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Abstract

The cytochrome P450 CYP168A1 from Pseudomonas aeruginosa was cloned and

expressed in Escherichia coli followed by purification and characterization of function.

CYP168A1 is a fatty acid hydroxylase that hydroxylates saturated fatty acids, including

myristic (0.30 min-1), palmitic (1.61 min-1) and stearic acids (1.24 min-1), at both theω-1-

andω-2-positions. However, CYP168A1 only hydroxylates unsaturated fatty acids, includ-

ing palmitoleic (0.38 min-1), oleic (1.28 min-1) and linoleic acids (0.35 min-1), at theω-1-posi-

tion. CYP168A1 exhibited a catalytic preference for palmitic, oleic and stearic acids as

substrates in keeping with the phosphatidylcholine-rich environment deep in the lung that is

colonized by P. aeruginosa.

Introduction

Pseudomonas aeruginosa is an opportunistic pathogen, and the leading cause of chronic lung

infection in cystic fibrosis patients [1]. P. aeruginoisa uses the lung surfactant (which is essen-

tial for normal breathing, preventing alveoli collapse and acting as a system of lung defense in

the lungs) as a source of nutrients allowing it to colonize a large portion of the lungs. This

causes airway plugging and surface damage to epithelial cells [1]. The lung surfactant largely

consists of a class of phospholipids called phosphatidylcholine. This phospholipid is a source

of fatty acids, which are released during degradation by lipases and phospholipases, which are

excreted by P. aeruginosa [2–4]. These released fatty acids could be broken down through the

fatty acid degradation pathway via the β-oxidation cycle [5] to be used as a source of energy or

they could be taken up by the cell to be used for other cellular processes.

For instance, upon cellular uptake in other organisms, fatty acids can be metabolized by

cytochrome P450 enzymes (CYPs) to produce hydroxy fatty acids, which, in turn, can be used

for a variety of physiological functions, including diacid formation [5, 6], sophorolipid
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production [7], and the synthesis of cutin and suberin in plants [8]. While cytochromes P450

(CYPs) are not directly involved in the β-oxidation cycle of fatty acid degradation, they are

essential in forming or initiating the formation of hydroxy fatty acids and/or diacids. These

molecules can then act as an energy source as they can be degraded by the β-oxidation cycle

[5, 6].

It is unlikely, because of their cellular localization, that fatty acid hydroxylating CYPs in P.

aeruginosa will interact directly with the lung surfactant in order to have access to phosphati-

dylcholine. Therefore, in order for these CYPs to access the fatty acids released from phospha-

tidylcholine, P. aeruginosa expresses all the relevant genes involved in phosphatidylcholine

degradation (lipases: LipA and LipC, and phospholipases: PlcH and PlcR). The expression of

these genes results in fatty acids, glycerol and phosphorylcholine being released. The individual

constituents are further imported and degraded, via high levels of expression of many genes

involved in the fatty acid degradation pathway suggesting that P. aeruginosa may utilize phos-

phatidylcholine as one of the major nutrient sources in vivo [2] and could also be made avail-

able for interaction with the CYPs.

In this study, we have investigated CYP168A1 from P. aeruginosa, the sole member of its

cytochrome P450 family, to establish whether this enzyme is able to catalyze the hydroxylation

of fatty acids. We have cloned, expressed and purified CYP168A1 and have successfully dem-

onstrated the enzyme’s ability to hydroxylate biologically relevant fatty acids at the sub-termi-

nal carbons.

Materials and methods

Chemicals

Growth media, ampicillin, 5-aminolevulenic acid and isopropyl-β-D-thiogalactopyranoside

(IPTG) were purchased from Formedium, Ltd. (Hunstanton, UK). Chemicals used in the

preparation of phosphate buffers were purchased from Fisher Scientific (Loughborough, UK).

Voriconazole was purchased from Discovery Fine Chemicals (Dorset, UK). Palmitoleic acid

(C16:1) was purchased from Tokyo Chemical Industry UK Ltd (Oxford, UK). All other fatty

acids and chemicals were purchased from Sigma-Aldrich (Poole, UK), unless otherwise stated.

Heterologous expression and purification of CYP168A1 protein

The CYP168A1 gene (UniProt accession number Q9I107) was synthesized by Eurofins MWG

Operon (Ebersberg, Germany) including nucleotide sequence optimization for expression in

E. coli. The gene was designed to contain the triplet GCT, coding for alanine as the second

amino acid, to aid expression in E. coli and a C-terminus hexahistidine tag to facilitate purifica-

tion by affinity chromatography using Ni2+-NTA agarose. In addition an NdeI restriction site

was incorporated at the 5’ end and a HindIII restriction site at the 3’ end of the gene. The gene

was cloned using the NdeI and HindIII restriction sites into pET17b and transformed into

BL21(DE3)pLysS cells under ampicillin and chloramphenicol selection. Transformants were

used to inoculate Terrific broth containing ampicillin and grown at 37˚C and 180 rpm for 6

hours. 1 mM IPTG and 1 mM 5-aminolevulenic acid were added for induction prior to expres-

sion. CYP168A1 was expressed at 25˚C and 130 rpm for 20 hours. Cells were harvested (10

min at 3000 x g), re-suspended in 0.1 M potassium phosphate buffer (pH 7.4) and stored at

-80˚C overnight. Samples were thawed and spun at 140000 x g for 1 hour at 4˚C to recover the

solubilized protein in the supernatant. CYP168A1 was purified using Ni2+-NTA agarose (Qia-

gen) and eluted in 0.1 M Tris-HCl (pH 8.1) containing 25% (w/v) glycerol and 1% (w/v) L-his-

tidine. SDS-polyacrylamide gel electrophoresis was undertaken to assess protein purity.
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Determination of cytochrome P450 protein concentration

