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Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal
model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation
along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we
studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed
reachingmovements with or without motor imagery in a velocity-dependent force field.The results show that reaching movements
performedwithmotor imagery have relatively amore focused generalization pattern and a higher learning rate in training direction.

1. Introduction

Mental simulation of various actions can be used as a tool for
studying theoretical concepts about cognitive neuroscience.
Motor imagery, a subcategory of mental simulation, is an
internal reproduction of a specific motor action without any
overt motor output and is widely used for improving the
motor performance. In relation to it, the underlying neuro-
logical mechanisms activated by mentally rehearsing motor
actions are quite similar to the ones activated during actual
physical movements [1]. There is a high overlap between
the active brain regions of subjects undergoing movement
execution and the movement imagination [2]. It provides the
idea that motor imagery might help the CNS in the learning
process and can be used in conjunctionwith physical training
to improve motor performance [2–5]. As an example, it is
used for improving the performance of athletes and sports
men [6]; experiencedmusicians have usedmotor imagery for
improving coordination between complex spatial and timing
components of a musical composition [2]. It is also used,
for speeding up the recovery process of stroke patients and
neurological rehabilitation [7], for motion accuracy, and for

adaptation to the changing dynamics and arm kinematics
[5, 8].

In the current study we consider a task in which subjects
make series of reaching movements in the presence of exter-
nal dynamics, that is, an externally imposed force field from
a mechanical robot. The force field introduces significant
errors in contrast to the movements that take place in the
absence of any external force field.These errors gradually fade
out with practice as the nervous system adapts to the newly
imposed dynamics; this recovery of performance is “motor
adaptation” [9].The force field is switched off unexpectedly in
some trials during adaptation; these trails are termed as “catch
trials” and they help in investigating the properties of internal
model that human nervous system updates to predict and
neutralize the error. The trajectories formed during the catch
trials are quite similar in shape but opposite in direction to
the trajectories that are observed at the sudden introduction
of force field (also termed as “after effects”). This supports the
notion that model-based motor commands are generated by
central nervous system (CNS). There are predominantly two
modes in human motor control mechanism: feedback and
feedforward. During the early learning stage, internal model
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is evolved and learning is achieved through sensorimotor
feedbackmechanism. After sufficient practice, motor systems
adapt with external environment and operate autonomously
in feedforward mode; this is called as “late learning” [10].

Human brain formulates internal model in such a way
that motor learning in one direction has a positive impact
on learning in other adjacent directions.This effect gradually
decreases as the difference in directions increases. The ability
to apply what has been learned in one context to other
contexts is termed as the “generalization” of motor learning.
When generalization increases learning in some contexts,
it is called as “transfer.” In some contexts, generalization
diminishes learning and it is said to be causing an “inter-
ference” [11]. It shows that the model evolved by human
nervous system learns beyond the boundaries of training data
and its output is broadly adapted across the state space of
motor commands [9]. In the contexts where generalization
is detrimental, it is usually due to the large alteration in
the learning problem associated with comparatively small
contextual changes. This is relevant to our experiment where
a large change in direction, that is, around 135

∘ to 180
∘,

has an associated small change in context. This is also true
in general; for example, driving car in the reverse direction
or counting backward is difficult as compared to normal
routine.

The current work is focused on howCNS learns to control
and compensate errors in imagined reachingmovements and
how an error experienced in one direction can affect the
reaching movements in other directions, with or without
motor imagery. In other words, an investigation is made to
answer howmental practice affects the generalization pattern
of internal learning model developed by CNS. Up to the best
of our knowledge, the relation between generalization and
motor imagery in reaching movements has not been studied
explicitly. By motor imagery, we mean that the individual
subjects imagine the subsequent movement before actually
performing it (MI group). The group of subjects without
any conscious intent before starting movement or has not
mentally rehearsed the upcoming movement constitutes the
no motor imagery group (No-MI group).

At this stage we develop our initial hypothesis as follows.

(1) Themotor imagery affects the generalization function
in such a way that it transfers the learning in nearby
directions.

(2) The group of subjects who rehearsed the taskmentally
prior to their physical action will have a high learning
rate in the direction of training and associated direc-
tions.

(3) The group of subjects who rehearsed the taskmentally
prior to the physical action will have a more focused
generalization pattern with respect to the No-MI
group.

