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Genome-wide analysis of Fusarium
graminearum field populations reveals
hotspots of recombination
Firas Talas* and Bruce A. McDonald

Abstract

Background: Fusarium graminearum (Fg) is a ubiquitous pathogen of wheat, barley and maize causing Fusarium
head blight. Large annual yield losses and contamination of foodstuffs with harmful mycotoxins make Fg one of
the most-studied plant pathogens. Analyses of natural field populations can lead to a better understanding of the
evolutionary processes affecting this pathogen. Restriction site associated DNA sequencing (RADseq) was used to
conduct population genomics analyses including 213 pathogen isolates from 13 German field populations of Fg.

Results: High genetic diversity was found within Fg field populations and low differentiation (FST = 0.003) was
found among populations. Linkage disequilibrium (LD) decayed rapidly over a distance of 1000 bp. The low
multilocus LD indicates that significant sexual recombination occurs in all populations. Several recombination
hotspots were detected on each chromosome, but different chromosomes showed different levels of recombination.
There was some evidence for selection hotspots.

Conclusions: The population genomic structure of Fg is consistent with a high degree of sexual recombination that is
not equally distributed across the chromosomes. The high gene flow found among these field populations should
enable this pathogen to adapt rapidly to changes in its environment, including deployment of resistant cultivars,
applications of fungicides and a warming climate.
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Background
Population genomics analyses can provide insight into
the evolutionary history of populations by providing
rich, genome-wide measures of genetic variation and its
related parameters including gene flow, population size
and reproductive system [1, 2]. Population genomics
studies can also identify genomic regions experiencing
exceptional degrees of recombination or selection.
Coupled with annotations that come out of genome
sequencing projects, it becomes possible to identify
candidate genes within interesting hotspots that may
underlie differences among populations that arise
through selection for local adaptation.
Recombination has an important effect on both geno-

typic diversity and evolutionary potential. The evolutionary

potential reflects a pathogen’s response to control mea-
sures such as fungicide applications and deployment of re-
sistant cultivars. Both homothallic inbreeding and asexual
reproduction can reduce the effective recombination rate
relative to random outcrossing [3, 4], generating a non-
random association among loci over the genome called
linkage disequilibrium (LD). The pattern of LD can provide
insight into an organism’s evolutionary history [5, 6]. Dif-
ferent genomic regions within the same population can
exhibit different LD patterns as a result of differences in
selection or differences in recombination rates [6, 7]. How-
ever the size of LD blocks will depend on the methods
used for detection. Recent advances in sequencing technol-
ogy allowed a significant expansion in the number of loci
used for LD measurements, which now include thousands
of single nucleotide polymorphisms (SNPs) that cover the
entire genome [8–10]. A recent study on Drosophila mela-
nogaster reported an extremely rapid decay of LD within
the surprisingly small distance of 10 bp [11, 12].
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Population genomic studies that search for associa-
tions between markers and quantitative traits require a
large number of genetic markers [1, 2], often using
hybridization approaches based on dense panels of SNP
markers that cover the genome. An alternative approach
invented by Baird et al. [3, 4], called restriction site asso-
ciated DNA sequencing (RADseq), combines a high
density of SNP markers, with a high genome coverage at
a relatively low cost [5, 6].
Fusarium head blight (FHB) disease causes significant

annual losses in cereal production around the world, in
addition to frequent contamination of foodstuffs with
harmful mycotoxins such as nivalenol, deoxynivalenol,
and zearalenone. FHB is caused by different species re-
lated to the genus Fusarium, including F. graminearum
(anamorph: Gibberella zeae (Schwein.) petch) and F. cul-
morum. F. graminearum sensu stricto (Fg ss) is one of
14 cryptic species within the F. graminearum species
complex [6, 7]. Fg ss is a homothallic fungus with a
mixed reproductive system including inbreeding, out-
crossing and asexual reproduction. Sexual reproduction
in this fungus is highly dependent on temperature, with
an optimum of 25–28 °C [8–10]. The pattern of asco-
spore release varies between regions and years [11, 12]
depending on the temperature and relative humidity.
Hence, recombination rates may differ among pathogen
populations as a result of differences in their local
environments.
Several studies of population genetic structure have

been conducted in different countries [9, 13–17] to bet-
ter understand the connection between genetic variation
and phenotypic variation at the population scale. Most
of the earlier population studies of Fg included a limited
number of isolates or a limited number of markers that
were not equally distributed over the four Fg chromo-
somes [4, 13, 14, 16, 18–20]. Our goals in this study
were to use population genomics analyses to: (i) Deter-
mine the genetic structure of field populations of Fg ss
to assess the reproductive system and the degree of
population subdivision occurring over regional spatial
scales; (ii) Determine the extent of linkage disequilib-
rium in the genome and conduct a genome-scale search
for recombination hotspots; (iii) Search for evidence of
selection hotspots that may contain candidate genes
under strong selection.