Reduced carbon monoxide difference spectroscopy was performed (light path, 10 mm)

according to the method of Estabrook et al., 1972 [9] to determine cytochrome P450 protein

concentration using an extinction coefficient of 91 mM-1 cm-1 at 450 nm [10]. Absolute spec-

tra were determined from 700 nm to 250 nm (light path, 4.5 mm). The heme concentration of

the purified CYP168A1, diluted with 10 mM potassium phosphate (pH 7.4), was determined

by measuring the Soret peak at 417 nm using an extinction coefficient of 125 mM-1 cm-1 [11]

and the total protein concentration was determined by measurement of the absorbance at 205

nm using an extinction coefficient of 31 ml mg-1 cm-1 [12] from which the percentage heme

incorporation was calculated. The Reinheitszahl (Rz) ratio of absorbance due to the heme

Soret peak at 417 nm and that due to the absorbance of the apoprotein was also determined as

a primary indicator of enzyme purity and heme incorporation [13]. All spectral determina-

tions were made using a Hitachi U-3310 UV-visible spectrophotometer (San Jose, CA).

Fatty acid binding studies

Fresh supplies of fatty acids were purchased prior to commencing ligand binding and catalysis

studies. Stock solutions containing 0.25 mg ml-1 myristic acid (C14:0), palmitic acid (C16:0),

stearic acid (C18:0) and oleic acid (C18:1) were prepared in dimethylformamide along with 0.5

mg ml-1 palmitoleic acid (C16:1), 0.1 mg ml-1 linoleic acid (C18:2) and 10 mg ml-1 arachidonic

acid (C20:4). These stock fatty acid solutions were progressively titrated against 5 μM of

CYP168A1 protein in 0.1 M Tris-HCl (pH 8.1) buffer containing 25% (w/v) glycerol using

quartz semi-micro cuvettes with equivalent volumes of dimethylformamide added to the cyto-

chrome P450-containing reference cuvette. Titrations of CYP168A1 with myristic (1.09, 2.19,

3.28, 4.38, 5.47, 6.57, 7.66, 8.076 μM), palmitic (0.98, 1.95, 2.93, 3.9, 4.88, 5.83, 6.83, 7.8 μM),

stearic (0.88, 1.76, 2.64, 3.52, 4.39, 5.27, 6.15, 7.03 μM), palmitoleic (0.98, 1.97, 2.95, 3.93, 4.91,

5.90, 6.88, 7.86 μM), oleic (0.89, 1.77, 2.66, 3.54, 4.43, 5.31, 6.20, 7.08 μM), linoleic (0.36, 0.71,

1.07, 1.43, 1.78, 2.14, 2.50, 2.85 μM) and arachidonic (33, 66, 99, 132, 165, 198, 231, 264, 297,

330, 363, 396, 429, 462, 495, 528, 561, 594, 627, 660 μM) acids were performed at room

temperature.

The absorbance difference spectra from 500 nm to 350 nm were determined after each

incremental addition of fatty acid. Ligand saturation curves were constructed from the change

in absorbance (ΔApeak-trough) against fatty acid concentration. The dissociation constant for the

fatty acid-CYP168A1 complex (Ks) was determined by nonlinear regression (Levenberg-Mar-

quardt algorithm) using a rearrangement of the Morrison equation [14] and the Michaelis-

Menten equation. The magnitude of the spin state change for type I difference spectra was cal-

culated from ΔA390-420 using an extinction coefficient of 100 mM-1 cm-1 [15]. All fatty acid

binding experiments were undertaken in quadruplicate.

In between ligand binding determinations, the quartz cuvettes were washed with deionized

water and then soaked for 30 min in 2-propanol at room temperature to desorb any residual

fatty acids from the cuvette surfaces, followed by rinsing a further three-times with 2-propanol

and then deionized water prior to drying.

Fatty acid reconstitution assays

The reconstitution assay system contained 0.25 μM CYP168A1, 2.5 μM spinach ferredoxin

(Sigma-Aldrich F3013), 0.25 μM spinach ferredoxin-NADP+ reductase (Sigma-Aldrich

F0628), 50 μM dilaurylphosphatidylcholine (DLPC), 100 μM fatty acid, 4 mM glucose-6-phos-

phate, 3 U/ml yeast glucose-6-phosphate dehydrogenase and 0.1 M potassium phosphate (pH

7.4). Assay mixtures were incubated at 37˚C for 5 min prior to initiation with 4 mM β-
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NADPH-Na4 and then incubated for a further 2.5 hours at the same temperature. Fatty acids

and their hydroxylated products were recovered by extraction with dichloromethane and

dried in a vacuum centrifuge. TMS derivatisation of the samples and analysis by GCMS were

performed as previously described [16]. Percentage product formation was calculated from the

GC peak areas of the fatty acid and the hydroxylated metabolites, with compound identities

confirmed by mass fragmentation patterns of fatty acid standards.

To test the effect of the azole antifungal drugs miconazole, tebuconazole and voriconazole

on CYP168A1 turnover, the reconstitution assays were repeated as described above using oleic

acid as the substrate, except 2 μM of azole dissolved in DMF was also present. Control assays

contained no azole, but an equivalent volume of DMF. Experiments were undertaken in

duplicate.

CYP168A1 reconstitution assays were also performed using 50 μM cholesterol, cholesta-

4-ene-3-one, progesterone and testosterone as potential substrates. For these assays the

CYP168A1 concentration was increased to 2 μM in the presence of 2.5 μM spinach ferredoxin,

0.25 μM spinach ferredoxin-NADP+ reductase, 50 μM DLPC, 4 mM glucose-6-phosphate, 3

U/ml yeast glucose-6-phosphate dehydrogenase, 0.1 M potassium phosphate (pH 7.4) and 4

mM β-NADPH-Na4, followed by 3 hours incubation at 37˚C. Steroid and sterol compounds

were extracted with ethyl acetate (2 x 3 ml), dried using a vacuum centrifuge and derivatized

firstly with methoxamine followed by silyation using BSTFA-TMCS and analyzed by GCMS

(57). Metabolites were identified from GC traces and MS fragmentation patterns compared

against positive controls for CYP mediated hydroxylation reactions performed in our

laboratory.