The composition of the remaining paper is as follows.
Section 2 describes the related work. Methods and materials
are explained in Section 3. Results are outlined in Section 4.
The conclusion and future work are included in Section 5.

2. Related Work

Mussa-Ivaldi and Bizzi studied the possible ways in which
the information about force field dynamics was perceived by
the CNS. Finding the movement path based on perception
of force field is a complex inverse dynamics problem, and
brain forms an internal model composed of motor primitives
to solve this inverse problem. This internal model is updated
regularly to conform with the ever-changing environmental
and physical dynamics [12]. Robotic manipulandum systems
are widely used to study the underlying dynamics of motor
commands issued by CNS [13].

Previous studies suggest that motor imagery has a con-
structive effect on the humanmotor performance. It has been
argued that the covert mental practice is a cost effective,
easily accessible strategy to improve motor performance of
affected body parts after stroke [14]. Gentili et al. have studied
the associated question of how imagination and mental
execution of physical activities can help in learning process.
It is found that although subjects with physical training
(without imagery) have good learning rate than the subjects
undergoing mental training (without any sensorimotor feed-
back), yet the movement rhythms and adaptation rates were
identical. Authors proposed that the internal forward model
of human brain provides state estimation to improve motor
performance during imagery [5].

3. Materials and Methods

3.1. Experimental Setup. We considered a behavioral task
for studying the effect of motor imagery on trial-by-trial
motor learning. The subjects performed center out reaching
movements by using a robotic manipulandum. An external
force field was generated by the robotic manipulandum for
desired perturbations in a plane during the movements. The
subjects, then, had to adapt to the new environment. This
helped in studying the adaptive capabilities of human motor
system Figure 1(a).

The experimental setup shown in Figure 1(a) was the
same as [8]. In this setup the Braccio di Ferro robot (see [15]
for details) was used to generate the forces and record the
motion paths. The plane of motion was restricted to only
two dimensions for the ease of analysis. Fourteen-channel
EEG was recorded using gold cup electrodes (g.EEGcap
g.tec, Guger Technologies OEG, Graz, Austria). The elec-
trodes were placed at central locations (C3, C1, Cz, C2, and
C4), frontal locations (F3, Fz, and F4), parietal locations
(P3, Pz, and P4), and temporal locations (T3 and T4) by
adapting international 10–20 electrode placement system.
Left earlobe and right earlobe were used as reference and
ground, respectively. Analogue EEG signals were amplified
and band-pass filtered (0.1–100Hz) by the EEG amplifier
(g.BSamp g.tec, Guger Technologies OEG, Austria). The
signals were then sampled at 256Hz (NIDAQ 6040-E) and
were stored for later offline analysis. The online feedback
was provided by a software application based on BCI2000
[16].
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(a) Robotic manipulandum system was used to deliver required perturbations during the course of reaching
movement. A setup for 2D movements was used to record the trajectories followed by different subjects under
the application of external force field. This movement onset was controlled through a feedback mechanism
involving EEG
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shown. All paths are spaced at regular
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(c) Timeline for each trial is shown. Total duration is subdivided into several intervals bounded by
commands issued by the controller

Figure 1: Experimental setup and trial protocol.

3.1.1. Subjects. Total 12 subjects participated in this experi-
ment. Eleven of the subjects were right handed, while one
left handed subject was present. Before undertaking the
experiment, a screening process was performed in which
EEG patterns of all subjects were analyzed. During this
process, each subject was asked to rest for 3 seconds (base
line) followed by imagining hand movements for 2 seconds,
and a total of 96 trials were conducted in this way. Then,

for each subject, we identified the spectral bandwidth and
the electrode locations that correlated most with the motor
imagery. The most responsive spectral bandwidth and elec-
trode locations were then used for online feedback. We also
calculated the “coefficient of determination” for each subject.
It acts as a measure to determine the quality of human
intention that can be inferred from the EEG signal. It is
expressed as a correlation coefficient defined over a bivariate
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signal composed of EEG signal 𝑥 during motor imagery and
a task condition signal 𝑦 that consists of EEG signal during
rest period:

𝑟
2

=
𝜎 (𝑥, 𝑦)

2

𝜎
2

(𝑥) ⋅ 𝜎
2

(𝑦)
, (1)

where 𝑟
2 value was calculated from each electrode. After

screening, the subjects were randomly assigned to two exper-
imental protocols as folows: “with imagery” (6 subjects, 1M
and 5 F,mean age 23±1.5 years) and “no imagery” (6 subjects,
3M and 3 F, mean age 25 ± 2.8 years).