Results
Genetic variance analysis
Our analyses included thirteen field populations of Fg ss
coming from different geographical areas and environ-
ments across Germany (Table 1). The filtered RADseq
dataset included 1129 SNPs with a maximum of 1.8 %
missing data per SNP. Partitioning of the genetic
variance within and among field populations using

AMOVA revealed that 99.7 % of the total genetic vari-
ance was within field populations and only 0.3 % was
among populations. The corresponding overall Fixation
index (FST) was 0.003 while pairwise differentiation
between populations ranged from 0 to 0.036 (Fig. 1). FST
can range between 0 and 1 according to the degree of
population differentiation, with 0 representing popula-
tions that are indistinguishable.

Genetic diversity and population structure
Genetic dissimilarity between isolates based on modified
Rogers’ distance was used to conduct a principle coord-
inate analysis (PCoA). Though the first 8 coordinates
were consistent with a continuous distribution, the sec-
ond and third coordinates explained the highest overall
amount of genetic variation (34 %, and 39 % respectively,
Fig. 2). A small group of 11 isolates coming from dif-
ferent field populations was visible to the right side of
the main cluster relative to coord. 2 (Fig. 2). An additional
group of seven isolates was located at an intermediate dis-
tance between the other two groups relative to coord. 2.
The Structure analyses indicated a maximum of three sub-
divisions occurring among all isolates (Additional file 1:
Figure S1) with no geographical pattern evident.

Pattern of linkage disequilibrium
Analyses of linkage disequilibrium (LD) using a sliding
window of 50 kbp revealed different patterns of LD on
different chromosomes (Fig. 3). The correlation between
LD and physical distance was very low in an analysis
that considered all isolates as a single combined popula-
tion (r = −0.028), whereas it ranged from −0.41 to 0.11
when analyzing each field population separately (Table 2).
The locally fitted regression showed a low average LD (i.e.,
r2 < 0.10) across the four chromosomes. Linked markers
showing r2 values > 0.5 dropped rapidly to r2 < 0.2 within a
physical distance ranging from 600 to 1000 bp on different
chromosomes (Fig. 3). The slowest LD decay was detected
on chromosome 4.

Recombination rates
By analyzing the index of association (IA) and its
standardized form (rd) for each population and each
chromosome we found that all populations showed very
low values of disequilibrium, on average, across all chro-
mosomes. However, some field populations showed vary-
ing values of IA, including some with significant P-values,
on different chromosomes within the same population.
These differences may reflect variation in the degree of
sexual recombination experienced by different populations
and/or variation in frequencies of recombination among
chromosomes (Additional file 2: Figure S2). Some popula-
tions (e.g., HOH1) exhibit less recombination on some
chromosomes even after Bonferroni adjustment (Table 2).
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The high density of genetic markers allowed us to detect
the recombination events found on each chromosome in
each field population (Table 2). The chromosome-
wide recombination rate (2Ner) ranged from 0.3 × 10−5 to
7.3 × 10−5 crossovers per bp per generation (HOH2: Chr3,
WET2: Chr1, respectively), but in the combined popula-
tion it was 0.4 × 10−5 crossovers/bp/generation over the
four chromosomes (genome-wide recombination rate). By
analyzing SNP markers on a finer scale, hotspots of re-
combination were revealed across the genome for the
combined population (Fig. 4). The recombination hotspots
displayed a wide variation in recombination frequency,

ranging from 2.9 × 10−11 to 22.9 × 10−2 crossovers/bp/
generation across the genome. The number of base pairs
found in a hotspot ranged from 2 to 640 bp for the com-
bined population. The population recombination param-
eter (2Ner/chromosome/generation) was highest on Chr1
followed by Chr3, Chr4 and was lowest on Chr2 (Fig. 5).
Different populations showed different distributions of
recombination hotspots, though several hotspots were
shared among some populations (data not shown). Signifi-
cant enrichment for some domains was found within the
recombination hotspots (Table 3).