Azole binding studies

The azole antifungal drugs miconazole, tebuconazole and voriconazole were used in binding

studies with CYP168A1 in accordance with previously described methods [17, 18]. Stock solu-

tions of these azoles (0.75–10 mg ml-1) were prepared in DMF and progressively titrated

against 2 μM CYP168A1 in 0.1 M Tris-HCl (pH 8.1) buffer containing 25% (w/v) glycerol.

Equivalent volumes of DMF were added to a reference cuvette containing 2 μM of CYP168A1.

Titrations with miconazole (1.80, 3.60, 5.41, 7.21, 9.01, 10.81, 12.61 μM), tebuconazole (16.24,

32.49, 48.73, 64.97, 81.22, 97.46, 113.70 μM) and voriconazole (28.63, 57.26, 85.88, 114.51,

143.14, 171.77, 200.40, 229.02, 257.65 μM) were performed at room temperature.

The difference spectrum from 500 nm to 350 nm was determined after each incremental

addition of azole. Binding saturation curves were constructed from the ΔApeak-trough against

azole concentration. The dissociation constant (Kd) of the enzyme-azole complex was deter-

mined by nonlinear regression (Levenberg-Marquardt algorithm) using a rearrangement of

the Morrison equation [14]. All binding experiments were undertaken in duplicate.

MIC determinations

P. aeruginosa strains DSMZ 22644 and ATCC 39324 were grown in LB media overnight. Opti-

cal density at 520 nm of the overnight cultures was measured using a spectrophotometer. Cul-

tures were adjusted to give an optical density of approximately 0.2, which is equivalent to a cell

count of approximately 1 x 109. The cells were pelleted and resuspended in the same volume of

water. Further dilutions were made in M9 media with oleic acid used as the carbon source

(instead of glucose) to give approximately 2 x 105 cells. Stock concentrations of tebuconazole,

miconazole and voriconazole were prepared in dimethyl sulfoxide (12.8, 6.4, 3.2, 1.6, 0.8, 0.4,

0.2, 0.1, 0.05 and 0.025 mg ml-1). These stock azole solutions were diluted ten-fold in fresh LB

media and then diluted a further ten-fold with inoculum in microtiter plate wells. This gave
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final azole concentrations of 128, 64, 32, 16, 8, 4, 2, 1, 0.5 and 0.25 μg ml-1. The microtiter

plates were incubated at 37˚C for 24 hours. Following this initial incubation period, 20 μl of

0.2% Resazurin was added to each microtiter plate well. The plates were incubated for a further

48 hours at 37˚C before being read. A color change from purple to pink indicated the presence

of respiring cells. Each azole MIC determinations were performed in triplicate and scored

manually.

Data analysis

Curve-fitting of ligand binding data were performed using the computer program Quantum-

Soft ProFit (version 6.1.12). Phylogenetic analysis of CYP168A1 was performed using the Uni-

Prot BLAST online software resource (http://www.uniprot.org/blast/). Amino acid sequence

alignments were performed using ClustalX version 1.81 software (http://www.clustal.org/).

Results

Heterologous expression of CYP168A1

Overexpression of CYP168A1 in E. coli resulted in protein yields of ~900 nmol per liter of cul-

ture. SDS-polyacrylamide gel electrophoresis, following Ni2+-NTA agarose purification, con-

firmed that CYP168A1 was over 90% pure as judged by staining intensity with Coomassie

brilliant blue R-250. The absolute spectrum of CYP168A1 (Fig 1A) was characteristic of a ferric

cytochrome P450 enzyme that had been isolated predominately in the low-spin state with a

Soret peak at 417 nm [19, 20]. The A393-470/A417-470 value was 0.412, where 0.4 is indicative of

100% low-spin occupancy and 2.0 indicative of 100% high-spin occupancy [21], confirming

CYP168A1 to be over 95% low-spin in the oxidized resting state. The observed A417/A280 for

CYP168A1 was 1.26, which was within the expected range of 1 and 2 for a cytochrome P450

[13]. Heme incorporation was 77 to 81% calculated from measurements at A205 and A417 [11,

12] with a specific heme content of 15.3 nmol mg-1 protein comparable to the expected value

of 17 to 20 nmol mg-1 for cytochrome P450 enzymes [13]. The dithionite-reduced carbon

monoxide difference spectrum for CYP168A1 (Fig 1B) was characteristic of CYPs isolated in

their native state exhibiting a red-shifted Soret peak at 450 nm [9, 10].

Phylogenetic analysis of CYP168A1

P. aeruginosa strain PAO1 contains three putative cytochrome P450 monooxygenases PA2475,

PA3331 and PA3679 (https://www.pseudomonas.com/) and these have been assigned as

CYP168A1, CYP107S1 and CYP169A1 (https://drnelson.uthsc.edu/) with corresponding Uni-

Prot accession numbers Q9I107, Q9HYR4 and Q9HXW1, respectively.

