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The increasing miniaturization and affordability of sensors and circuitry has led to the current level of innovation in the area
of wearable and microsensor solutions for health monitoring. This facilitates the development of solutions that can be used
to measure complex health outcomes in nonspecialist and remote settings. In this article, we review a number of
innovations related to brain monitoring including portable and wearable solutions to directly measure brain electrical
activity, and solutions measuring aspects related to brain function such as sleep patterns, gait, cognition, voice acoustics,
and gaze analysis. Despite the need for more scientific validation work, we conclude that there is enough understanding of
how to implement these approaches as exploratory tools that may provide additional valuable insights due to the rich and
frequent data they produce, to justify their inclusion in clinical study protocols.

Brain function is highly complex. As Emerson M. Pugh stated:
“If our brains were simple enough for us to understand them, we’d
be so simple that we couldn’t.”1 Consequently, a wide variety of
tools exist to assess different components and aspects of brain
activities. These include tools that directly measure brain func-
tioning, such as via electroencephalography (EEG), and those
measuring aspects related to brain function such as sleep patterns,
gait, cognition, and gaze analysis.
In this article we focus on the emerging area of remote-

monitoring sensors, wearable devices, and mHealth (mobile
health—the use of mobile devices, such as smartphones and tablet
computers, in medical care) applications, and how these might be
leveraged in large-scale clinical trials and patient monitoring
beyond marketing approval.

WEARABLE AND MOBILE APPLICATIONS
A sensor is a device or device component that detects and mea-
sures physical or chemical information from a surrounding physi-
cal environment, and translates this into an electrical output
signal.2 Microsensors are miniature sensors that have electrical
and mechanical operation components, also termed microelectro-
mechanical systems (MEMS). These are usually produced by inte-
grated circuit manufacturing from silicon or similar materials.

A wearable device contains one or more sensors that are inte-
grated into clothing or other accessories that can be worn on the
body,3 such as on a wrist band, belt, headband, adhesive patch,
contact lens, or glasses. In the context of brain monitoring, a
wearable device may be, for example, a forehead headband
containing sensors able to measure EEG signals associated with the
frontal cortex. The use of reliable, high-performance microsensors
in the area of medicine is of growing importance for patient health
monitoring,4 personal wellness, and clinical research.
The miniaturization of sensors and circuitry has led to the cur-

rent proliferation in wearable devices. The ability to manufacture
smaller, faster, and smarter processors and sensors has generated a
huge growth in the availability of affordable consumer devices
associated with the personal health and wellness market. The
global connected health and wellness devices market was
estimated to be $123.2 billion in 2015 and is expected to reach
$612.0 billion by 2024.5

In the consumer wellness arena, we already see wearables and
mHealth applications directed towards the monitoring and main-
tenance of brain health. Aspects of brain health include the way
we think, feel, play, work, recall information, and sleep. Ensuring
that we continually exercise our brains is thought to improve
these aspects of brain health, although recent research indicates
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this activity may be less important than other aspects such as
exercise, healthy eating, and positive social interactions.6 Brain-
training applications, delivered on mobile and cloud-based web
platforms, are aimed at increasing and maintaining aspects of cog-
nitive function. Most use game and puzzle play to test, measure,
and help to improve and maintain focus, processing speed,
memory, attention, and problem-solving skills. Popular examples
include Fit Brains Trainer (Rosetta Stone, Arlington, VA), Ele-
vate Brain Training (Elevate, San Francisco, CA), and Lumosity
(Lumos Labs, San Francisco, CA). Importantly, the NeuroNa-
tion brain-training application (NeuroNation, Berlin, Germany)
is reimbursed by German health insurance. Some clinical research
studies have shown positive improvements of executive function
associated with brain training, for example, in reducing the cogni-
tive deficits associated with chemotherapy in breast cancer
survivors.7

Also popular in the consumer market are applications enabling
brain training through neurofeedback. Using wearable headsets
that enable EEG measurement of brain activity, it is possible to
provide immediate feedback to users in the pursuit of brain
health, in particular the combat or control of certain states or
emotions. During neurofeedback, EEG signals received are sum-
marized and presented to the user in a simple, visual format. For
example, when training to improve attention, visual feedback
may illustrate the degree of EEG activity associated with both
efficient active thinking (beta brain wave activity) and slow and
inefficient brain wave activity. In normal circumstances, we have
no way of differentiating between aspects of our brain wave activ-
ity. However, providing immediate feedback through neurofeed-
back applications provides this immediate insight and enables the
subject, over time, to learn how to modify their brain activity,
and hence modify their brain wave patterns to consciously adjust
the pattern of activity presented on screen. The ultimate aim is
to enable the user to continue to recognize and modify brain
activity for periods of time when the device is not worn. This
kind of consumer application is commercially available for areas
of brain wave training including the management of stress and
anxiety and improving focus and concentration.8

APPLICATION TO CLINICAL TRIALS
It is feasible that the same technology could be leveraged for the
study and measurement of treatment interventions in clinical
trials. However, in our highly regulated industry, the validity of
outcomes data collected using wearable and remote devices, and
mHealth applications, must be subject to appropriate levels of
rigorous examination. This has recently been comprehensively
examined by the Critical Path Institute’s Electronic Patient-
Reported Outcome (ePRO) Consortium who have put forward
recommendations for the evidence needed to support the
selection of a wearable device or remote sensor for use in clinical
trials to support labeling claims.2 We provide a summary of these
recommendations later in this article.
The focus of this article is on the use of wearable devices and

mobile applications that measure electrical brain activity directly,
and that measure aspects related to brain function such as sleep
patterns, cognition, gaze analysis, and speech acoustical analysis.