Neutral or non-neutral mutations
We used Tajima’s D test to determine the type and
strength of selection operating in genomic regions that
were in recombination hotspots. Measures of selection
were based on departures of SNP allele frequencies from
neutral expectations [6, 21]. A small number of regions
had small positive values (Fig. 4). The chromosome-wide
Tajima’s D values ranged from −1.47 (BIR: Chr3) to −0.05
(KEL: Chr4). The selection hotspots in the combined
population had D values ranging from −1.4 to 1.2. High
negative values are consistent with selective sweeps
while high positive values are consistent with balan-
cing selection.

Discussion
Population differentiation
We used RADseq to conduct the first population genom-
ics study in Fg ss. Though geographical distances among
the 13 field populations ranged from ~10 to 540 km, the
overall population differentiation in Germany was very
low (FST = 0.003), consistent with high gene flow across
Germany and indicating that the individual field popula-
tions are part of a single metapopulation. Zeller et al. [13]
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Fig. 1 Differentiation of Fg ss populations. Phylogenetic tree and
heat map based on the pairwise fixation index between 13 field
populations. Red indicates pairwise population comparisons that are
more similar and green indicates populations that are genetically
more distant

Table 1 The Fusarium graminearum field populations analyzed in this experiment

No. Country/Location Population No. isolates Place of
collection

Year of
collection

Latitude Longitude Avg. rain Avg. temp Avg night
temp

1 South Germany HOH1 27 Hohenheim 2008 N 48 42' 50'' E 9 12' 58'' 68.2 mm 23.3 °C 14.2 °C

2 HOH2 7 Hohenheim 2008 N 48 42' 50'' E 9 12' 58'' 68.2 mm 23.3 °C 14.2 °C

3 PLN 17 Plieningen 2008 N 48 42' 2'' E 9 12' 54'' 68.2 mm 23.3 °C 14.2 °C

4 BIR 22 Birkach 2008 N 48 43' 19'' E 9 12' 30'' 68.2 mm 23.3 °C 14.2 °C

5 TUB 23 Tübingen 2008 N 48 31' 22'' E 9 3' 7'' 63.4 mm 22.8 °C 13.1 °C

6 NUF 10 Nufringen 2008 N 48 37' 0'' E 8 52' 59'' 63.4 mm 22.8 °C 13.1 °C

7 ENT 11 Entringen 2008 N 48 33' 14'' E 8 58' 22'' 63.4 mm 22.8 °C 13.1 °C

8 HER 6 Herrenberg 2008 N 48 35' 46'' E 8 52' 12'' 63.4 mm 22.8 °C 13.1 °C

9 BOL 18 Bohlingen 2008 N 48 16' 59'' E 8 50' 59'' 153.5 mm 23.7 °C 14.2 °C

10 KEL 6 Kehl 2008 N 48 34' 59'' E 7 49' 0'' - 24.1 °C -

11 North Germany SCHICK 21 Schickelisheim 2007 N 52 15' 16'' E 10 51' 54'' 110.7 mm 21.8 °C 11.6 °C

12 WET1 24 Wetze 2006 N 51 44' 27'' E 9 54' 34'' 64.5 mm 21.0 °C 11.2 °C

13 WET2 21 Wetze 2009 N 51 44' 27'' E 9 54' 34'' 48.9 mm 24.1 °C 13.1 °C
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reported a similar genetic structure when comparing 253
isolates from two field populations in Kansas and one in
Minnesota separated by ~70–900 km using 94 AFLP
markers. These findings stand in contrast to another study
that included over 712 isolates of Fg ss sampled over a
spatial scale of ~330–1670 km, that found significant di-
vergence among populations in the Upper Midwest of the
USA for 10 polymorphic RFLP probes [22]. Significant
population subdivision (FST = ~0.02–0.44) was also found
for chemotypes in the North American populations based
on nine variable number of tandem repeat (VNTR)
markers using 130 isolates [23].
In an earlier study using the same German isolates, we

reported much higher FST values (i.e., FST = 0.20) [2, 16].
We believe that the different outcomes of the two
studies reflect differences in the types and numbers of
markers used [4, 24] and their distribution across the
genome. The earlier study used 19 SSR markers that
were unevenly distributed across the genome. The SSR
alleles were separated using 3 % agarose gels, a
method that is prone to scoring error due to impre-
cise binning of alleles. High FST values (0.09–0.76)
were also reported by Gale et al. [6, 19] in a popula-
tion analysis that included 534 North American iso-
lates using 10 PCR-RFLP markers.