Phylogenetic analysis using BLASTP indicated CYP168A1 to be confined to Acinetobacter
baumannii, Enterobacter cloacae and P. aeruginosa (sequence identities 98.2 to 99.8%) with

some genes putatively described as ’biotin biosynthesis cytochrome P450 bioI’. The latter ’bioI’

genes included A. baumannii UniProt accession number A0A1G5LRV6 (99.8% sequence

identity) and P. aeruginosa A0A0P1DBG8 and A0A0F7QM08 (both 99.8% sequence identi-

ties). Sequence identity falls to 35–42% for the next closest group of cytochrome P450

enzymes, which feature numerous CYPs from Streptomyces sp., and CYPs from Candidatus
Rokubacteria bacterium, Allokutzneria albata, Microcystis aeruginosa, Scytonema hofmannii,
Amycolatopsis orientalis, Saccharomonospora cyanea, Nitrolancea hollandica, Actinomadura
madurae, Kutzneria albida, and Actinobacteria bacterium. Nearly all of these CYPs were of

unknown function, but some were assigned putative functions of Linalool 8-monooxygenase,

CYP107B1, and peroxidase enzymes. Alignment of the CYP168A1 amino acid sequence
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against CYP107H1 enzymes from Bacillus subtilis (P53554), Bacillus amyloliquefaciens
(Q70JZ2) and Bacillus licheniformis (Q65MK8) showed that only 9 out of the 32 residues asso-

ciated with CYP107H1 function in Bacillus sp. [22] were also conserved in CYP168A1 (exclud-

ing the heme-coordinating cysteine residue) and that CYP168A1 shared only 31% sequence

identity with the Bacillus CYP107H1 enzymes. Therefore, CYP168A1 did not appear to be a

CYP107H homolog.

Fig 1. Spectral properties of CYP168A1. The absolute spectrum of a twenty-fold dilution of purified CYP168A1 in

the oxidized resting state (4.5 mm light path) is shown (A) in addition to the dithionite-reduced carbon monoxide

difference spectrum (light path 10 mm) of 9 μM purified CYP168A1 (B).

https://doi.org/10.1371/journal.pone.0265227.g001
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Fatty acids are able to bind to CYP168A1

The heme prosthetic group of CYPs exists in equilibrium between the low-spin (hexacoordi-

nate) form, characterized by a heme Soret peak at ~418 nm, and the high-spin (pentacoordi-

nate) form, characterized by a heme Soret peak at ~393 nm. The resting state of most CYPs is

predominantly the low-spin ferric form [23]. Ligand binding can perturb the spin state equi-

librium in two main ways. Substrates and other ligands can bind to the CYP (though the

ligands themselves do not directly coordinate to the heme) resulting in the displacement of the

axial-ligated water molecule from the heme ferric ion and a change in spin state from low- to

high-spin. The magnitude of the spin state change observed is dependent on both the CYP and

the ligand. For example, lauric acid binding to Streptomyces peucetius CYP147F1 causes 95%

of the enzyme molecules to undergo a low- to high-spin state transition [24], whereas for

eukaryotic CYP51 enzymes the spin state changes associated with substrate binding rarely

exceed 10% [25]. This low- to high-spin transition gives rise to a type I difference spectrum

that is characterized by a spectral peak at ~390 nm and trough at ~420 nm. Other ligands can

directly coordinate to the heme ferric ion (commonly through an aromatic nitrogen atom)

[19, 26], for example the binding of azole antifungals to CYP51 enzymes [27]. The resultant

complexes are low-spin (hexacoordinate) and often result in a red-shift of the Soret peak from

418 nm to 425–434 nm [19]. This direct coordination of the ligand to the heme ferric ion gives

rise to a type II difference spectrum [19]. The spectral peak varies from 425 nm (if the CYP

was 100% in the high-spin state before ligand binding) to 432 nm (if the CYP was 100% in the

low-spin state) with respective troughs of 390 nm and 410 nm. For CYPs of mixed spin state

the peaks and troughs will be at intermediate wavelengths.

Type I absorption difference spectra were obtained for all the fatty acids with 5 μM

CYP168A1. The peak at 393 nm and trough at 418 nm is most clearly shown for the difference

spectrum obtained with 0.5 μg ml-1 fatty acid and 5 μM CYP168A1 (Fig 2), equivalent to 2.19,

1.95, 1.76, 1.97, 1.77 and 1.78 μM for myristic, palmitic, stearic, palmitoleic, oleic and linoleic

acid, respectfully. The cumulative difference spectra obtained during the ligand titration for

myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic

acid (C18:1), and linoleic acid (C18:2) and the associated ligand saturation curves are shown

in Figs 3 and 4 for arachidonic acid (C20:4). These type I difference spectra suggest that all

seven fatty acids were potential substrates for CYP168A1. Spectral isosbestic points were

observed for palmitic (404 nm), stearic (404 nm), palmitoleic (406 nm), oleic (403 nm) and lin-

oleic (406 nm) acids. However, no clear isosbestic points were observed for myristic and ara-

chidonic acids due to the spectral peak at ~393 nm progressively diminishing above a

threshold fatty acid concentration whilst the spectral trough at ~421 nm continued to deepen.

It was important to optimize the stock fatty acid concentrations so as to obtain sufficient

ascendant points on the titration curve before reaching ligand saturation to facilitate curve fit-

ting of data and accurate Ks determination, especially as the type I difference spectra for some

fatty acids (notably stearic, palmitoleic and oleic acids) started to dissipate at higher ligand

concentrations (Fig 3). This may be caused by either slow aggregation of the CYP168A1-fatty

acid complex (although no visible precipitation was observed) or a perturbation of the spin-

state equilibrium of the CYP168A1-substrate complex so that some molecules transition to the

low-spin state by partial coordination of a water molecule as the sixth axial heme ligand. This

phenomenon was evident in the ligand saturation curve for palmitic acid with CYP168A1

reported by Tooker et al [28].

This phenomenon of partial dissipation of type I binding spectra at higher ligand concen-

trations had previously been observed for cholesterol (but not 4-cholesten-3-one) binding to

CYP125 from Mycobacterium tuberculosis [29]. Capyk et al [29] demonstrated this
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phenomenon was due to the ligand solvent (10% w/v 2-hydroxypropyl-β-cyclodextrin), as

when the solvent was changed (to 25 mM EDTA-bridged β-cyclodextrin dimer) the premature

dissipation of the type I difference spectrum was no longer observed with cholesterol. As the

partial dissipation of type I binding spectra appears to be both ligand- and solvent-specific,

both molecules must interact with the CYP protein to cause this effect. When the fatty acid sol-

vent was changed from DMF to ethanol the partial dissipation of the type I binding spectra

still occurred at higher ligand concentrations.

