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Aging associated DNA hypomethylation of LINE-1 and Alu retroelements may be a crucial determinant of
loss of genomic integrity, deterioration and cancer. In peripheral blood LINE-1 hypomethylation has been
reported to increase during aging, but other studies did not observe significant changes. We hypothesized
that these apparently inconsistent reports might relate to differences between cellular and cell-free DNA.
Using the technique of idiolocal normalization of real-time methylation-specific PCR (IDLN-MSP) for
genetic imbalanced DNA specimens we obtained evidence that LINE-1 hypomethylation in cell-free
DNA, but not cellular DNA from peripheral blood is an epigenetic biomarker for human aging.
Furthermore, hypomethylation of cell-free DNA is more extensive in smokers, suggesting that it might
be used as a surrogate marker for monitoring the improvement of smoking-induced adverse effects after
cancelling smoking.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction inactivated by truncations or mutations (Goodier, 2016). Alu
Long Interspersed Nuclear Elements (LINEs) and Short Inter-
spersed Nuclear Elements (SINEs) are crucial contributors to the
dynamics, plasticity and integrity of the human genome. LINE-1s
are the only currently active autonomous mobile DNA elements
in humans with at least 100 potential mobile copies in any individ-
ual diploid genome (Goodier, 2016). They havemassively expanded
throughout evolutionwith roughly 500,000 copies occupying about
17 % of the human DNA; all but around hundred copies are
elements are small dimeric SINE retroelements with almost one
million genomic copies. They lack a coding sequence and hence
depend on an active LINE-1 retrotransposition machinery to
become mobile (Dewannieux et al., 2003). Noteworthy active
LINE-1s are able to mediate high rate Alu transposition
(Dewannieux et al., 2003). LINE-1s retrotranspose by a ‘‘copy-
and-paste” process which involves LINE-1 DNA endonuclease activ-
ity to nick target DNA at the site of insertion, thereby endangering
genome integrity. Recombination events and insertions by acti-
vated LINE-1 and Alu elements are thought to contribute to a signif-
icant portion of human genetic diseases and cancer (Deininger and
Batzer, 1999). To date, 124 LINE-1-mediated insertions have been
reported that result in human genetic diseases. In addition a few
LINE-1 insertions have been found which interrupt tumor suppres-
sor genes in cancer. Consequently, it has been postulated that
retroelements contribute to the development and progression of
cancer (Hancks and Kazazian, 2016).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sjbs.2018.02.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sjbs.2018.02.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:simeon.santourlidis@med.uni-duesseldorf.de
https://doi.org/10.1016/j.sjbs.2018.02.005
http://www.sciencedirect.com/science/journal/1319562X
http://www.sciencedirect.com


L. Erichsen et al. / Saudi Journal of Biological Sciences 25 (2018) 1220–1226 1221
DNA methylation is an epigenetic mechanism capable of
repressing gene expression, which might originally have been
evolved as a host defense mechanism against transposable ”para-
sitic” genetic elements to protect functional integrity of the gen-
ome (Yoder et al., 1997). Indeed, more than 90% of all genomic
differentially methylatable CpGs are located in CpG rich sequences
of transposable repetitive elements, including LINE-1 and Alu
sequences (Bollati et al., 2009). Methylation of CpGs in the LINE-
1 promoter silences LINE-1 expression in differentiated somatic
cells (Yoder et al., 1997, Steinhoff and Schulz, 2003; Hancks and
Kazazian, 2012) and absence of DNA methylation is permissive
for LINE-1 transcription (Bourchis and Bestor, 2004).

LINE-1 hypomethylation is common in cancer, an age related
disease characterized by the accumulation of mutations and
epimutations. For instance, it occurs in > 90% of urothelial carcino-
mas (UC), even at early stages (Neuhausen et al., 2006), going along
with increased transcription of full-length LINE-1 elements
(Kreimer et al., 2013). Furthermore, it is associated with chromoso-
mal abnormalities developing in urothelial carcinoma and expand-
ing during disease progression (Simon et al., 1998). Clear evidence
from experimental tumor models demonstrates that LINE-1 retro-
transposition indeed contributes to genetic instability in vivo
(Symer et al., 2002) and that DNA hypomethylation is able to pro-
mote chromosomal instabilities and tumors (Gaudet et al., 2003).