Population structure
Principle coordinate analysis (PCoA) was shown to be a
suitable tool to monitor structure in human populations
[1, 6, 25]. Our PCoA revealed a large cluster containing
isolates from all 13 populations with respect to principle
coordinates 2 and 3 (Fig. 2). The PCoA also defined two
smaller clusters; one consisting of 11 and the other con-
taining 7 isolates. Statistical analysis of population struc-
ture identified a maximum of three possible subdivisions
(Additional file 1: Figure S1). Using a Bayesian model of
clustering, a specialized nivalenol-producing population
was identified in southern Louisiana [3, 9, 10, 19]. The
groups we identified by PCoA contained isolates origin-
ating from different field populations and contained
different chemotypes. Other studies of Fg ss populations
in Europe identified three different chemotypes without
any related clustering [12, 16, 26, 27]. We speculate that
the small clusters of isolates identified with the PCoA
may represent the emergence of new sub-populations
that are associated with higher aggressiveness or produc-
tion of novel chemotypes. A novel chemotype called NX-2
was reported in 2.8 % of 463 F. graminearum isolates
analyzed in the USA, suggesting the presence of a distinct
subpopulation [1, 7, 28]. We performed PCR-RFLP
(according to [3, 28]) on 40 isolates representing all three
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Fig. 2 Principal coordinate analysis. The two dimensions shown explain 74 % of the genetic diversity found among the 213 isolates included in
the analysis. Different colors and shapes identify the field population associated with each isolate
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PCoA clusters to determine if they carried new chemo-
types, but found only wild-type alleles.

Analyses of linkage disequilibrium reveal high
recombination
The pattern of LD across a genome reflects a popula-
tion’s history, including the effects of genetic drift,
selection, recent population admixture and frequency of
recombination [5, 8, 29]. The correlation between
physical distance and linkage disequilibrium was low in
sliding windows of 50 kbp (Fig. 4, Table 2). A rapid
decay in LD to less than r2 = 0.2 was found within a
distance of ~600–1000 bp for different chromosomes. A
similar rapid decay of LD was reported across a 10 bp
scale on autosomes and across a 30 bp scale on the X
chromosome of Drosophila melanogaster [7, 11, 12] and
within ~ 600 bp in wild nematode populations [8, 30]. In
some human populations, the LD decays within a few
kbp [6, 11]. The rapid decay of LD we observed in field
populations of F. graminearum is consistent with a high
degree of recombination in these populations. Similar

findings of very low LD and frequent recombination
were reported [9, 13–17, 31] for the close relative F. cul-
morum using multilocus sequence typing of 111 isolates
from Australia, West Africa/North Asia, and Europe
(14 countries). FST was 0.002 among these populations,
similar to our results. In our dataset, some SNPs on
chromosome 3 maintained moderate LD (r2 = 0.50–0.30)
despite being separated by long physical distances (25 kbp,
on average). This may result from epistatic selection act-
ing on the sites in disequilibrium [4, 13, 14, 16, 18–20, 32]
or could result from inversions [6, 21, 33].

Evidence of sexual recombination
The importance of sexual recombination is cryptic for
many homothallic fungi [13, 34], yet understanding a
pathogen’s reproductive system can affect disease manage-
ment strategies. The index of association (a multilocus
measure of LD) can provide insight into the relative
contributions of sexual and asexual reproduction in a
population [22, 35]. A mixed reproductive system was hy-
pothesized in Fg populations from Southern Louisiana
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Fig. 3 Linkage disequilibrium (LD). Pairwise LD in a sliding window of 50 kbp along each chromosome in the combined population of 213
Fusarium graminearum isolates sampled from 13 fields. Each point represents the LD (r2) between two SNPs among the 1129 SNPs used in the
analysis. The red line is the locally fitted regression of LD over physical distance
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Table 2 Recombination and selection parameters measured in each Fg ss field population organized according to chromosome

Population Chr. Sa Tajima’D Corr. (r2, d)b 2Ner (10
−5)c IA

d P value (IA) rd
e P value (rd) Bonferroni adj.