In most cases, the solutions we consider are emerging technolo-
gies that show merit for use in clinical trials, at least in the provi-
sion of exploratory endpoints and data that support other study
endpoints measuring the same concepts of interest. We summa-
rize the main technologies considered in Table 1, with an indica-
tion of whether there is a sufficient body of validation work and
other evidence to support their use in clinical trials.

CONSIDERATIONS FOR EVIDENCE TO SUPPORT DEVICE
USE AND ENDPOINT DEVELOPMENT
In clinical trials, a study endpoint is defined as a characteristic or
variable that reflects how a patient feels, functions, or survives.9

An endpoint description includes information defining how and
when they are measured, how they are calculated, rules for miss-
ing data, and how they are analyzed. In the absence of formal reg-
ulatory guidance, the Critical Path Institute’s ePRO Consortium
reported consensus recommendations on the evidence required
to support wearable device selection and endpoints derived from
wearables data.2

When using any sensor or device to measure health outcomes
and endpoints in clinical research, it is important to demonstrate
the reliability and validity of outcome data collected, the ability
of the outcome measures to reflect one or more concepts of inter-
est as defined by the clinical trial objectives, and to demonstrate
the suitability and interpretability of endpoint measures derived
from these data. Some of this evidence may be available through
market clearance/certification processes, but it is not a require-
ment for devices to be market cleared or certified when used in
clinical research.

Reliability
Intra- and interdevice reliability should be demonstrated by assess-
ment of test–retest reliability using the same and different units of
the same device. Typically, this will be assessed using the intraclass
correlation coefficient. To ensure reliability is maintained, device
manufacturers must be able to demonstrate that devices are
produced in adherence to a quality system to ensure equivalence of
devices between batches and with the reliability data provided.

Concurrent validity
Concurrent validity is important to demonstrate that the
approach is truly measuring what is intended. This is typically
performed by comparing results to a gold standard methodology
that is regarded as an accurate measure of the concept of interest.

Content validity
It is important to demonstrate that the endpoint(s) derived are
considered important to patients and a relevant outcome within
the disease/treatment studied. In the case that outcomes are not
already well understood, this content validity can be obtained
through qualitative data collection in patients or other reporters
such as physicians or other caregivers.

Ability to detect change
Outcome measures and derived endpoints should, when used in a
clinical trial, be seen to be sensitive enough to detect change
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when a change exists. This is normally demonstrated by con-
trolled studies involving an intervention that is understood to
create a change in the outcome of interest.

Endpoint interpretability
For an endpoint to be suitable for use in a clinical drug submission,
it is important to understand meaningful change. In other words,
it should be understood what degree of change in the endpoint
can be interpreted as clinically relevant to the patient. This may be
represented by the minimal important difference (MID) or mini-
mally clinically important difference (MCID), or the minimal
individual change that distinguishes a responder from a nonre-
sponder. There are well-established methodologies used to estimate
MCID and responder definition (see Ref. 10, for example).
In the remaining sections of this article, we review some of the

validation evidence supporting the use of emerging wearable and
remote monitoring technologies that aim to directly or indirectly
assess aspects of brain activity.

ELECTROENCEPHALOGRAPHY (EEG) AND EVOKED
POTENTIALS (EP)
The first scientist to record human EEG data was Hans Berger in
1924.11 Since then, its fundamental principle has not changed.
Electrodes placed typically on the scalp measure voltage fluctua-
tions resulting from ionic current flows within the neurons of the
brain as a result of brain activity. Signals are filtered and computer-
ized analysis helps with the visualization of the recordings, known
as quantitative EEG (qEEG) or EEG-mapping (Figure 1).
EEG mapping has found some application in clinical research

to explore the pattern of brain activity resulting from psychotro-
pic drugs and mental disorders,12 which have typical signatures in
qEEG, but this has not been accepted as a surrogate endpoint in
central nervous system (CNS) clinical drug development. The
“pharmaco-EEG,” i.e., the analysis of different EEG patterns
under the influence of psychotropic pharmaceuticals, still has
some place in the determination of cerebral bioavailability utiliz-
ing time- and dose-efficacy relations, as well as the evaluation of
bioequipotency of different formulations of compounds.13–15

One further potential application of qEEG is the analysis of
different EEG patterns under different external stimuli and sen-
sations such as pain. Since pain is typically assessed based on

subjective patient self-report, any pain study is exposed to a high
level of placebo response16 and qEEG may provide an objective
pain measurement.