A general decrease of methylcytosine also occurs with age
(Wilson and Jones 1983; Wilson et al. 1987) which cannot be
explained by single-copy gene methylation, since these account
for less than 5% of human DNA (Hoffmann and Schulz, 2005). Fur-
thermore, it is inferred that such a general loss of 5-methylcytosine
during aging may de-suppress silenced LINE-1s and increase
genome instability (Gravina and Vijg, 2010). Accordingly, genome
instability has been implicated as a cause of aging since the late
1940s (Vijg and Suh, 2013), and is a hallmark of cancer (Hanahan
and Weinberg, 2011). Thus, it remains a question of crucial impor-
tance to which extent hypomethylation of LINE-1 and Alu elements
develops in the course of aging since it may constitute a determi-
nant for aging associated loss of genomic integrity, deterioration
and cancer.

Previous studies on the association of age with Alu and LINE-1
methylation have yielded conflicting results (Bollati et al., 2009).
In a comprehensive study using blood samples from 718 elderly
male subjects between 55 and 92 years, Bollati et al. found that
Alu methylation significantly decreases during aging whereas
LINE-1 methylation does not. In a more recent study, LINE-1
sequences were found demethylated with age in white blood cells,
whereas smoking and drinking status had no significant effect on
LINE-1 hypomethylation (Cho et al., 2015).

Because of these apparent inconsistent results in previous stud-
ies and the high significance and important biological implications
of aging-associated LINE-1 hypomethylation, we decided to mea-
sure LINE-1 and Alu methylation both in cellular and in cell-free
DNA from peripheral blood. Cell-free DNA derives from apoptotic
and necrotic cells (Gravina et al., 2016), and accordingly, this
DNA fraction increases in cancer patients as a consequence of more
frequent cell-death events (Stroun et al., 1989). Notably, we have
previously observed significant differences between the LINE-1
methylation profiles of cell-free and cellular DNA even in healthy
individuals (Ghanjati et al., 2014). We therefore hypothesized that
the conflicting findings in previous studies might be explained, at
least in part, by inter-cohort variations between the relative
amounts of the two DNA fractions and their varied degree of
LINE-1 hypomethylation.

This approach was facilitated by the technique of Idiolocal Nor-
malized Methylation-Specific PCR (IDLN-MSP) through which we
are able to compare DNA methylation differences in DNA samples
with genomic variation (Ghanjati et al., 2014; Santourlidis et al.,
2016), as mentioned above, another feature associated with human
aging.

Here we present evidence for that LINE-1 and ALU DNA
hypomethylation of cell-free DNA is an epigenetic biomarker of
human aging.
2. Material and methods

2.1. Blood samples

All methods were carried out in accordance with relevant
guidelines and regulations. We confirm that the experimental pro-
tocols were approved and informed consent was obtained from all
participants. Whole blood samples for cellular DNA isolation and
measurement of LINE-1 DNA methylation were collected from
166 healthy individuals, of which 104 were male and 62 female.
They were aged between 23 and 61 years, with a mean age of 40
± 9.2 (SD) years. For measurement of Alu DNA methylation of cel-
lular DNA, 63 of the same whole blood samples were used from 38
male and 25 female probands, aged between 23 and 61 years, with
a mean age of 40 ± 11 years.

Blood plasma samples for isolation of cell-free DNA and mea-
surement of LINE-1 and Alu DNA methylation were collected from
62 probands of a different cohort. This comprised 42 male and 20
female probands, aged between 18 and 64 years, with a mean age
of 39,39 ± 14,06 years.

From each proband, 7 ml blood was collected by venous phle-
botomy in EDTA tubes. After a density gradient centrifugation,
buffy coat and plasma were extracted and stored until DNA extrac-
tion. All samples were coded and frozen at -20 �C.