3.2. Experimental Procedures. The subjects sat on a chair
in front of the manipulandum. The height and position
of the seat were adjusted so that the arm could be kept
horizontally at shoulder level pointing towards the center
of the work space. In normal position, the elbow and the
shoulder joints were flexed about 90

∘ and 45
∘, respectively.

The experimental protocol was displayed to the subjects on
a 19 LCD computer screen placed about 1m away at eye
level. The subjects performed 10 cm reaching movements
with dominant hand. The targets were displayed on a black
background as white circles of 1 cm diameter appeared at
one of the eight random locations (0∘, 45∘, 90∘, 135∘, 180∘,
225
∘, 270∘, and 315

∘). The current position of the hand along
with target was continuously displayed on the computer
screen.

The experiment was organized into sets; each set con-
sisted of a sequence of 48 target presentations, with target
appeared at 8 different positions, 6 times each. Every set lasted
for approximately 7 ∼ 8 minutes, and the subjects were
allowed to take rest between sets. Each movement started
from the center of the work space. In order to initiate a
movement, the subject had to hold the cue at the starting
point (initial position of the target). Once the cue is in center
of the target, the target changed its color to gray; after 4 s
it shifted to one of the eight random outer positions and
turn into red. At this point, the “imagery” group subjects
were required to “imagine” the hand movement toward the
target. EEG signals were continuously recorded and after
every 300ms a spectral estimate in the most responsive
frequency bandwas calculated.This valuewas comparedwith
the threshold value to detect the presence/absence of event-
related EEG desynchronisation (ERD).The binary signal was
transmitted to the robot and used for changing the color of
the target, that is, red to yellow to green. A “go” signal is
then generated (target color turning into green), indicating
that the actual movement could start. This signal can only be
generated if either of the following conditions was fulfilled:

(1) the subject successfully generated 5 ERDs or
(2) the 3 sec time limit of waiting was reached.

In the “no imagery” experiments, only condition (2)

was applied and the subjects had to wait for 1.5 to 3 sec
randomly between target appearance and the “go” signal. On
“go” signal, the subjects were required to move as fast and
as accurate as possible. Subjects were encouraged to keep an

approximately constant movement timings and to avoid eye
blinking and head movements or throat clearing during the
imagery and movement phase. The next trial started as soon
the subject placed the cursor inside the target at the central
initial position.

Movements were performed under three different condi-
tions: (i) null field (robot generated no force, 5 target sets);
(ii) force field (velocity dependent force field was turned on,
5 target sets); (iii) after-effect (no field again, 2 target sets).
During force field trials, the robot generated a viscous curl
field that perturbed the reaching movements. The force field
was perpendicular to the instantaneous hand velocity vector
with magnitude proportional to the velocity

𝐹 = 𝐵 ⋅ ], (2)

where,

𝐵 = [
0 −𝑏

𝑏 0
]N × sm−1, (3)

where the viscous coefficient 𝑏 is 12N ⋅ m−1 ⋅ s−1. The
hand velocity vector (and its subsequent derivatives) was
estimated online by means of a numerical differentiation
technique. During the field sets, “catch trials” were inserted
in which the force field was unexpectedly turned off. The
probability of occurrence of one catch trial was set to 1/6,
which corresponds to one catch trial per direction per set.

3.3. Data Analysis

3.3.1. Screening. During screening phase, the recorded EEG
data was arranged into 1 s long epochs and mean was
removed. A 20th-order autoregressive model was used for
estimating the power spectral density. The spectrum was
calculated from 0Hz to 40Hz at every 0.2Hz, and then
spectral average wasmade into 2Hz bins for 96 hand imagery
trials and compared them with the rest period. The averaged
spectral change (spectra at rest condition minus spectra
during imagery) was also estimated during the screening
process. Screening gave an overview about the most respon-
sive electrode and the maximum change in the ERD. This
information was the basis of online feedback.

3.3.2. Online Feedback. EEG signals were recorded in 300ms
blocks, and for each block the software application esti-
mated the power spectral density. The online ERD detection
threshold was set at the 80% of the averaged spectral change
from the base measurement during the rest period. Thus,
for each subject the threshold was different and it was 80%
of the maximum spectral change he/she could produce. As
a result, a binary signal, that is, 1 (presence of a ERD) or
a 0 (no ERD) was generated after every 300ms and was
used to change the color of the target from red to yellow to
green.

