) Box plots

displaying the occurrence and duration of theta bursts as well as the level of discontinuity of

theta bursts measured as a fraction of recording time with activity in theta band in neonatal

LEC (n = 18). Gray dots and lines correspond to individual animals. (�p< 0.05; ���p< 0.001;

Wilcoxon signed-rank test). Data are available in S1 Data. LEC, lateral entorhinal cortex; LFP,

local field potential; RR, respiration-related rhythm.

(TIF)

S8 Fig. (Related to Fig 7). Optogenetic activation of MCs in vitro. (A) Top, digital photomon-

tage reconstructing by high-resolution confocal imaging the morphology of a biocytin-filled

(red), EYFP-stained (green) ChR2-positive MC in the OB of a P6 mouse. Bottom, same MC dis-

played at higher magnification. (B) Representative voltage responses of a transfected MC to

trains of 3 ms–long light stimuli at different frequencies. (C) Bar diagram displaying the mean

firing probability of transfected neurons in response to repetitive light stimulation at different

frequencies (n = 4 neurons). Data are available in S1 Data. ChR2, channelrhodopsin 2; EYFP,

enhanced yellow fluorescent protein; MC, mitral cell; OB, olfactory bulb; P, postnatal day.

(TIF)

S9 Fig. (Related to Fig 7). Light-evoked spike responses of MTC in relationship to network

oscillations. (A) Raw signal, band-pass-filtered LFP (1–100 Hz, theta 4–12 Hz), MUA (<400

Hz), and SUA spike trains before, during, and after pulsed (8 Hz) light stimulation (473 nm)

of MTCs in OB of a P8 Cre+ Tbet-cre mouse. (B) Same as (A, dotted box) displayed at larger

timescale. LFP, local field potential; MTC, mitral and tufted cell; MUA, multiunit activity; OB,

olfactory bulb; P, postnatal day; SUA, single-unit activity.

(TIF)

S10 Fig. Cross-covariance analysis as a measure of directionality of interactions within

OB–LEC–PIR circuits. (A) Left, line plots showing smoothed mean standardized cross-

covariance of spike pairs recorded from OB and LEC (n = 251), OB and PIR (n = 62), and LEC

and PIR (n = 142) that have significant coupling at lags between −50 and 50 ms (black dotted
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lines correspond to significance threshold). Right, same plot displayed at higher magnification

to highlight the cross-covariance peaks for OB–LEC and OB–PIR spike trains. (B) Schematic

overview of mono- and polysynaptic connectivity between OB, LEC, and PIR as revealed by

cross-covariance analysis of spike trains. (C) Pie charts showing the percentage of monosynap-

tically coupled, polysynaptically coupled, and uncoupled unit pairs. LEC, lateral entorhinal

cortex; OB, olfactory bulb; PIR, piriform cortex.

(TIF)

S1 Table. (Related to S4 and S7 Figs). Effect of urethane anesthesia on activity patterns in

neonatal OB and LEC. The values are given as medians and interquartile ranges, and signifi-

cant differences are shown as �p< 0.05, ���p< 0.001 (Wilcoxon signed-rank test). LEC, lateral

entorhinal cortex; OB, olfactory bulb.

(DOCX)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying data for Figs 2D,

2E, 3E, 3F, 4D, 4E, 5B, 5E, 6D, 6E, 6F, 6G, 7C, 7D, 7E, 7F, 7G, 8B, 8C, 8D, 9C, 9D and 9E,

S3C, S3D, S3E, S4A, S4B, S7A, S7B and S8C Figs. Removed outliers are marked in red.

(XLSX)

S1 Text. Full description of all methods, including references.

(DOCX)
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