The binding saturation curves for all the fatty acids, except arachidonic acid, were best fit

using a rearrangement of the Morrison equation [14] (Table 1, Fig 3) to calculate the dissocia-

tion constant of the substrate-CYP168A1 complex (Ks), indicating tight binding to

CYP168A1. The Michaelis-Menten equation gave the best fit for arachidonic acid binding

(Fig 4). Stearic and linoleic acids bound the tightest to CYP168A1 with apparent Ks values

under 0.05 μM, followed by palmitic acid (Ks 0.12 μM), then oleic and palmitoleic acids (Ks

~0.15 μM) and myristic acid (Ks 0.25 μM), with arachidonic acid binding having the lowest

affinity (Ks ~460 μM). The fold-difference in apparent Ks values compared to stearic and lino-

leic acids were ~2-, ~3-, ~3- ~5-, and ~9160-fold for palmitic, oleic, palmitoleic, myristic, and

arachidonic acids, respectively. The high Ks value for arachidonic acid suggested it would be a

poor CYP168A1 substrate. Therefore, based on apparent ligand binding affinities, CYP168A1

exhibits a preference for C16 to C18 fatty acids. The magnitude of the low- to high-spin transi-

tions induced were 23, 58, 37, 66, 55, 28 and 32% for myristic, palmitic, palmitoleic, stearic,

oleic, linoleic and arachidonic acids, respectively, based on the observed ΔAmax values

(Table 1).

Fig 2. Type i absorbance difference spectra. Absorbance difference spectra were determined using 0.5 μg ml-1

myristic (C14:0), palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), oleic (C18:1) and linoleic (C18:2) acids and

5 μM CYP168A1 in quartz semi-micro cuvettes of 10 mm path length at room temperature. Composite type I

difference spectra and saturation curves for the titration of each fatty acid can be found in Fig 3.

https://doi.org/10.1371/journal.pone.0265227.g002
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Fig 3. Fatty acid binding to CYP168A1. Myristic, palmitic, stearic and oleic acids (0.25 mg ml-1 in DMF), palmitoleic acid (0.5 mg ml-1 in DMF) and

linoleic acid (0.1 mg ml-1 in DMF) were progressively titrated against 5 μM CYP168A1 in quartz semi-micro cuvettes of path length 10 mm. After each

1 μl addition of fatty acid the difference spectrum was measured against a CYP168A1-containing reference cuvette in which an equivalent volume of

DMF was added. Ligand saturation curves for myristic (filled circles), palmitic (filled squares), stearic (filled triangles), palmitoleic (empty circles), oleic

(empty squares) and linoleic (empty triangles) acids were constructed and fitted using a rearrangement of the Morrison equation [14]. Ligand binding

experiments were performed in quadruplicate, although only one replicate is shown.

https://doi.org/10.1371/journal.pone.0265227.g003
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CYP168A1 preferentially hydroxylates fatty acids at the ω-1 carbon

CYP168A1 was able to catalyze the hydroxylation of the saturated fatty acids myristic acid, pal-

mitic acid, and stearic acid at both the ω-1- and ω-2-carbons (Fig 5A and 5B), showing prefer-

ence for the ω-1-carbon (Table 2). In this assay system, CYP168A1 gave the highest catalytic

turnover with palmitic acid resulting in the formation of ω-1 hydroxypalmitic acid at 1.27

min-1 and ω-2 hydroxypalmitic acid at 0.34 min-1 (Fig 5C; Table 2). Using palmitic acid as sub-

strate resulted in 4.7- and 1.2-fold more ω-1-hydroxy product and 10.3- and 2-fold more ω-

2-hydroxy product being formed than when myristic acid and stearic acid were used, respec-

tively (Table 2). However, the proportion of myristic acid converted to ω-1-hydroxy product

Fig 4. Arachidonic acid binding to CYP168A1. Arachidonic acid (10 mg ml-1 in DMF) was progressively titrated

against 5 μM CYP168A1 in quartz semi-micro cuvettes of path length 4.5 mm. After each 1 μl addition of arachidonic

acid the difference spectrum was measured against a CYP168A1-containing reference cuvette in which an equivalent

volume of DMF was added. The ligand saturation curve was constructed and fitted using the Michaelis-Menten

equation.

https://doi.org/10.1371/journal.pone.0265227.g004
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than ω-2-hydroxy product was substantially higher than observed for the other two saturated

fatty acids. The mass fragmentation patterns of the CYP168A1 metabolites ω-1-hydroxypalmi-

tic, ω-2-hydroxypalmitic and ω-1-hydroxyoleic acids are shown in S1 Fig. The mass fragmen-

tation patterns for the TMS-derivatised fatty acid standards can be found in the publication by

Williams et al. [30].

CYP168A1 was also able to hydroxylate the unsaturated fatty acids palmitoleic acid, oleic

acid and linoleic acid, but only at the ω-1-carbon. Catalytic turnover with oleic acid was similar

to that of palmitic acid in terms of production of the ω-1-hydroxy metabolite ω-1-hydroxyoleic

acid (1.28 min-1) (Fig 5D, Table 2) and was 3.4- and 3.7-fold greater than the relative ω-

1-hydroxy metabolites produced when palmitoleic and linoleic acids were used as substrates.

Lower catalytic turnovers were observed with palmitoleic and linoleic acids (0.38 and 0.35

min-1, respectively) although both these fatty acids bound tightly to CYP168A1 (Ks values of

0.155 μM and>0.05 μM, respectively). Reconstitution assays with arachidonic acid showed no

detectable product formation and a large Ks value of 458 μM was obtained for arachidonic acid

with CYP168A1 (Table 1). No C-C cleavage of fatty acyl chains was detected in the assay prod-

ucts, suggesting that CYP168A1 was not a CYP107H homolog.