Wearable devices to measure EEG and EP data
Wearable devices that measure EEG brain activity are worn pre-
dominantly around the forehead. Signals collected by a series of
dry electrodes are filtered and interpreted by firmware within the
device, to provide a continuous EEG signal trace. In health and
wellness, mobile EEG applications are typically associated with
two main development areas. The first uses measured brain activ-
ity to enable the user to control a product to produce a physical
action or enable communication. A good example is the “Mind
Speller” application, developed by researchers at the Catholic
University of Leuven and IMEC, Belgium.17 The second main
area, particularly for consumer applications, is development of
brain-training applications using neurofeedback as described
above.
There are a number of good examples of portable EEG head-

band devices (Figure 2) suitable for consumer product develop-
ment of smartphone and PC applications by leveraging their
established software development kits. Examples include MUSE
(InteraXon, Toronto, Canada), Emotiv EPOC (Emotiv, Sydney,
Australia), and ZenZone (NeuroSky, San Jose, CA). The MUSE
device, for example, comprises a headband worn across the fore-
head that contains seven sensors positioned across the forehead
and behind each ear. Newer developments also include in-ear
EEG recording using several electrodes positioned in the outer
ear canal and on the concha by means of an ear piece. This pro-
vides the possibility of continuous recording for longer periods of
time due to good user acceptance, comfort, and discrete position-
ing.18 Although not initially intended for clinical research,
most devices on the market also offer software development kits
that allow researchers to access the raw signal data for research
purposes.
Providing a highly portable solution that can be used to collect

frequent data from patients in remote settings, such as the home,
and continuous mobile monitoring promises the translation of
neuroscientific knowledge into clinical and daily life applica-
tions.19 However, the reliability, accuracy, and precision of EEG
trace data collected in this way must be examined to ensure that

Figure 1 The principle of EEG-mapping.
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they are fit for use to provide exploratory data in clinical trials
and regulatory submissions. One key difference is in the number
of electrodes and the way they attach to the skin. A conventional
clinic-based EEG is typically recorded using 21 electrodes
positioned across the scalp. This enables electrical activity to be
detected across much of the brain regions (Figure 1). However, a
forehead headband device, for example, relies predominantly on
measurement from the frontal cortex and on a well-fitting device
to ensure electrodes are held in contact correctly and do not
detach or generate electrical disturbances that may affect the
EEG measurement through movement. Device firmware, how-
ever, may be able to identify and filter out some electrical distur-
bances detected.
Only a small quantity of research has been reported to validate

the reliability of these systems for event-related brain potential
(ERP) research.20–28 Research to date, however, has shown the
promise of these techniques. A study using the Emotiv EPOC
headband solution compared continuous EEG measurements
using the portable headband and a research-grade EEG device
(Neuroscan v. 4.3), using an EEG electrode cap (EasyCap,
Herrsching, Germany) fitted with 14 Ag-AgCl electrodes.21 The
Emotive EPOC EEG Headset samples the EEG signal at a rate
of 120 samples per second from 14 different electrodes, and its
firmware filters out artifacts outside the bandwidth range of
0.2–45Hz. The authors reported very good concordance between
the systems for the P1, N1, P2, N2, and P3 ERP peaks in 19 6–
12-year-old children under passive and active listening condi-
tions. While the proportion of accepted measurement epochs was

lower using the headset in comparison to the Neuroscan device,
likely due to the differences in stability of electrode placement,
there were sufficient acceptable epochs measured with the Emotiv
headband to provide reliable ERPs. This study showed greater
association between headband and full EEG system measure-
ments, in comparison to an earlier study that showed only mod-
erate associations when measured in adults.20

A validation study using the MUSE technology showed that the
portable headband was able to accurately quantify the N200,
P300, and reward positivity ERP components in two experimental
paradigms.27 These tests were conducted rapidly (taking less than
10 minutes to perform), illustrating the utility of low-cost portable
EEG systems in the conduct of field and clinical research.
Artifact and noise filtering is an important aspect of obtaining

reliable data from portable EEG headsets. The causes of biologi-
cal artifacts include eyelid and eye movement, pulse artifacts due
to electrode placement close to blood vessel, frontal scalp muscle
activity, head or body movements, and sweat/skin artifacts caused
by changes in skin potential.26 Many of these are easily differenti-
ated from the EEG and can be removed by filtering, although
eyelid and eye movement artifacts are more difficult but can be
controlled by fixed gaze or subtracting eye artifacts by measure-
ment using electrodes on or near the eyebrows. This was illus-
trated by one study using the MUSE and Neurosky headbands,
which were unable to detect blinking signals.26 Common sources
of technical artifacts include electrostatic and electromagnetic
interference.
We consider the use of portable headset and earpiece devices

for the measurement of EEG data remotely and/or continuously
as an emerging opportunity where more research is needed to
demonstrate the reliability and validity of data collected in this
way (Table 1). Particular opportunity areas are discussed below.