Hoh1 1 264 −1.35 0.00 0.83 1.61 0.00 0.03 0.001 ***f

Hoh2 1 146 −1.02 −0.02 0.76 1.81 0.01 0.05 0.007

PLN 1 197 −1.31 −0.01 5.10 0.30 0.13 0.01 0.129

BIR 1 190 −1.46 0.01 2.03 0.57 0.03 0.01 0.026

TUB 1 56 −1.13 0.00 1.05 1.30 0.00 0.02 0.003

NUF 1 199 −1.06 0.01 1.17 1.47 0.00 0.04 0.003

ENT 1 161 −1.11 −0.01 2.34 1.14 0.02 0.03 0.017

HER 1 152 −0.74 −0.01 1.31 3.00 0.00 0.08 0.001 ***

BOL 1 230 −1.30 0.00 0.46 1.96 0.00 0.04 0.001 ***

KEL 1 109 −0.88 −0.02 5.29 −0.24 0.66 −0.01 0.663

SCHICK 1 130 −1.39 0.11 1.46 1.73 0.00 0.03 0.001 ***

WET1 1 135 −1.39 0.00 0.71 1.60 0.00 0.03 0.001 ***

WET2 1 199 −1.22 0.01 7.28 0.50 0.03 0.01 0.032

Hoh1 2 148 −1.29 0.01 0.68 1.15 0.00 0.03 0.001 ***

Hoh2 2 88 −1.12 0.02 0.57 1.16 0.03 0.06 0.028

PLN 2 101 −1.34 0.01 1.45 −0.46 0.97 −0.02 0.966

BIR 2 95 −1.10 −0.01 2.42 −0.14 0.70 −0.01 0.703

TUB 2 37 −1.16 −0.01 1.15 0.81 0.02 0.02 0.017

NUF 2 105 −1.08 −0.04 0.72 2.33 0.00 0.11 0.001 ***

ENT 2 82 −1.19 −0.02 2.83 1.73 0.00 0.08 0.002

HER 2 73 −0.96 0.01 2.41 0.67 0.15 0.04 0.15

BOL 2 129 −1.32 0.00 1.01 1.07 0.00 0.04 0.003

KEL 2 43 −1.05 0.05 1.59 −0.17 0.63 −0.03 0.634

SCHICK 2 54 −1.38 −0.11 1.39 1.02 0.01 0.03 0.007

WET1 2 81 −1.43 0.00 0.95 0.37 0.10 0.01 0.101

WET2 2 105 −1.22 −0.02 1.17 0.14 0.27 0.01 0.266

Hoh1 3 166 −1.45 −0.02 0.78 1.24 0.00 0.03 0.001 ***

Hoh2 3 80 −0.98 −0.03 0.29 2.97 0.00 0.14 0.001 ***

PLN 3 113 −1.13 −0.02 1.60 0.29 0.14 0.01 0.139

BIR 3 113 −1.47 −0.02 1.72 −0.17 0.78 −0.01 0.781

TUB 3 49 −1.21 0.01 2.49 0.13 0.50 0.00 0.501

NUF 3 139 −1.06 0.00 1.10 0.74 0.05 0.02 0.045

ENT 3 103 −1.31 0.00 0.99 0.91 0.02 0.05 0.024

HER 3 82 −0.86 −0.02 1.19 1.20 0.04 0.06 0.042

BOL 3 160 −1.34 0.00 0.94 1.81 0.00 0.05 0.001 ***

KEL 3 65 −1.01 0.01 3.43 1.71 0.02 0.14 0.015

SCHICK 3 85 −1.31 0.00 1.87 0.81 0.02 0.02 0.022

WET1 3 92 −1.47 −0.01 1.23 1.71 0.00 0.04 0.001 ***

WET2 3 118 −1.25 −0.01 3.86 0.33 0.09 0.01 0.089

Hoh1 4 227 −1.09 −0.09 1.60 1.80 0.00 0.05 0.001 ***

Hoh2 4 126 −1.05 −0.11 2.41 3.19 0.00 0.25 0.001 ***

PLN 4 164 −0.87 −0.12 1.29 0.87 0.02 0.04 0.015

BIR 4 189 −0.86 −0.09 2.82 0.33 0.10 0.01 0.095
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and the Gulf Coast based on analyzing 10 PCR-RFLP loci
in 534 isolates [19, 23]. Our results indicate varying de-
grees of recombination among the German field popula-
tions (Table 2) and also among chromosomes within
individual field populations (Fig. 5). The combined popu-
lation had a very small IA value of 0.01, but this value was
significant at P = 0.001. A similar value of multilocus link-
age disequilibrium (IA = 0.02) was reported in Chinese
populations (169 isolates from 15 provinces) of Fg ss using
12 VNTR markers [36]. The individual German field
populations showed an overall pattern consistent with
recurring cycles of sexual recombination, with some pop-
ulations at linkage equilibrium across all chromosomes
(e.g., TUB), but others had significant disequilibrium on
one or two chromosomes (e.g., SCHICK). Though the
overall value of rd was low (0.03), HOH1 exhibited sig-
nificant disequilibrium across all chromosomes even after
applying a Bonferroni correction. We postulate that this
reflects recent population admixture. HOH1 was sampled
from naturally infected wheat within an experimental
research station operated by University of Hohenheim.
The naturally infected field included in our analyses was
located near an artificially infected field that was inocu-
lated with strains from across Germany, hence we expect
that some ascospore movement among fields would intro-
duce inoculated strains into our sampled field, generating
a significant degree of population admixture. Overall, we
believe that most of the observed disequilibrium in the
combined population as well as the individual field popu-
lations likely reflects admixture rather than a significant
degree of asexual reproduction within the German field
populations.