2.2. DNA isolation and bisulfite conversion

Cellular DNA isolation from the stored samples was performed
using the QIAamp DNA blood kit (Qiagen, Hilden, Germany). Cell-
free DNA Isolation from urine and blood samples was carried out
by using the QIAamp Circulation Nucleic Acid Kit (Qiagen). Sam-
ples were centrifuged for 15 min at 4000 rpm before the isolation.
Cell lysis was carried out at 60 �C for 40 min and the QIAGEN mini
columns were incubated for 5 min at RT after addition of AVE buf-
fer. For both methods the final elution was performed in 35 ml of
elution buffer. For bisulfite conversion 500 ng cellular DNA of
blood/urine samples and 100 ng of cell-free DNA from blood
plasma/urine samples were used. Bisulfite conversion was carried
out with the EpiTect Bisulfite Kit (Qiagen).

2.3. Relative Quantification of LINE-1 and Alu methylation in cellular
and cell-free DNA

Converted DNA served as template for amplification of methy-
lated LINE-1 and Alu sequences in a normalized real-time MSPCR
approach for genetically imbalanced DNA specimens as described
(Santourlidis et al. 2016). Quantification was done using Step
One Plus Real Time PCR System (Applied Biosystems, Foster City,
United States of America) with the following primers for LINE-1
(forward : 50-GCGCGAGTCGAAGTAGGGC-30; revers : 50-CTCCGAC
CAAATATAAAATATAATCTCG-30) and Alu (forward: 50-ATTTTAG
TATTTTGGGAGGTCGAGGC-30; reverse: 50-GCAATCTCGACTCAC
TACAAA CTCCG-30). Amplification of an adjacent region without
CpGs was used to normalize the amount of LINE-1 / Alu DNA
methylation. The primers used for normalization were for LINE-
1: forward: 50-AGGTTTTATTTTTGGGGGTAGGGTATAG-30; reverse:
50-CCCCTACTAAAAAA TACCTCCCAATTAAAC-30 and for Alu: for-
ward: 50-GGGTGGATTATGAGGTTAGGAGAT-30; reverse: 50-CATTCT
CCTACCTCAACCTCCC-30. The following annealing temperatures
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were chosen: LINE-1: 53 �C; LINE-1 control: 60 �C; Alu: 58 �C and
Alu control: 61 �C. The amplification conditions were denaturation
at 95 �C for 10 min, followed by 40 cycles of 95 �C for 30 s, TM�C
for 40 s, and 72 �C for 15 s. DNAMethylation levels were calculated
by the DDCT method using StepOne Software 2.2 (Applied
Biosystems).

2.4. Bisulfite genomic sequencing

For bisulfite sequencing of the LINE-1 promoter fragment the
following primers were used: forward: 50-GGT TTA TTT TAT TAG
GGA GTG TTA G-30 and reverse: 50-ACA AAA ACA AAC AAA CCT
CC-30. The PCR cycling conditions were the same as described for
real-time MSPCR with an annealing temperature of 51 �C. Amplifi-
cation products were cloned into pCR2.1 vector using the TA
Cloning Kit (Invitrogen, Carlsbad, United States) according to the
manufacturer’s instructions. On average 30 clones were sequenced
using the BigDye Terminator Cycle Sequencing Kit (Applied Biosys-
tems) on a DNA analyzer 3700 (Applied Biosystems) with M13 pri-
mer to obtain a representative methylation profile of each sample.
The sequenced LINE-1 segment is part of the CpG rich LINE-1 pro-
moter (Ref.: Human Transposon L1.2, NCBI Nucleotide Gen Bank
accession number: M80343.1).
3. Results