Pain measurement
EEG data has been successfully used to provide objective mea-
surement of pain.29 Increased alpha and theta power at spontane-
ous EEG and low amplitudes of ERP during various stimuli seem
to be clinical characteristics of individuals with chronic pain.30

PainQx (New York, NY) uses research-grade and portable EEG
to assess neural brain activity and uses proprietary algorithms to
interpret and describe the patient’s pain state. This objective
measurement of pain may be useful alongside traditional self-
assessment scales and patient-reported outcomes instruments,
and may be useful in evaluating the real-time effects of analgesic
and narcotic drugs.
Using EEG-mapping, PainQx provides quantitative measures

of activity in different regions of the brain that are involved in
the sensation and perception of pain, termed the “Pain Matrix,”
filtering out areas not related to the sensation and perception of
pain. Areas of interest are isolated, identified, correlated, and
weighted to produce an objective measurement of a patient’s pain
state. This approach seems to allow a differentiation between
high and low pain condition in chronic pain—similar to the use
of heart rate in acute pain. Future research will show whether it
may also help to more reliably identify responders than current
subjective pain scales.

Figure 2 The EMOTIV EPOC EEG device. Image reproduced with permis-
sion of Emotiv Inc, Sydney, Australia.
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Alzheimer’s disease
ERPs may also provide objective information about processes in
the brain. In a typical ERP protocol, a stimulus sequence of fre-
quent (standard) and infrequent (target) tones are played, and an
unexpected (distractor) tone is included occasionally. The subject
is instructed to respond on hearing the infrequent target tone.
This protocol generates a waveform that consists of a series of
ERP components that produce positive and negative deflections
in the ERP waveform. This provides a direct measure of cortical
synaptic activity, indexing sensory and cognitive processes. The
P300 component (a positive deflection �300 ms after the target
tone) reflects attention and working memory and has been
shown to be useful in detecting clinically relevant changes in
cognitive function in Alzheimer’s disease patients.31 ERPs pro-
vide a real-time physiological measure of fundamental cognitive
processes, which can be used in proof-of-concept studies, but also
is not yet accepted as a surrogate endpoint in pivotal trials.

Traumatic brain injury/contusion
Another field currently lacking a sufficiently easy to use and objec-
tive measure of disease stage and outcome is mild brain contusion, a
traumatic event occurring frequently during sporting activities such
as American football, rugby, and soccer. Today, the diagnosis and
management of contusion is performed using subjective tools and
self-reports of symptoms limiting the clinical impact of these tests.
However, companies such as Cerora (Bethlehem, PA) have devel-
oped biosensors, mainly based on EEG methodology, which when
used together with traditional cognitive tests empower researchers
and clinicians to make better and more informed decisions about
disease stage and outcomes.32,33 However, no data yet exist which
would support this concept, thus the specificity and sensitivity of the
approach remains uncertain.

Epilepsy
Mobile EEG may facilitate long-term monitoring in an outpa-
tient or home environment. If usage for reasonably long periods
can be enabled through unobtrusive wearable devices, this long-
term monitoring ability may be particularly interesting in the
study of epilepsy, where seizure incidence is unpredictable and
needs to be recorded outside the clinic environment. This kind
of continuous monitoring data may be valuable in the detection
and characterization of seizures, the recognition of subtle seizures
that may otherwise go unrecognized by the patient, or determin-
ing seizure incidence in the event that a patient presents with
seizure-like symptoms. Due to the importance of monitoring and
characterizing seizure incidence in clinical trials to assess new
interventions, the ability to generate objective data through con-
tinuous monitoring will be of great value. Long-term EEG mea-
surement in an ambulatory setting has already shown promise in
the assessment of patients who are difficult to diagnose or man-
age following evaluation of routine in-clinic EEG assessments.
Examples include: differentiating between nocturnal epilepsy and
other sleep disorders such as abnormal movements during sleep,
and accurate characterization of seizure and frequency.34

Currently, more work is needed to understand if this is a reliable,
valid, and practically feasible approach.

PORTABLE SLEEP ASSESSMENT TECHNOLOGIES
We spend a third of our lives asleep; it is an essential element of all
of our lives. It is well established that there is a bimodal relation-
ship between sleep disturbance and clinical disease both in terms
of cause and effect. While there is still significant debate as to the
definition, diagnosis, and measurement of sleep, perhaps the sim-
plest definition of sleep focuses on the behavioral definition that
describes sleep as “a reversible behavioral state of perceptual disen-
gagement from and unresponsiveness to the environment.”35

Measuring aspects of sleep and its effect can be important in clini-
cal drug development where improvements or worsening in sleep
may be observed as a direct or indirect response to treatment. Differ-
ent objective measurements of aspects of sleep may be important,
depending on the concept of interest for the clinical investigation.
Measures of sleep architecture and sleep continuity may be beneficial
in the monitoring of brain health related to neurodegenerative disor-
ders. Sleep spindles (short bursts of high-frequency brain activity)
during nonrapid eye movement sleep have been shown to relate to
cognitive decline in Parkinson’s disease, and reduced slow wave sleep
is associated with Alzheimer’s disease.36