Hot spots of recombination and selection
Different degrees of recombination (2Ner) were mea-
sured among chromosomes in different field populations

(Fig. 5). These findings are in agreement with previous
work of Gale et al. [37] that reported differences in
chromosome-wide recombination rates in different gen-
omic regions based on an analysis of 111 Fg ss progeny
using 235 genetic markers. An analysis of 10,495 SNPs
between the two reference isolates of Fg ss (PH1:
NRRL31084 and GZ23639: NRRL29169) also identified
recombination hotspots [38]. The earlier analyses also
found the highest recombination rate on chromosome 1,
in agreement with our findings (Fig. 5), but our analyses
provided much finer resolution of hotspots compared to
the earlier studies by combining a large number of wild-
type field strains with a large number of markers. We
identified ~240 recombination hotspots characterized by
2.9 × 10−11 to 22.9 × 10−2 crossovers/bp/generation. Tsai
et al. [39] reported the persistence over evolutionary
time of hotspots in yeast by comparing the hotspot
positions in Saccharomyces cerevisiae and S. paradoxus,
finding shared recombination hotspots with 9–45 × 10−4

crossovers/bp. We detected several shared recombin-
ation hotspots among the individual field populations
when they were analyzed individually (data not shown).
Analyses of nucleotide diversity can be used to infer

processes affecting population evolution, based on devia-
tions from the null hypothesis of neutral variation in an
isolated population of constant size. We tested for de-
partures from neutrality using Tajima’s D test (Fig. 4).
Generally, positive values of Tajima’s D are interpreted
to indicate balancing selection and/or decreasing popu-
lation size, values near zero indicate neutrality, and
negative values indicate an excess of rare alleles resulting
from a selective sweep combined with recent population
expansion or purifying selection [8, 21]. Significance
thresholds for Tajima’s D are usually chosen as values
greater than +2 or lower than −2. None of our D esti-
mates reached this significance threshold, but this does

Table 2 Recombination and selection parameters measured in each Fg ss field population organized according to chromosome
(Continued)

TUB 4 95 −0.18 −0.08 2.37 0.81 0.02 0.02 0.015

NUF 4 184 −0.74 −0.07 2.50 0.71 0.06 0.02 0.059

ENT 4 143 −0.50 −0.11 2.68 0.07 0.38 0.00 0.379

HER 4 124 −0.41 −0.14 2.17 1.10 0.03 0.07 0.026

BOL 4 191 −0.75 −0.01 1.61 0.79 0.01 0.03 0.013

KEL 4 95 −0.05 −0.11 2.78 −0.34 0.79 −0.06 0.794

SCHICK 4 106 −0.49 0.10 1.13 1.24 0.00 0.03 0.001 ***

WET1 4 153 −0.69 −0.07 2.81 0.38 0.11 0.01 0.112

WET2 4 171 −0.98 −0.08 3.55 0.42 0.07 0.02 0.066
aNumber of polymorphic (segregating) sites
bCorrelation between LD (r2) and physical distance (d)
cChromosome-wide population recombination rate (crossovers/bp/generation)
dIndex of association
eAdjusted value of IA
fSignificant after Bonferroni correction at P (IA) < 0.001
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not mean that selection is not operating in the gen-
omic regions covered by our RADseq dataset. In a re-
cent RADseq study on three malaria vectors
(Anopheles gambiae, A. arabiensis, and A. merus),
Tajima’s D values ranged between −0.58 and 0.38 and
a t-test was used to show that the region with the
highest negative value had been affected by a selective
sweep [33]. Genome regions with high negative D
values may be interesting candidates for resequencing