3.3.3. Familiarization Session. For each subject, we tested the
error measurements for normal distribution using Shapiro-
Wilk, Kolmogorov-Smirnov, and Lilliefors tests. It turned out
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that the distributions were normal (𝑃 ≤ 0.01). Equivalent
variances were tested using Hartley, Cochran, and Bartlett
tests.

3.3.4. Adaptation Session. Hand trajectories were sampled at
100Hz. The 𝑥 and 𝑦 components were smoothed with a 6th-
order Savitzky-Golay filter (window size 270ms, equivalent
cut-off frequency of around 7Hz). The first three-time
derivative was estimated for the following indicators ofmotor
performance

Aiming Error. Aiming error provides angular difference
between the required target direction and the actual hand
movement direction in the early phase of the movement,
that is, 300ms from movement onset. This error provides
information about the lateral deviation and is used as a
general measure of curvature.

Learning Index. The learning process was quantified by using
an indicator similar to that proposed by [17]. This measure is
independent of the magnitude of force field and other user-
specific parameters such as the net compliance of the arm:

𝐼learning =
−𝑦
𝑐


𝑦
𝑐
− 𝑦
𝑓



, (4)

where 𝑦
𝑓
and 𝑦

𝑐
are the 300ms aiming errors in the field and

catch trials, respectively. Both error measures were adjusted
for any bias present in the last null field set. Therefore, errors
were always referred to change from errors in the null set.

3.4. State SpaceModeling. Internal model developed by brain
is composed of a set of primitives that translate desired
movement trajectories into required motor commands. In an
event of external perturbation, motor commands are issued
to minimize its effects. The forces produced as a result can be
expressed in terms of desired position and velocity primitive
functions 𝑔

𝑗
[18]:

O = 𝑊
𝑇

⋅ 𝑔 (𝑥,
𝑑𝑥

𝑑𝑡
) | 𝑔 = [𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑗
]
𝑇

, (5)

𝑊
𝑇 is the experience dependent weighted matrix which is

adjusted according to

Δ𝑊
𝑖
= −𝜂 ⋅ 𝑔 (𝑥

𝑖
,
𝑑𝑥
𝑖

𝑑𝑡
) . (6)

The shape of the primitives in the above equations can
be found out by fitting a linear state space model over
experimental data. Such a fit is possible as explained in
[17, 19]. Although, various types of models can be used
for dynamic system modeling, we used prediction error
estimate method (PEM) to identify a structured linear state
space model. PEM algorithm is quite similar to maximum
likelihood estimation used in time series analysis [20].

Let us suppose that we have eight dimensional input force
field signal denoted by 𝑓(𝑛), which triggers maximum speed

path error of 𝑒(𝑛)with sample number 𝑛. If we have data upto
Nth sample a set of input output pairs can be defined as,

X = {𝑓 (𝑛) , 𝑒 (𝑛)} | 1 ≤ 𝑛 ≤ 𝑁. (7)

Here, the input 𝑓(𝑛) is dependent on the trial which may be
a force field trial (FF), simple null field trial (NF) or null field
catch trial (C) after the removal of force field;

𝑡 ∈ {C,NF, FF} . (8)

Linear state space model can be represented as a predictor
model that estimates (𝑁 + 1)th output sample:

𝑒 ([𝑁 + 1] | 𝑁; 𝜑) = F (X
𝑁
, 𝜑) . (9)

Using an iterative procedure, an estimate of parameter vector
𝑒
𝑁+1

is generated for (𝑁+ 1)th output. 𝑒
𝑁+1

depends both on
samples from 1 ⋅ ⋅ ⋅ 𝑁 and parameter vector 𝜑. 𝜑 represents
the parametrization, and F(⋅) is the function defined on
observed data [20]:

F (X
𝑁
, 𝜑) = 𝐻

𝑒
(𝑞, 𝜑) 𝑒 (𝑛) + 𝐻

𝑓
(𝑞, 𝜑) 𝑓 (𝑛)

=

𝑁

∑

𝑘 = 1

ℎ
𝑒
(𝑘) 𝑒 (𝑛 − 𝑘) +

𝑁

∑

𝑘=1

ℎ
𝑓
(𝑘) 𝑓 (𝑛 − 𝑘) ,

(10)

where 𝑞 is a shift operator and 𝐻
𝑒
and 𝐻

𝑓
are the linear time

or shift invariant filters which we will specify in a further
discussion. State space equations are given by

�̇� (𝑛 + 1) = 𝐴 (𝜑) 𝑥 (𝑛) + 𝐵 (𝜑) 𝑓 (𝑛) ,

𝑒 (𝑛) = 𝐶 (𝜑) 𝑥 (𝑛) + 𝐷𝑓 (𝑛) .