Sleep outcome measures/parameters
Sleep architecture refers to the basic structural organization of
normal sleep. Normal adult sleep consists of alternating periods
of rapid eye movement (REM) and non-REM (N-REM) sleep,
with N-REM sleep accounting for 75–80% of the sleep period.
Sleep consists of four episodes or stages of N-REM sleep followed
by REM sleep, the N-REM and REM sleep cycles being progres-
sively longer throughout the course of the full night’s sleep cycle.
In addition to sleep architecture, sleep quality, sleep quantity,

circadian rhythmicity, sleep consolidation, regularity, and nap-
ping are also important factors in assessing sleep and wake pat-
terns. The following outcome measures are commonly estimated
to assess sleep quality and quantity: sleep onset latency, wake after
sleep onset, sleep efficiency, number of awakenings, and total
sleep time.
Depending on the sleep parameter under investigation, there

are different technologies and methodologies that can be
employed. An important consideration in technology selection is
the recommendations from the International Classification of
Sleep Assessment.37 These are generally adopted by the biophar-
maceutical industry in the conduct of clinical development
programs, and have particular importance where sleep data will
be used as a primary or secondary endpoint in a regulatory new
drug application.

Polysomnography
Polysomnography (PSG) has been considered the gold standard
technology for measuring sleep architecture. PSG is a simulta-
neous multiparametric assessment that is carried out overnight
and consists of the following physiological parameters: EEG, elec-
trooculography (EOG), and surface electromyography (EMG). It
can also include measurement of pulse oximetry, respiratory
effort, and core temperature. Because of its complexity and the
quantity of instrumentation needed, PSG has until recently been
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restricted to specialized sleep laboratories and requires skilled
sleep laboratory technicians for analysis and interpretation.
Despite being considered a gold standard, it is not without lim-

itations for use in clinical development, in particular the cost and
the need to access heavily subscribed specialist laboratory services.
A major issue is the “first night affect,” where subjects sleeping in
an abnormal environment may affect the sleep parameters mea-
sured. In addition, the manual assessment of data can result in
high interrater variability in assessments.
To overcome the cost and specialist services needed with PSG,

much attention has been given to alternative approaches and
technology to facilitate the assessment of sleep in nonclinical set-
tings. We review the key technologies below.

Remote sleep assessment: Actigraphy
Actigraphy is the use of an accelerometer to measure gross motor
movements and is based on the simple premise that when there is
no activity the probability is that the individual is asleep, and
when there is movement the probability is that the individual is
awake38 (Figure 3). The use of accelerometers to identify sleep
and rest patterns dates back to the 1970s.39 Since its conception,

a number of devices have been developed with sophisticated algo-
rithms that filter ambient noise and have been validated against
PSG in their ability to reliably assess certain sleep parameters,
leading to its use as a tool to assess sleep quality and quantity out-
side of the clinical laboratory setting.40 The low-burden nature of
the technology, its suitability as a means of capturing real-life
sleep and activity data over weeks and months has meant that
this technology is widely used both by the research community
and in drug development to assess changes in sleep and activity
patterns.
Actigraphy has been demonstrated to provide good sleep

parameter estimates to assess sleep quality, quantity, and circadian
rhythms,41 but it is not a validated technology for assessing sleep
architecture (REM and N-REM Sleep). Actigraphy-determined
sleep is highly correlated with PSG outcomes in normal adults
(>90%),42 but less so for other populations such as insomniacs,
where the correlation can be as low as 50% for some of the
parameters such as sleep onset latency.41,43 Different devices and
their associated firmware and software have different sensitivities
to immobility and movement. Sensitivity to immobility allows
the device to identify periods of sleep. Sensitivity to mobility

Figure 3 An actogram showing changes in daily activity and sleep patterns. Black bars represent periods of activity. Shaded blue areas represent
resting/sleep periods. Image reproduced with permission of Philips Respironics, Murrysville, PA.
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allows the device to identify periods of wakefulness. In general,
actigraphy devices are very good predictors of sleep, but less
sensitive to wakefulness, and as a result can overestimate total
sleep time. When selecting a device for use in a clinical trial, it is
important to ensure that the device has been validated in the
population being studied.