studies to determine if genes in these regions have
experienced recent selective sweeps as a result of local
adaptation, for example as a response to fungicide
applications, or changes in cultivars or crop rotations
[40]. Recombination hotspots can develop in import-
ant genomic regions carrying favorable mutations
[41]. The recombination hotspots identified in our
analysis were enriched (P < 0.01) for genes encoding
DNA repair and membrane transport (Table 3).
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Conclusions
We found that field populations of Fusarium graminearum
in Germany belong to a single, highly recombined meta-
population. We identified ~240 recombination hotspots in
this German meta-population. The high recombination rate
observed across the genome coupled with the high gene
flow observed among populations may enable Fg ss to
adapt to a broad array of environmental stresses, including
climate warming, deployment of resistant cultivars and fun-
gicide applications. This study provides a baseline measure
of recombination in natural field populations and a first
indication of genomic regions that may be under selection.
The low LD found over short physical distance coupled
with a lack of population structure among these field popu-
lations of Fg ss optimizes all the parameters needed to per-
form a genome wide association study using these isolates.

Methods
Fungal collections
Thirteen field populations composed of an average of 16
isolates were sampled from naturally infected wheat fields
in major wheat growing regions of Germany. All 213 single
spore isolates were identified as Fg ss based on morphology
[16] and using species-specific genetic markers [42].

RAD library preparation
DNA was extracted using DNeasy Plant Mini Kits
(QIAGEN) and quantified using a Qubit 2.0 fluorimeter
(Invitrogen). DNA concentrations were adjusted to ~50 ng/
μl and digested with PstI. We adapted the RADseq protocol

developed by Baird et al. [3] with minor modifications. Fun-
gal DNA was barcoded using 21 P1 adapters (5’) and 6 P2
adapters (3’). Twenty-four libraries resulted after barcoding,
with each library containing 21 isolates with different P1
barcodes. Twelve libraries, each with different P2 barcodes,
were pooled into one lane and fungal DNA was sequenced
using 100 bp paired-end reads on an Illumina HiSeq2000.

Short read alignment on the reference genome and
calling SNPs
The raw data were quality checked using the FASTX tool-
kit 0.13. Sequences were quality trimmed from the 3’ end
using Trimmomatic 0.32 [43], omitting sequences where
the average quality scores in sliding windows of 5 bp
dropped below 20. All sequences shorter than 30 bp in
length were also omitted. Alignments were performed
using Bowtie2-2.2.0 [44] to generate bam files. Alignments
were sorted and indexed using samtools-0.1.19 [45]. Align-
ments were recoded with the isolate names according to
the P1 adapter. A reference genome dictionary was created
using Picard-tools-1.111 based on the chromosomal se-
quence of F. graminearum PH-1 (FG3, Broad Institute).
SNPs were called using the Genome Analysis Tool Kit
(GATK)-3.1-1 [46] from bam files and stored as a vcf file
after setting the genome dictionary of ploidy to haploid.
VCFtools v.3.5 [47] was used to discard all SNPs with a
quality less than 600 while keeping a minimum depth of
20. The minimum allele frequency was set to 0.07 and the
maximum allele frequency to 0.92. An additional filter was
applied to keep the minimum missing data at 4 individuals
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per locus. After all filtering, there were 378, 193, 245, and
313 SNPs on chromosomes 1, 2, 3, and 4 respectively.

Analyses of molecular variance and population structure
All isolates were grouped into field populations accord-
ing to their source. GenAlEx 6.5 [48] was used to per-
form an AMOVA analysis across the 1129 SNP loci with
1000 permutations. The principle coordinate analysis
(PCoA) included 213 isolates from 13 field populations.
The matrix of pairwise population differentiation was
visualized using the R package heatmap3. The All
Admixture model was implemented in Structure [49]
with 5000 burned-in iterations and 2000 Markov Chain

Monte Carlo (MCMC) iterations. The proposed number
of populations was set to 13 with 100 permutations each.
The maximum number of subpopulations was predicted
using the formula [50]:

ΔK ¼ L K þ 1ð Þ−2L Kð Þ þ L K−1ð Þj jð Þ=s L Kð Þ½ �

where K = the proposed number of populations, L = average
value of LnP (D) for the 100 permutations of Kth, and
s = average of corresponding permutations.
After taking into account the physical position of each

SNP, the pairwise linkage disequilibrium was calculated
using VCFtools v.3 [47] using a sliding window of 50 kbp

Table 3 Enrichment tests for gene ontology categories found within recombination hotspots

GO-ID Molecular function Category P-value Genes within hotspotsa Genes outside hotspotsb Enrichment