(11)

The linear state space model is estimated based on the
assumption that the data has been generated according to (11).
PEM tries to minimize a weighted norm of estimation error.
In our case, where there is only one output, this cost function
𝜉
𝑁
(⋅) is given by

𝜉
𝑁

(𝑅, 𝑆) =
1

𝑆
2

(𝑞, 𝜑)

𝑁

∑

𝑡=1

ΔΔ
𝑇

,

Δ = 𝑒 (𝑛) − 𝑒 (𝑛 | 𝜑) ,

(12)

where 𝑒(𝑛 | 𝜑) is the output estimate of model, and PEM
produces an output which is optimal in least squares sense.
𝑁 is the number of data values of errors during hand-
reaching experiments. In the cost function estimated output
is supposed to be:

𝑒 (𝑛 | 𝜑) = 𝑅 (𝑞, 𝜑) ⋅ 𝑓 (𝑛) , (13)

where𝑓(𝑛) is the input of themodel. Here,𝑅(𝑞, 𝜑) and 𝑆(𝑞, 𝜑)

are the matrices that can be described in terms of state space
matrices. In turn, they define filters as follows:

𝐻
𝑒
(𝑞, 𝜑) = [𝐼 − 𝑆

−1

(𝑞, 𝜑)] ,

𝐻
𝑓
(𝑞, 𝜑) = 𝑆

−1

(𝑞, 𝜑) 𝑅 (𝑞, 𝜑) .

(14)
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PEM is a fast algorithm and has similar merits as that
of maximum likelihood estimation. However, it requires
accurate parameterization andmay get stuck in localminima.
The initial parameters were estimated using a numerical
algorithm for subspace state space system identification
that projects both input and output data to find optimal
state sequence (N4SID Algorithm by van Overschee and de
Moor [21]). These sequences can be interpreted in terms
of states of a parallel bank of Kalman filters. By using this
interpretation, state space system matrices can be easily
determined from the given data with no requirement of
providing parameterization for nonzero initial conditions
[21]. This algorithm uses QR decomposition and singular
value decomposition.Thus, it is numerically stable and always
converges to a finite value. With these benefits, we used it
for finding an initial estimate of state space matrices of linear
model.

In our experiments, the force field magnitude and direc-
tion (anticlockwise) were kept constant and its presence or
absence was recorded using normalized integers;

𝑓 (𝑛) = {
+1, if 𝑡 ∈ {C,NF} ,
−1, if 𝑡 ∈ {FF} .

(15)

On each sampled input, a value of −1 indicates the presence of
force field while a value of 1 indicates a catch trial or null field.
Similar discrete scalar representation of force fieldmagnitude
was adopted byThoroughman and Shadmehr [18] and Smith
and Shadmehr [17].

Instead of using coordinate information in maximum
errors, we used the relationship between actual arm compli-
ance and the angular error. The details of the derivation can
be found in [17]. In general, the two-dimensional compliance
matrix is given by

[
𝑥

𝑦
] = [

𝐷
11

𝐷
12

𝐷
21

𝐷
22

] [
𝑓
𝑥

𝑓
𝑦

] . (16)

This two-dimensional compliance matrix can be trans-
formed to one-dimensional oppositional compliance having
a value in each direction of motion. The magnitude of one-
dimensional compliancematrix depends on direction of force
and three parameters 𝐷

11
, 𝐷
22
, 𝐷
21
, and 𝐷

12
, see [17] for

details. Briefly,

𝐷
1
() =

𝐷
11

+ 𝐷
22

2
+

𝐷
11

− 𝐷
22

2
cos (2)

+
𝐷
12

+ 𝐷
21

2
sin (2) .

(17)

We parameterized𝐷matrix of the state space model with
the value of 𝐷

1
().