Actigraphy with additional physiological channels
More recently, some newer actigraphy devices also incorporate
the capability to measure additional physiological parameters
such as heart rate, respiration rate, galvanic skin response, skin
temperature, and pulse oximetry. This has enabled the assessment
of sleep architecture in addition to sleep quality and quantity.
One example among this class of devices is the WatchPAT (Ita-
mar Medical, Caesarea, Israel) which measures peripheral arterial
tone (PAT), along with actigraphy and other measures. While
developed for home-based assessment of sleep apnea,44–46 there is
emerging research suggesting that good agreement between PAT
and polysomnography data, and that specific PAT patterns can
be observed during different sleep stages, which enables the recog-
nition of REM and N-REM sleep, including detection of lighter
stages from deeper, slow wave sleep.46,47

Ambulatory PSG and EEG
While it is possible to conduct more extensive testing in the
home environment using ambulatory PSG that can monitor and
record a number of aspects including EEG, EOG, EMG, ECG,

pulse rate, air flow, respiratory movement/effort, and oxygen sat-
uration, its use can be expensive and may require specialist teams
to manage and implement. A practical alternative device, Sleep
Profiler (Advanced Brain Monitoring, Carlsbad, CA), is worn on
the forehead overnight and measures EEG, EOG, EMG, ECG,
pulse rate, head position, head movement, and snoring incidence
using a variety of sensors held in place with a headband
(Figure 4). Studies have successfully demonstrated the concur-
rent validity of sleep biomarkers recorded using data from only
one or two nights in comparison to PSG,36 indicating the
validity of the approach for use in clinical or research applica-
tions. This enables the monitoring of sleep architecture and
continuity for multiple nights at home, or for continuous peri-
ods in an ICU. Automated sleep staging algorithms associated
with the use of Sleep Profiler have been shown to provide reli-
able results in comparison to manual ratings.36,48,49

Noncontact sensor technology
A new class of sleep assessment tools have recently emerged that
claim to measure sleep parameters without the requirement to be
worn.
The Beddit 3 Sleep monitoring system (Apple, Cupertino,

CA) uses a flexible piezoelectric film sensor that is placed beneath
the bed sheet. This is able to measure the forces caused by the
body on the bed to detect tiny movements that can be inter-
preted to estimate pulse (heart pumping), breathing effort (tho-
rax extension), and overall body movement. Validation work
comparing heart rate estimates to ECG50 and breathing effort to
the respiration effort signal in PSG51 show some promise but
more work is needed. The Beddit system uses a BlueTooth con-
nection with a mobile phone hub to transmit the data to a cen-
tral server and apply algorithms to estimate heart rate, respiratory
variation, activity, sleep stages, and stress reactions. A validation
study of a similar piezoelectric sensor device, the ES contact-free
sensor (EarlySense, Ramat Gan, Israel) showed good reliability of
total sleep time estimates compared to PSG.52

A second approach, the S1 sleep sensor (ResMed, San Diego,
CA), uses a bedside sleep monitor to detect ultralow-power radio-
frequency waves to monitor the movements of the subject in bed,
such as the expansion and relaxation of the chest during respira-
tion, and overall body movements such as positional changes,
arm twitches, and shrugs. The device uses novel proprietary algo-
rithms to identify sleep stages (wake (W), light sleep (N1, N2
sleep), deep sleep (N3 sleep), REM or N-REM). Robust valida-
tion work is needed for this approach to be of use in clinical
research (Table 1).

GAIT ASSESSMENT
Assessment of gait provides significant insights into the progres-
sion and treatment of neurodegenerative diseases. For example,
the predictive value of gait abnormalities as a risk factor for the
development of dementia has been identified,53 and more
recently, evidence from clinical practice and epidemiological stud-
ies show that gait and cognition are interrelated.54 Similar associ-
ations have been identified in Parkinson’s disease, where an

Figure 4 Sleep Profiler EEG device to assess sleep architecture and con-
tinuity. Image reproduced with permission of Advanced Brain Monitoring,
Carlsbad, CA.
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association between global cognitive function and pace-related
measures of gait, turning, and postural sway has been identified.55

In-clinic assessment of temporal and spatial gait parameters
can be achieved using performance tests conducted on pressure
pad systems such as GaitRITE (CIR Systems, Franklin, NJ) and
Zeno Walkway (ProtoKinetics, Havertown, PA), or using 3D
motion capture solutions such as the Vicon marker-based camera
system (Vicon Motion Systems, Oxford, UK). These solutions
provide robust gait parameter estimates, but often require
conduct at specialist centers, which may limit the scale at which
they can be used in clinical trials.
Alternative approaches, measuring gait parameters remotely in

free-living settings, may provide a richer and more informative
picture of gait in comparison to a clinic performance snapshot.56

Newer approaches that facilitate the collection of robust, objec-
tive, and sensitive measurements of a variety of gait parameters
include the capability to measure both in-clinic or outside the
clinic setting. The rich data that these provide may enable estab-
lishment of new and more responsive gait endpoints. Kinesis
Health Technologies (Dublin, Ireland), McRoberts (The Hague,
The Netherlands), APDM Wearable Technologies (Portland,
OR), and MC10 (Boston, MA) offer easy-to-use in-clinic and
remote systems for objective assessment and estimation of gait
parameters such as cadence, gait speed, double support, lateral
step variability, foot strike angle, toe off angle, stance, step dura-
tion, stride length, swing velocity, and toe out angle. Most employ
multiply located sensors along with algorithms to interpret simul-
taneous signals to provide gait parameters and assessments.
Promising areas of innovation include the embedding of pres-

sure sensors and accelerometers into footwear insoles such as the
F-Scan system (Tekscan, South Boston, MA) and Moticon’s insole
(Moticon, Munich, Germany) (Figure 5). These approaches, in
addition to other e-textile applications, may provide a patient-
centric approach to enable the collection of gait assessment data in
a frictionless manner in free-living settings. Studies using the Moti-
con sensor-instrumented insole solution, for example, have demon-
strated good validation and reliability of gait parameters
collected.57,58 In addition, the use of the 3D depth cameras associ-
ated with motion-based gaming platforms and other applications

to track 3D joint coordinates and movements, such as Microsoft
Kinect (Redmond, WA) and Intel RealSense (Santa Clara, CA) have
shown promise in measuring gait parameters based on simple in-
clinic performance tests, reducing reliance on specialist centers.59,60