GO:0005773 Vacuole C 6.92E-04 10 177 OVER

GO:0009423 Chorismate biosynthetic process P 1.44E-03 2 2 OVER

GO:0016020 Membrane transport C 1.57E-03 44 1804 OVER

GO:0005215 Transporter activity F 1.57E-03 20 602 OVER

GO:0005507 Copper ion binding F 2.57E-03 4 33 OVER

GO:0043231 Intracellular membrane-bounded organelle C 3.11E-03 69 3322 OVER

GO:0016049 Cell growth P 3.12E-03 4 35 OVER

GO:0043227 Membrane-bounded organelle C 3.17E-03 69 3324 OVER

GO:0005774 Vacuolar membrane C 3.44E-03 7 118 OVER

GO:0000324 Fungal-type vacuole C 3.48E-03 8 151 OVER

GO:0000323 Lytic vacuole C 3.48E-03 8 151 OVER

GO:0000322 Storage vacuole C 3.48E-03 8 151 OVER

GO:0072423 Response to DNA damage checkpoint signaling P 3.52E-03 2 4 OVER

GO:0072402 Response to DNA integrity checkpoint signaling P 3.52E-03 2 4 OVER

GO:0046417 Chorismate metabolic process P 3.52E-03 2 4 OVER

GO:0006378 mRNA polyadenylation P 3.55E-03 3 17 OVER

GO:0031224 Intrinsic component of membrane C 3.72E-03 31 1189 OVER

GO:0044765 Single-organism transport P 3.79E-03 33 1294 OVER

GO:0006810 Transport activity P 3.98E-03 36 1456 OVER

GO:0016776 Phosphotransferase activity, phosphate group
as acceptor

F 4.09E-03 3 18 OVER

GO:0009987 Cellular process P 4.11E-03 92 4827 OVER

GO:0044437 Vacuolar part C 4.27E-03 7 123 OVER

GO:0022804 Active transmembrane transporter activity F 4.35E-03 8 157 OVER

GO:1902578 Single-organism localization P 4.45E-03 34 1360 OVER

GO:0031501 Mannosyltransferase complex C 4.88E-03 2 5 OVER

GO:0051234 Establishment of localization P 5.26E-03 36 1481 OVER

GO:0043631 RNA polyadenylation P 5.32E-03 3 20 OVER

GO:0040007 Growth P 5.99E-03 5 69 OVER

GO:1902626 Assembly of large subunit precursor
of preribosome

P 6.44E-03 2 6 OVER

aNumber of genes with the corresponding GO function located within recombination hotspots. bNumber of domains found in genes with the corresponding GO
function, located outside of recombination hotspots
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over each chromosome. Sliding windows of 50 kbp were
chosen based on results of genome analyses of two wild
populations of Saccharomyces that showed a pairwise LD
decay over 25–50 kbp [51]. Multilocus LD was calculated
using 1000 permutations with the R package Poppr 1.0.5
[52] based on a subset of 87, 50, 57, and 55 SNP loci on
chromosomes 1, 2, 3, and 4 respectively. These 249 SNP
loci were separated by at least 50 kbp to decrease the
contribution of linkage to disequilibrium among the loci.

Population genomic features
The recombination rate in the German population was an-
alyzed using LDhat 2.2 [53] in two ways: (i) by considering
all Fg isolates as a single large population; (ii) by consider-
ing each field population separately. These analyses took
into account the physical position of each SNP. The cor-
relation between LD and physical distance was calculated
using 1000 permutations. Recombination hotspots were
detected using Fearnhead’s method [54], which divides
each genomic region into 6–15 SNP-based sub-regions
that take into account the physical distance between SNPs.
A composite likelihood function was then applied to iden-
tify the hotspots. Departure from the null hypothesis of no
rate variation was then tested using a standard coalescent
model. A hotspot is called in a sub-region if: (i) there is at
least a five-fold increase in the local recombination rate
and (ii) the statistical test is significant at P < 0.001.
Estimates of recombination rate were based on a Bayesian
reversible jump MCMC model [53]. Tajima’s D was calcu-
lated based on pairwise nucleotide differences (π) and the
number of segregating sites (S) [55]. Visualization of SNP
distributions, population recombination rates, Tajima’s D
value and the positions of important genes on each
chromosome were performed using Circos-0.66 [56].
Enrichment analyses of GO categories using Fisher exact
tests were performed using Blast2go v.3.1.2 based on the
annotations of the reference isolate PH-1, and categorizing
the molecular function of each domain of the genes in the
hotspots relative to the whole genome. Since most of the
identified hotspots are fine-scaled (i.e., located in a single
gene), we chose the genes where the hotspots were located
for this analysis. We applied a cutoff of P < 0.01 to generate
the results shown in Table 3.
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