3.5. Measuring Goodness of Fit. We also compared the vari-
ances of estimated output and the actual errors (see Figure 2)
to account for the goodness of fit of our model. We defined
our goodness of measure by 𝛿 [19] as follows:

𝛿 = 1 −
∑
𝑁

𝑛=1

𝑒 (𝑛) − 𝑒
0
(𝑛)



∑
𝑁

𝑛=1

𝑒 (𝑛) − 𝑒
0
(𝑛)



, (18)

where 𝑒
0
(𝑛) is a baseline model obtained by setting

matrices 𝐵 and 𝐷 to zero. In (11),

�̇� (𝑛 + 1) = 𝐴 (𝜑) 𝑥 (𝑛) ,

𝑒
0
(𝑛) = 𝐶 (𝜑) 𝑥 (𝑛) .

(19)

For our experiments, the model fit was reasonably good
in subjects data (with amean𝜇 ≅ 82%and standard deviation
𝜎 ≅ 0.078). In comparison, Krakauer et al. in [11] do not
report the error numerically, although authors state that
model parameters are chosen such that themean square error
between model prediction and actual experimental data is
minimized.Thoroughman and Shadmehr have reported 60%
model fitness in their experiments related to human motor
learning [18]. Donchin et al. have documented percentage
deviation in model and actual output to be 77% [19]. Scheidt
et al. report the variance accounted for (VAF) of 84% as the
measure of error of their model [22]. In the nutshell, our
model fit is competitive with the results reported in previous
model-based studies.

4. Results and Discussion

Figure 4 shows the group averaged ERD patterns during the
online feedback. The subjects in No-MI group were waiting
for the “Go” signal, while the subjects from MI group were
imagining upcoming movement. Both groups showed ERDs,
however, ERDs in MI group were more prominent.

From themodel parameters it is found that the directional
changes of equal magnitude have nearly same estimated
values. For the sake of convenience we reduced the number
of free parameters to 5 by averaging the parameters on same
directional difference values. Let 𝐵𝑖

𝑗

be the vector in direction
𝑗 for user 𝑖. Thus, for each direction 𝑗, we can formulate a
matrixD

𝑗
for both MI and No-MI subjects as follows:

D
𝑗
= [𝐵
𝑗

1

, 𝐵
𝑗

2

, . . . , 𝐵
𝑗

6

]
𝑇

. (20)

A new matrix M can be defined over to reduce the free
parameters to 5 by averaging the values on similar distance
from peak learning rate. Each column M

𝑙
can be defined by

vectors

M
𝑙
=

𝐵
𝑖

𝑗+𝑘

+ 𝐵
𝑖

𝑗+𝑘

2
0 ≤ 𝑘 ≤ 4, (21)

where 𝑗 + 𝑘 wraps around in an event of dimension outflow.

4.1. Statistical Analysis of Model Parameters. The variables
were found to be normally distributedwhen Shapiro-Wilk𝑊-
test was applied. Setting the null hypothesis that the variables
came from a normal distribution, we found the 𝑃 values
which were greater than the threshold of 0.05 in all cases.
Next, wemade comparison of relationships between variables
(the learning rate in various directions) belonging to MI and
No-MI groups by a parametric statistical test named 𝑡-test.
We found that theMI group has higher learning rate than the
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Figure 2: Time series of actual movement errors and the corresponding model predictions are shown. The changing trend of model output
conforms with the actual movement errors. For the sake of clarity, the values are plotted after averaging every 5 samples.

corresponding No-MI group in all directions. In direction 0
∘,

the learning rate of MI group is 0.203 ± 0.019 and for No-
MI group’s 0.175 ± 0.024 (𝑃 = 0.046). In direction 45

∘, MI
group: 0.175 ± 0.026; No-MI group: 0.155 ± 0.023 (𝑃 = 0.05).
In direction 90

∘, MI group has learning rate 0.184 ± 0.015

in contrast to No-MI group’s 0.145 ± 0.031 (𝑃 = 0.020).
In direction 135

∘, MI group: 0.195 ± 0.016; No-MI group:
0.155 ± 0.031 (𝑃 = 0.023). In direction 180

∘, MI group
has learning rate 0.224 ± 0.019 in contrast to No-MI group
0.168 ± 0.033 (𝑃 = 0.005). In direction 225

∘, MI group:
0.197 ± 0.019, while No-MI group: 0.161 ± 0.030 (𝑃 = 0.039).
In direction 270

∘, MI group has learning rate 0.189 ± 0.024,
while No-MI group 0.148 ± 0.025 (𝑃 = 0.016). In direction

315
∘, MI group has learning rate of 0.207 ± 0.029 and No-MI

group of 0.165 ± 0.022 (𝑃 = 0.021). See Figure 5 for a plot of
comparison between MI and No-MI groups.