Catalytic turnover established the order of substrate preference to be palmitic acid (highest

turnover) followed by oleic acid, stearic acid, palmitoleic acid, linoleic acid and finally myristic

acid with the lowest turnover (5.3-fold lower than palmitic), whilst arachidonic acid was cata-

lytically inactive. In contrast, the fatty acid Ks data suggested the order of substrate preference

would have been stearic and linoleic acids, with the lowest Ks values, followed by oleic acid,

palmitoleic acid, myristic acid, and finally arachidonic acid with a 9000-fold larger Ks value

than stearic acid. Both stearic and linoleic acids gave similar apparent Ks values with

CYP168A1 and yet the catalytic turnover observed with stearic acid was 3.5-fold greater than

that for linoleic acid. Further investigations are required in order to determine the mecha-

nisms responsible for the observed differences in CYP168A1 catalytic turnover between

substrates.

CYP168A1 reconstitution assays using cholesterol, cholesta-4-ene-3-one, progesterone and

testosterone as potential substrates gave no oxygenated products, suggesting CYP168A1 is a

fatty acyl hydroxylase.

Table 1. Fatty acid binding affinities for CYP168A1.

Fatty acid Ks (μM) ΔAmax Low- to high-spin state change (%)

Myristic acid 0.249 ±0.103 0.144 ±0.08 22.8 ±1.6

Palmitic acid 0.117 ±0.056 0.290 ±0.015 58.1 ±3.0

Palmitoleic acid 0.155 ±0.083 0.185 ±0.006 37.0 ±1.2

Stearic acid <0.05 a 0.328 ±0.020 65.6 ±4.1

Oleic acid 0.142 ±0.012 0.277 ±0.014 55.4 ±2.8

Linoleic acid <0.05 a 0.142 ±0.013 28.3 ±2.6

Arachidonic acid 458 ±87 0.071 ±0.009 b 31.6 ±4.0 b

Type I difference spectra were observed for all seven fatty acids with 5 μM CYP168A1.

Mean Ks values from four replicates were calculated using a rearrangement of the Morrison equation [14] and are

shown ± standard deviations, except for arachidonic acid where the Michaelis-Menten equation was used.
a The Ks values for these two fatty acids were below the lower accuracy limit of the Morrison equation of 0.05 μM (1%

the concentration of the enzyme) [61].
b Path length of cuvettes used with arachidonic acid were 4.5 mm compared to 10 mm used with the other fatty acids.

Binding saturation was not achieved at 660 μM arachidonic acid.

https://doi.org/10.1371/journal.pone.0265227.t001
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Fig 5. Gas chromatograms of CYP168A1 assay metabolites. The chemical structures of TMS-derivatised ω-

1-hydroxy fatty acids (A) and ω-2-hydroxy fatty acids (B) are shown. Gas chromatograms for TMS-derivatized assay

metabolites obtained when palmitic acid (C) and oleic acid (D) were used as substrates are shown. Peak (i)

corresponds to palmitic acid, peak (ii) to ω-2-hydroxypalmitic acid, peak (iii) to ω-1-hydroxypalmitic acid, peak (iv) to

oleic acid and peak (v) to ω-1-hydroxyoleic acid (all TMS-derivatives). Mass fragmentation patterns of the palmitic

acid products can be found in the supporting information (S1 Fig). Other minor GC peaks were identified as

impurities present in the source fatty acids.

https://doi.org/10.1371/journal.pone.0265227.g005
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Azoles are able to bind to CYP168A1, but they have no effect on P.

aeruginosa growth

CYP168A1 was titrated against the azole antifungal drugs tebuconazole, voriconazole and

miconazole. The enzyme was able to bind each of the three azoles, eliciting type II difference

spectra (Fig 6), with apparent dissociation constants (Kd) for the azole-CYP168A1 complexes

of 0.18 ±0.01, 2.05 ±0.54 and 0.19 ±0.06 μM for tebuconazole, voriconazole and miconazole,

Table 2. Fatty acid hydroxylation by CYP168A1.

Fatty acid Carbon hydroxylated % Product a Turnover no.

(min-1)

Myristic acid ω-1- 11 ± 0.6 0.27 ± 0.02

ω-2- 1.3 ± 0.03 0.033 ± 0.001

Palmitic acid ω-1- 49 ± 3.8 1.27 ± 0.10

ω-2- 13 ± 4.0 0.34 ± 0.10

Palmitoleic acid ω-1- 15 ± 2.4 0.38 ± 0.06

ω-2- - -

Stearic acid ω-1- 41 ± 2.9 1.07 ± 0.09

ω-2- 6.6 ± 0.5 0.17 ± 0.01

Oleic acid ω-1- 49 ± 1.2 1.28 ± 0.03

ω-2- - -

Linoleic acid ω-1- 14 ± 1.3 0.35 ± 0.03

ω-2- - -

Mean values from two replicates ± standard error are presented.
a percentage of substrate converted into hydroxylated product after 2.5 h incubation at 37˚C. The starting substrate and CYP168A1 concentrations were 100 μM and

0.25 μM, respectively. No hydroxylated products were obtained when 100 μM arachidonic acid was used as substrate.

https://doi.org/10.1371/journal.pone.0265227.t002

Fig 6. Binding of azole antifungals to CYP168A1. Miconazole (0.75 mg ml-1), tebuconazole (5 mg ml-1) and

voriconazole (10 mg ml-1) were progressively titrated against 2 μM CYP168A1 in quartz semi-micro cuvettes of path

length 4.5 mm. After each 1 μl addition of azole solution the difference spectrum was measured against a

CYP168A1-containing reference cuvette in which an equivalent volume of DMF was added. The cumulative type II

difference spectra are shown along with the ligand saturation curves which were fitted using a rearrangement of the

Morrison equation [14].

https://doi.org/10.1371/journal.pone.0265227.g006
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respectively, calculated from the ligand saturation curves (Fig 6). This was in contrast to Kd

values for tebuconazole, voriconazole and miconazole obtained with Candida albicans CYP51

of 0.036, 0.010 and 0.026 μM, respectively [27, 31]. The addition of 2 μM azoles to reconstitu-

tion assays containing 0.25 μM CYP168A1 showed they elicited no effect on the catalytic activ-

ity towards oleic acid when compared against the DMF control. However, the presence of

0.5% DMF in the CYP168A1 assay system caused a 10-fold reduction in oleic acid turnover.