This study was carried out with blood samples of healthy
donors from German population, aged between 23 and 61 years.
R² = 0.0234
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Fig. 1. Relative Quantification of LINE-1 and Alu DNA methylation in cellular and c
retroelements in cellular DNA derived from PBMC samples (A, B) and cell-free DNA deriv
lines are colored in red and represent the Pearson’s correlation coefficients (R2).
The probands had no pre-existing conditions. LINE-1 and Alu
DNA methylation of cellular and cell-free DNA was measured by
Idiolocal Normalized real-time Methylation-Specific PCR as
described (Santourlidis et al. 2016). Relative DNA methylation
levels ranged from 0.01 to 2.14 for LINE-1 and from 0.59 to 1.64
for Alu elements in cellular DNA and between 0.14 to 2.73 for
LINE-1 and 0.04 to 2.54 for Alu elements in cell-free DNA (Fig. 1).
3.1. No association between DNA methylation of LINE-1 and Alu
retroelements in cellular DNA from peripheral blood and age

In cellular DNA, neither LINE-1 DNA methylation nor Alu DNA
methylation were significantly correlated with age. The respective
Pearson’s correlation coefficients were r2 = 0.0234 for LINE-1 and
r2 = 0.0265 for Alu elements, respectively (Fig. 1, A/B). Also after sep-
arating the sample cohorts into two age subgroups (20–40, 41–61;
23–40, 41–61), no significant differences were observed (Fig. 2, A/
B). For LINE1 methylation the mean values were 0.67 and 0.74 for
the younger and older group, respectively (p = 0.21). For Alumethy-
lation the respective mean values were 1.14 and 1.08 (p = 0.33).
Thus DNAmethylation of LINE-1 and Alu retrotransposons in cellu-
lar DNA of peripheral blood remains stable during aging.
3.2. DNA methylation of LINE-1 and Alu retroelements decreases with
age in cell-free DNA from peripheral blood

DNA methylation of LINE-1 and Alu retroelements in cell-free
DNA correlated much better with age, with Pearson’s correlation
R² = 0.0265
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Fig. 2. Mean values of LINE-1 and Alu DNA Methylation within age subgroups. Age subgroups associated global DNA methylation at LINE-1 and Alu retrotransposons in
cellular DNA of PBMCs (A, B) and peripheral blood cell-free DNA (C, D), respectively. The mean value of quantification has been applied in two-sample Student’s t-test with the
significance threshold p > 0.05.
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coefficients of r2 = 0.24 and r2 = 0.26, respectively (Fig. 1C/D). The
differences are accentuated by separation of the sample cohorts
into two age subgroups (18–40, 41–64 years for LINE-1; 18–40,
41–63 years for Alu) (Fig. 2C/D). Mean values of LINE-1 DNA
methylation levels were 1.44 for younger individuals and 0.85 for
older probands aged between 41 and 64 years (p = 0.00002). Mean
values of Alu DNA methylation were 1.14 for younger individuals
and 0.68 for older probands (p = 0.02).
3.3. Age associated LINE-1 and Alu hypomethylation of cell-free DNA
from peripheral blood plasma is more pronounced in smokers

Our data show a more pronounced decrease of DNA methyla-
tion of LINE-1 and Alu retroelements with age in cell-free DNA of
smokers, with Pearson’s correlation coefficients of r2 = 0.33 and
r2 = 0.35, respectively (Fig. 3B/D).
3.4. LINE-1 DNA methylation differs between cellular and cell-free
DNA in a healthy individual

In order to validate the occurrence and define the pattern of
DNA methylation differences in one retroelement between cellular
and cell-free DNA we examined urinary cellular and cell-free DNA
of a 60 year old healthy individual by bisulfite sequencing of
LINE-1 promoter.

The analyzed CpG-rich LINE-1 promoter region contains 25
CpGs. To obtain a representative LINE-1 DNA methylation profile
we bisulfite sequenced 23 clones from cellular DNA and 22 clones
from cell-free DNA (Fig. 4). In both cases our analysis revealed
dense CpG methylation within the analyzed 50 regulatory region.
However, in cellular DNA 326 of the 575 examined cytosines
(56.7%) were found to be methylated, whereas in cell-free DNA
in total 279 of the 550 examined cytosines (50.7%) were methy-
lated. Noteworthy, the CpG positions �9, �16, �18, �19, �21,
�22, �23, �25, �26, �28, �29 and �30 relative to the first ATG
of LINE-1 open reading frame 1 (ORF1) appear to be more suscep-
tible to demethylation in this cell-free DNA sample. In cellular DNA
we detected one complete unmethylated LINE-1 sequence which is
98–99% identical to one known full-length LINE-1 sequence with
intact open reading frames, as kindly provided by Dr. Goodier
(Kazazian lab, Philadelphia). This detailed analysis exemplifying
illustrates that differences of LINE-1 methylation between cellular
and cell-free DNA exist in a healthy individual.