The effect of learning in one direction on immediate next
direction was also analyzed. Along 0

∘ the transfer of learning
rate for MI group is = 0.112 ± 0.007, and for No-MI group it
was 0.08 ± 0.009 (𝑃 = 0.037). In direction 45

∘, MI group has
transfer of learning rate 0.125 ± 0.009 in contrast to No-MI
group 0.092 ± 0.018 (𝑃 = 0.021). In direction 90

∘; MI group:
0.104 ± 0.006 and No-MI group: 0.087 ± 0.012 (𝑃 = 0.039).
In direction 135

∘; MI group: 0.131 ± 0.004 in contrast to No-
MI group: 0.077 ± 0.006 (𝑃 = 0.019). In direction 180

∘; MI
group: 0.122 ± 0.009 and No-MI group: 0.087 ± 0.014 (𝑃 =
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Figure 3: Generalization patterns in 4 directions are shown. Free parameters are reduced to 5 by averaging the parameters existing at same
directional difference values. Shaded regions show the deviation in parameter values across all subjects.

0.025). In direction 225
∘; MI group: 0.099 ± 0.011 and No-

MI group: 0.081 ± 0.023 (𝑃 = 0.055). In direction 270
∘; MI

group: 0.114 ± 0.012 and No-MI group: 0.100 ± 0.016 (𝑃 =

0.032). In direction 315
∘; MI group: 0.108 ± 0.019 in contrast

to No-MI group: 0.072 ± 0.022 (𝑃 = 0.041). See Figure 6 for
a comparison between MI and No-MI groups.

Next, we studied the generalization patterns for MI and
No-MI groups averaged over all the subjects in each group,
see Figure 7. Student’s 𝑡-test was performed to account for
the significance level of results. Variables were found to be
significantly different forMI andNo-MI groupswith𝑃 values
< 0.05 in all directions except in direction 90

∘. The mean

values of learning rate of all users with associated standard
deviation are shown in Figure 7. It must be noted that the
absolute values of learning rates in directions 135

∘ and 180
∘

are shown for the sake of easy comparison with learning rates
in other directions.

4.2. Insights. Generalization patterns along directions 0
∘,

45
∘, 90∘, and 135

∘ degrees are shown in Figure 3. Also from
Figures 5, 6, and 7 it is evident that the subjects with motor
imagery have higher learning rates as compared to those of
No-MI subjects. Mental rehearsal has focused the learning
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Figure 5: Motor learning rate in all directions is shown. The solid
bars represent mean values while corresponding standard deviation
values are represented by the limits put on bars.

rate in one particular direction (the one in which training
is performed). Generally, in both groups the trial-to-trial
transfer of learning has decreased as the directional difference
increase, but the transfer rate is higher inMI group. In case of
90
∘ directional difference, the averaged generalization pattern

shows that the mean and SD for both MI ad No-MI are not
significantly different. This can be attributed to the fact that
the perpendicular motion is unique and not much difficult
to perform. Thus the learning transfer is less as compared to
other direction. All the models were found to have a good fit
and stable eigenvalues as shown in Figure 8.
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Figure 6: Motor learning rate that is, transferred in adjacent
direction is shown.The impact ofmotor learning on immediate next
direction (with 45

∘ difference) is averaged across all subjects.
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values, while the deviation is represented by the limits put on bars.

5. Conclusion

In this study we compared the performance of two groups of
subjects (MI and No-MI) in a center out-reaching movement
task under a force field. The small number of subjects in
both groups is a limitation of this study and suggests the
need for caution in the interpretation of our results. However,
this study helped us to investigate the trial to trial effect of
motor imagery on learning. It turned out that our initial three
hypotheses were true (see Section 1). MI group has a higher
learning rate and transfer of learning as compared to No-MI
group and has a more focused generalization pattern. These
results show positive influence of motor imagery and suggest
that motor learning can be facilitated by mentally rehearsing
the upcoming movement and could be used to increase the
rate of adaptation.
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Figure 8: Polar plots for the eigenvalues of all odd subjects are shown. These plots signify that the model built for each subject is stable with
the eigenvalues lying inside the unit circle.
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