Tebuconazole, voriconazole and miconazole were used in minimum inhibitory concentra-

tion (MIC) determinations with P. aeruginosa strains DMZ 22644 and ATCC 39324 grown on

oleic acid. In all cases, the azoles at concentrations up to 128 μg ml-1 had no inhibitory effect

on P. aeruginosa growth as the Resazurin indicator turned pink in all wells, indicating cell

respiration.

Discussion

Fatty acids are essential for cell life. Hydroxylation of these molecules can result in the forma-

tion of hydroxy fatty acids that can act as signaling molecules and can be used to produce

more complex molecules, such as diacids [7, 32]. Therefore, identification and characterization

of enzymes involved in fatty acid metabolism is important, particularly in pathogens, such as

P. aeruginosa, where insight into their function can be used to identify new potential targets

for novel inhibitors and teach us more about the mechanism of fatty acid degradation.

CYP168A1 was able to bind a range of biologically relevant fatty acids. The Ks range of

<0.05 to 0.25 μM for fatty acids that were catalytically active with CYP168A1 were similar to

those observed previously for Streptomyces peucetius CYP147F1 [24], Sorangium cellulosum
CYP267A1 [33], Streptomyces coelicolor A3(2) CYP105D5 [34], and some studies with Bacillus
megaterium CYP102A1 [35]. The Ks values in this study were similar to those recently reported

for P. aeruginosa CYP168A1 [28], with the exception for stearic acid which was over 6-fold

lower (<0.05 μM compared to 0.327 μM) and arachidonic acid which was over 400-fold higher

(458 μM compared to 0.96 μM) with the latter mainly due to the atypical difference spectrum

observed with arachidonic acid in this study. Higher Ks values have been observed (8 to

30 μM) with Bacillus subtilis CYP107H1 [36] and substantially higher Ks values (19 to

1065 μM) observed with Bacillus subtilis CYP102A2 and CYP102A3 [37].

CYP168A1 fatty acid turnover rates were similar to those obtained with Sphingomonas pau-
cimobilis CYP152B1 [38], with both CYPs giving highest turnovers with palmitic acid, and

with Sorangium cellulosum CYP267A1 [33], except the highest turnover was obtained for cap-

ric acid with CYP267A1. Fatty acid turnover rates with CYP168A1 were ~10-fold higher than

those observed with Mycobacterium marinum CYP153A16 and Marinobacter aquaeolei
CYP153A [39] and turnover of palmitic acid was 23-fold greater than observed with Mycobac-
terium tuberculosis CYP124 [40]. The CYP168A1 turnover numbers obtained in this study,

although being relatively low for cytochrome P450 monooxygenases, were similar to those

reported by Tooker et al [28] of 0.138 min-1 with lauric acid and 0.222 min-1 with arachidonic

acid, however, in this study no catalytic activity was observed with arachidonic acid. At present

we cannot account for this difference, although solubility / bioavailability of arachidonic acid

in the in vitro reconstitution assay may be a contributory factor. Interestingly, Tooker et al

[28] CYP168A1 Km for lauric acid was 25-fold higher than the Ks value, suggesting that other

parameters besides substrate binding affinity were significant contributors to the observed Km

value.

In contrast, CYP168A1 fatty acid turnovers were 10- to 30-fold lower than observed with

Streptomyces peucetius CYP147F1 [24] and Candida albicans CYP52A21 [41], and 25- to

10000-fold lower than observed with Bacillus subtilis CYP102A2 and CYP102A3 [37],
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Fusarium oxysporum CYP505 [42], and Bacillus megaterium CYP102A1 [35]. S. coelicolor
CYP105D5 fatty acid turnover was greatest with lauric, oleic and arachidonic acids, but gave

low turnovers with myristic and palmitic acids [34]. In contrast CYP168A1 exhibited greatest

turnover with palmitic, stearic and oleic acids. Therefore, CYP168A1 fatty acid turnover rates

were similar to some bacterial CYP fatty acid hydroxylases but are substantially lower than

others, especially the CYP102 family, and are 50- to 100-fold lower than the rates of lauric acid

hydroxylation observed with human CYP4A1 and CYP4A3 [43, 44].

CYP168A1 from P. aeruginosa is able to hydroxylate biologically relevant saturated fatty

acids at both the ω-1- and ω-2-positions, while it can only hydroxylate unsaturated fatty acids

at the ω-1-position. Fatty acid terminal and sub-terminal hydroxylating CYPs from other bac-

teria tend to be able to hydroxylate fatty acids at a wider range of positions. For instance,

CYP107H1 from Bacillus subtilis has been shown to hydroxylate myristic acid at the ω-1-, ω-2-

and ω-3-carbons, and at the ω-1-, ω-2-, ω-3-, ω-4- and ω-5-carbons in palmitic acid [45].

Interestingly, CYP107H1 preferentially hydroxylates myristic acid at the ω-3-carbon and

showed similar hydroxylation at all 5 positions noted in palmitic acid [45], whereas

CYP168A1 was shown to preferentially hydroxylate at the ω-1-postion regardless of chain

length. The inability of CYP168A1 to metabolize cholesterol, cholesta-4-ene-3-one, progester-

one and testosterone suggests the enzyme is a fatty acyl hydroxylase.