One limitation of the collection of rich free-living gait assess-
ment data is the understanding of the context associated with the
data. Changes in external factors such as terrain, footwear, cloth-
ing, the size and shape of living space, ease of access to outside
spaces, and the weather all may potentially impact remote gait
assessment.

COGNITIVE FUNCTION TESTING
Cognition is the ability to perceive and react, process, and
understand, store, and retrieve information, make decisions, and
produce appropriate responses.61 Many mental disorders are
associated with disrupted cognitive function such as dysfunctions
of attention, concentration, and memory. Cognitive function
testing can help to identify which brain mechanisms are involved
in the symptoms, and can help determine, and assess the impact
of, treatment. Cognitive function in clinical trials is traditionally
measured in laboratory conditions using a battery of computer-
ized tests, for example, using the CDR (Bracket, Arlington,
VA) 62 and CANTAB (Cambridge Cognition, Cambridge, UK)63

systems.

Nonlaboratory measurement of cognition
While a huge body of work exists validating the use of the main
cognitive function testing platforms in the study of many CNS
and other conditions, including the collection of large banks of
normative data to provide reference, for practical reasons labora-
tory tests are typically limited to smaller studies and infrequent
assessment. More recently, approaches to testing have been devel-
oped that enable more frequent assessment in nonlaboratory set-
tings and in larger groups of patients. This offers the possibility
of continued testing in clinical trials and postmarket evaluations.
Some approaches to the measurement of reaction times, mem-

ory, and problem-solving have been executed through the context
of video game play, leveraging smartphone and tablet technology.
Project:Evo, for example, is a game application developed by Akili
Interactive Labs (Boston, MA) that can be used to measure and

Figure 5 Moticon insole system for gait analysis. Image reproduced with permission of Moticon GmbH, Munich, Germany.
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improve interference processing, a key component of executive
function. The premise of the game, which operates on mobile
phones and tablets, is to provide an environment where a player’s
ability to process out distractions during the focused conduct of a
specific action can be assessed and measured. It is intended to be
an engaging alternative to conventional cognitive test batteries.64

This game platform is currently being tested in a variety of global
clinical studies in multiple patient populations, including atten-
tion deficit hyperactivity disorder (ADHD), autism, depression,
and traumatic brain injury. Pfizer (New York, NY), for example,
has reported that outcomes measures derived from gameplay on
the platform were able to distinguish between amyloid-positive
older healthy subjects vs. an age-matched comparison group of
amyloid-negative subjects; suggesting the game may be valuable as
a noninvasive biomarker for Alzheimer’s disease screening and
tracking.65 Shire (Dublin, Ireland) is also funding investigations
on the use of the game in ADHD clinical trials.
Smartphones offer great potential to present visual cognitive

function tests in a remote setting. Initial work has shown the
approach can provide reliable estimates of aspects of cognitive
function and good concurrent validity when compared to gold
standard approaches.66 The Apple ResearchKit provides a plat-
form to develop a variety of patient performance tests and assess-
ments, including a number of tests of cognition such as the paced
visual serial addition test, a spatial memory test, and a simple
reaction time test.67 While some basic validation work has been
reported on the use of these tests,68 more work is required to
demonstrate reliable and valid measurement.
Wearable devices, in particular smart watches, may also offer

the ability to frequently deliver and measure simple tests of cogni-
tion in a remote setting. Cambridge Cognition has expanded
their laboratory-based testing solutions to include remote testing
via a wearable device. A preliminary study of a two-back symbol
memory test delivered on the Microsoft Band 2 provided data
that supports the feasibility of cognitive assessment on wearable
devices.69

EYE TRACKING
Eye-tracking measures provide valuable, noninvasive insights into
brain function and cognition. For example, gaze analysis is useful
in assessing attention and cognitive strategies; pupil dilation is
modulated by noradrenaline and is related to arousal and mental
activity; and blink rate is modulated by dopamine, which is
related to learning and goal-oriented behavior.70

Pupillometry has increasing value as a marker of physiological
state. Pupil diameter fluctuations have been shown to track rapid
changes in adrenergic and cholinergic activity in the cortex in ani-
mal models,71 and to provide a measure of task disinterest in
studies of mental fatigue and task disassociation.72