4. Discussion

Our data do not show a significant age associated hypomethyla-
tion of LINE-1 and Alu retroelements in cellular DNA from
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peripheral blood. This is in accordance with published data which
show that age has no detectable effect on LINE-1 methylation in
peripheral blood cells (El-Maarri et al., 2011). This cellular DNA
fraction originates from leukocytes, i.e. neutrophils, lymphocytes,
monocytes, eosinophils and basophiles (El-Maarri et al., 2011).
We provide evidence that methylation of repetitive DNA elements
is stable in these nucleated peripheral blood cells in individuals of
20–61 years of age. Thus this constitutes not an aging associated,
alterable epigenetic component which might hypothetically
contribute to immunosenescence. In our view this appears in
accordance with the notion of highly differentiated and function-
ally specialized but relative short living cells which are continu-
ously replaced by new ones. About 65% of them are thought to
have life spans from few hours to weeks (El-Maarri et al., 2011).
Nevertheless further studies should aim to show whether LINE-1
methylation also remains stable in very old, i.e. 70–90 years old
individuals.

In contrast, we observed a clear age associated decline in the
methylation of retroelements in cell-free DNA from peripheral
blood. In healthy individuals this DNA fraction is suggested to
derive from apoptotic cells, necrotic cells and from active cellular
secretion of newly synthesized DNA (Bronkhorst et al., 2016).
Based on this we conclude that cellular genome-wide hypomethy-
lation occurs in an age-dependent fashion in endothelial, epithelial
and other body cells from various organs. Subsequently, this event
could lead to retrotransposon activation, induction of genomic
Fig. 3. Relative Quantification of LINE-1 DNA and Alu Methylation of cell-free blood plasm
of LINE-1 and Alu in cell-free DNA of non smoking individuals (A/C) and smoking proband
age. The regression lines are colored in red and represent the Pearson’s correlation coef
instability (Ghanjati et al., 2014) and aberrant transcription pat-
terns (Wolff et al., 2010). This may constitute one factor of aging
associated increase of apoptosis which for example has been
shown to occur in normal and pathological liver aging (Zhong
et al., 2017). Genomic instability has long been recognized as a cau-
sal factor in aging. Noteworthy this hypothesis would imply that
the amount of cell-free DNA in peripheral blood should increase
with age and further studies should aim to show whether this
could constitute a simple genetic marker of human aging.

In accordance with these observations we found increased
hypomethylation of LINE-1 and Alu elements in the cell-free DNA
of smokers. It is well established that smoking induces epigenetic
alterations in global DNA methylation (Wangsri et al., 2012;
Shigaki et al., 2012), e.g. LINE-1 hypomethylation in respiratory
epithelia exposed to cigarette smoke (Liu et al., 2010). Further-
more, harmful components of smoke, e.g. nicotine, induce apopto-
sis in various cell types (Zeidler et al., 2007). Therefore it is a
plausible assumption that smoking results in increased apoptosis
and release of hypomethylated cell-free DNA into the blood
stream, explaining our findings. We thus suggest that the amount
and the degree of demethylation of cell-free DNA from peripheral
blood are surrogate markers of smoking-induced adverse effects
on human health that might be used for monitoring its improve-
ment after cancelling smoking.

Consequently, we conclude here that hypomethylation of
cell-free DNA is a biomarker of human age.
a DNA in non-smokers and smokers. Correlation between age and DNAMethylation
s (B/D). The graphs show the correlation of DNA methylation in relation to subject’s
ficients (R2).
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