Not all bacterial fatty acid hydroxylating CYPs only hydroxylate unsaturated fatty acids at

one position. For instance, CYP105D5 can hydroxylate oleic acid at multiple positions with a

preference for the ω-1-position [34]. CYP102A1 can also cause the epoxidation of unsaturated

fatty acids, but no epoxidation was observed when CYP168A1 was used in reconstitution

assays with unsaturated fatty acids, such as oleic acid and linoleic acid. In the presence of ara-

chidonic acid, CYP102A1 is able to both hydroxylate at the ω-2-carbon and cause epoxidation

between carbons 14 and 15 [46], whereas CYP168A1 showed no turnover of arachidonic acid

in this study.

In all cases, CYP168A1 was only able to hydroxylate the fatty acids at the sub-terminal car-

bons, with no activity observed at the terminal, ω- carbon, unlike other bacterial fatty acid

hydroxylating CYPs, such as CYP124 (36) and CYP119 from Sulfolobus acidocaldarius [47],

and those from eukaryotes, such as members of the CYP52 family in yeast [32, 41] and the

CYP4 family in mammals [48–51]. Therefore, CYP168A1 is unlikely to be involved in the pro-

duction of α,ω-diacids. In order to hydroxylate fatty acids at the ω-carbon, CYP4B1 requires

an unusual heme-polypeptide ester in the active site to mediate this energetically disfavored

process [52].

As CYP168A1 does not catalyze the terminal ω-hydroxylation of fatty acids, it will not be

involved in the production of α,ω-diacids. However, ω-1-fatty acids can be further converted

to ω-1-oxo fatty acids. In Legionella, long chain ω-1-oxo fatty acids, also hydroxylated at the α-

carbon (thus producing α-hydroxy, ω-1-oxo fatty acids), are constituents of the cell wall [53].

Also ω-1-oxo fatty acids can be further converted to ω-1-oxo dicarboxylic acids [54].

CYP168A1 does not metabolize sterols or steroids, which suggests the true substrates of

CYP168A1 (if not fatty acids) are unlikely to be larger molecules. Alternatively, as in the case

of CYP107H1, the fatty acids used in this study may reflect part of the true CYP168A1 sub-

strate(s). Nevertheless, whilst the exact biological function of CYP168A1, like many other bac-

terial fatty acid hydroxylating CYPs, is yet to be determined, and requires further study.

However, it can be hypothesized that CYP168A1 is involved in the degradation of fatty acids.

Release of a high concentration of fatty acids (through high levels of phosphatidylcholine deg-

radation) can be toxic to cells as they can cause the inhibition of enzymes involved in fatty acid

degradation/β-oxidation [55, 56]. By hydroxylating these fatty acids through an enzyme, such

as CYP168A1, the toxic effect can be lessened, and fatty acids can be stored.
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It may be possible to use CYP168A1 as a potential target for novel anti-Pseudomonas drugs.

Azole antifungals are a class of inhibitor that target CYP51 enzymes, presently optimized to

inhibit fungal orthologs, through the direct coordination of the imidazole N-3 or the triazole

N-4 nitrogen to the CYP51 heme ferric cation as the sixth axial ligand [19]. This mode of

action also means that these azole antifungals are also able to bind to the heme iron of other

CYPs, such as CYP52A21 from Candida albicans [41], CYP124 from Mycobacterium tubercu-
losis [40] and CYP164A2 from M. smegmatis [57].

CYP168A1 bound miconazole with greater affinity than CYP164A2 [57] and CYP124 [40],

whilst CYP168A1 bound voriconazole with similar affinity to human CYP51 [58] and with

greater affinity than M. smegmatis CYP51 [57]. However, CYP168A1 bound azole antifungals

relatively poorly compared to fungal CYP51 enzymes, which typically gave Kd values of 0.004

to 0.05 μM [58–60]. When added to reconstitution assays, where oleic acid was used as the sub-

strate, these azoles had no effect on the catalytic activity of CYP168A1 despite the azole con-

centration being eight times the concentration of the enzyme used, suggesting that once the

substrate is bound to CYP168A1 it is not readily displaced by the azole antifungals investigated

in this study. The azole ligand binding studies were performed using pure CYP168A1 enzyme

in the absence of substrate and redox partners and that azole binding properties may differ in

the CYP168A1 reconstitution assays. MIC experiments with the P. aeruginosa strains DSMZ

22644 and ATCC 39324, grown on oleic acid, agreed with this observation as tebuconazole,

miconazole and voriconazole had no inhibitory effect on growth at concentrations up to

128 μg ml-1. By contrast, Tooker et al [28] reported that CYP168A1 was inhibited by ketocona-

zole when arachidonic acid was the substrate, resulting in a ~70% reduction in enzyme activity

with a CYP168A1:ketoconaozle ratio of 5μM:10μM, indicating screening a wider range of

azole compounds may identify further CYP168A1 inhibitors. Currently available azole anti-

fungal drugs would need to be redesigned and optimized to target CYP168A1 for such drugs

to be considered effective inhibitors of P. aeruginosa.

This study has shown that the previously uncharacterized CYP168A1 from P. aeruginosa is

involved in the sub-terminal hydroxylation of biologically relevant fatty acids. It is able to

hydroxylate saturated fatty acids at both the ω-1- and ω-2-positions, but it is only able to

hydroxylate unsaturated fatty acids at the ω-1-carbon.

Supporting information

S1 Fig. Mass fragmentation patterns of CYP168A1 assay metabolites. Mass fragmentation

patterns for a) ω-1-hydroxy palmitic acid, diTMS, b) ω-2-hydroxy palmitic acid, diTMS, and

c) ω-1-hydroxy oleic acid, diTMS are shown. TMS-derivatised fatty acids are identified by the

[M-15]+ fragmentation ion.
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