Spontaneous blink rate can provide an indirect measure of
dopamine activity in the CNS,73 and reductions in blink rate are
observed with the administration of dopamine receptor antago-
nists.74 Studies on infants have shown that eye movement can be
used as an early diagnostic tool for autism diagnosis; with chil-
dren on the autistic spectrum favoring focusing on images of geo-
metric design rather than those of human faces.75

Measuring fixation stability and saccadic movements (rapid
movements of the eyes that abruptly change the point of fixation)
have been shown to have clinical significance for a number of
CNS disorders such as Huntington’s disease, progressive supranu-
clear palsy, and Parkinson’s disease.76 In the early stages of
dementia, saccadic eye movement recording may help discrimi-
nate between Lewy body dementia and Alzheimer’s disease.77

Eye tracking is gaining increasing interest as a potential bio-
marker for brain injury. Studies assessing treatments in traumatic
brain injury are difficult to conduct for various reasons, including
heterogeneity in the study population due to the lack of accurate
diagnosis and classification schemes, and the lack of robust objec-
tive outcome measures. One of the reasons for the failure of the
ProTECT III and SyNAPSe clinical trials of progesterone treat-
ment of acute traumatic brain injury was cited as a lack of adequate
biomarkers for brain injury.78 Eye tracking, however, has been pro-
posed as an objective biomarker for brain injury and concussion.79

Figure 6 A volunteer wearing an EEG cap in front to the Tobii Pro Spectrum eye tracking platform. Image reproduced with permission of Acuity ETS Ltd.,
Reading, UK.
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Portable eye tracking technology
Eye tracking is still the preserve of a small number of specialist
companies that supply validated eye-tracking technology; Senso-
Motoric Instruments (SMI, Teltow, Germany; now owned by
Apple) and Tobii (Stockholm, Sweden) are considered leaders in
this space. Both offer lab-based camera systems (Figure 6) and
more portable solutions by incorporating their technology into
glasses and virtual reality headsets. Right Eye (Bethesda, MD) is a
newer eye tracking provider with a cloud-based solution, and has
been shown to provide reliable estimates of some eye-tracking
parameters.80

Researchers at the Massachusetts Institute of Technology, the
University of Georgia, and the Max Planck Institute for Infor-
matics have developed a mobile application, GazeCapture, oper-
ating on Apple mobile devices, which displays a sequence of dots
that the user is able to track and fixate. The mobile device’s
front-facing camera simultaneously captures eye movements
during the performance task. The associated machine-learning
algorithms have been shown to be capable of robustly predicting
gaze with low errors on both smartphone and tablet devices,81

and this approach enables the collection of rich eye-tracking per-
formance test data remotely in large-scale studies.
The increasing use of eye tracking to assess consumer behavior,

and its use in gaming platforms and Virtual Reality, means signif-
icant continued investment in the technology solutions servicing
this area. This is likely to result in increasing capabilities and
mobile-enablement of eye-tracking technology, which will benefit
applications for clinical research.

VOICE ACOUSTICAL ANALYSIS
An area of ongoing research involves the capture and acoustical
analysis of the speech patterns of patients. Studies of voice acous-
tical analysis of patients with extremely early-stage Parkinson’s
disease suggested that voice acoustical changes can be good pre-
dictors of early onset of the disease.82 In depression, certain voice
acoustical parameters such as speaking rate and pitch variability
have been shown to correlate well with conventional measures of
disease severity such as the Hamilton Depression Rating Scale.83

A methodology study comparing the acoustical measures made
from recordings obtained using state-of-the-art laboratory record-
ing equipment and simultaneous recording over the telephone
using an Interactive Voice Response system indicated that the
data obtained by both methods were highly comparable, enabling
the possibility of large-scale longitudinal testing from home set-
tings.84 More recently, phonation tests for Parkinson’s disease
patients have been developed in clinical research mobile apps
using both Apple ResearchKit67 and on the Android plat-
form.85–87 This opens the possibility of using such inexpensive
techniques in large-scale clinical trials.

CONCLUSION
The rapid developments in the wearable device and remote sen-
sor market are driven predominantly by the miniaturization of
sensors and circuitry and the improvements in functionality and
processing power of mobile devices such as smartphones and
tablet computers. In the area of health, and specifically in brain

monitoring, as described in this article, these developments are
leading to opportunities to develop and leverage innovative devi-
ces to make measurements normally confined to the clinic. Rapid
technological developments can be seen in the area of portable
EEG monitoring, and in other areas related to brain function
including sleep assessment, gait analysis, cognitive function test-
ing, eye tracking, and voice analysis.
Aside from the measurement of sleep parameters by wrist actig-

raphy, which already provides well-accepted endpoints for clinical
trials, the technologies described in this article are emerging and
the subject of continued research providing validation and utility
evidence. It is acknowledged that more research is needed to bet-
ter understand the reliability and validity of these emerging tech-
nologies, and to generate the required understanding of new
endpoints derived from their data. Despite this, there is enough
understanding of how to implement these approaches as explor-
atory tools, which may provide additional valuable insights due
to the rich and frequent data they produce, to justify their inclu-
sion in clinical study protocols.
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