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SUMMARY

We develop a new method for large-scale frequentist multiple testing with Bayesian prior
information. We find optimal p-value weights that maximize the average power of the weighted
Bonferroni method. Due to the nonconvexity of the optimization problem, previous methods
that account for uncertain prior information are suitable for only a small number of tests. For a
Gaussian prior on the effect sizes, we give an efficient algorithm that is guaranteed to find the
optimal weights nearly exactly. Our method can discover new loci in genome-wide association
studies and compares favourably to competitors. An open-source implementation is available.

Some key words: Genome-wide association study; Multiple testing; Nonconvex optimization; p-value weighting;
Weighted Bonferroni method.

1. INTRODUCTION

The research presented in this paper is motivated by the genetics of human longevity. Genome-
wide association studies of longevity compare long-lived individuals with matched controls
(Brooks-Wilson, 2013). More than 500 000 genetic variants have been tested for their associ-
ation with longevity, which amounts to a large multiple hypothesis testing problem. In addition
to multiplicity, the sample size is small, usually of the order of a few hundred. As a consequence,
only a few loci have been replicably associated with human longevity, and they do not explain
the heritability of the trait (Hjelmborg et al., 2006).

The multiplicity may be countered by testing only a few candidate variants selected based
on prior scientific knowledge. In a separate work in preparation, led by the second author, we
find that a more general genome-wide test helps to improve power in a study of longevity. We
leverage prior information from genome-wide association studies of age-related diseases, such
as coronary artery disease and diabetes. For this task, we develop a new large-scale method of
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frequentist multiple testing with Bayesian prior information. In this paper we provide the theory
for this method.

Our method is a novel p-value weighting scheme; p-value weighting is a general methodology
for multiple testing that leverages independent prior information to improve power (Roeder &
Wasserman, 2009; Gui et al., 2012). Suppose that we test hypotheses Hi via the p-values Pi for
i = 1, . . . , J . For a significance level q ∈ [0, 1], the weighted Bonferroni method declares the i th
hypothesis to be significant if Pi � qwi . The weights wi � 0 are based on independent data. The
familywise error rate, the probability of making at least one error, is controlled if the weights
average to 1, as it equals at most α = Jq.

In previous work, optimal weights have been found in a Gaussian model of hypothesis testing.
Let the test statistics in the current study be Ti ∼ N (μi , 1), where the μi are the means, or effect
sizes; we test the null hypotheses μi � 0 against μi < 0. We have some information about the
μi from prior studies. Roeder & Wasserman (2009) and Rubin et al. (2006) considered a model
where the μi are known exactly from the prior data, and the weights are allowed to depend on the
μi . In such a model they found the optimal weights for the weighted Bonferroni method, which
maximize the expected number of discoveries. We show that this amounts to solving a convex
optimization problem.

The assumption that the μi are known precisely is problematic: if they were known, there
should be no follow-up study. In practice, empirical estimates of the μi are used. However, the
fixed-μi weights do not take into account the uncertainty in the estimates. Instead, we account
for uncertainty explicitly by considering the model with uncertain prior information in the form
μi ∼ N (ηi , σ

2
i ). Only the prior means ηi and standard errors σi are known from independent

data, not the precise effect sizes. Finding the optimal weights, which we call Bayes weights, is
then a nonconvex optimization problem.

Westfall et al. (1998) formulated a general framework that includes this problem as a special
case and allows, for instance, for Student t-distributed priors. They used a direct numerical solver,
a quasi-Newton optimization method which generally scales as O(J 3), to find the weights. Pub-
lished examples using this approach are typically small (Westfall et al., 1998; Westfall & Soper,
2001). This method of computing the weights does not scale up for our problems, which involve
more than 500 000 genetic variants. Further, the generic quasi-Newton method has no guarantee
of finding the global optimum of the nonconvex problem.

Our key contribution here is to provide an efficient method of finding the weights that max-
imize average power for the weighted Bonferroni method, in the model with Gaussian priors.
We solve the optimization problem exactly for small q, less than a problem-dependent value
which is often between 0·1 and 0·3. For larger q, we can solve the problem for a nearby
q∗ such that |q∗ − q| � 1/(2J ). The cost per iteration of our algorithm is O(J ) in the first
case and O(J log J ) in the second case. We observe that a nearly constant number of iter-
ations is used, regardless of J . We find it remarkable that this problem admits a near-exact
solution.

For large-scale problems, this approach leads to a method for multiple testing that controls a
frequentist error measure while also taking into account Bayesian prior information. This method
follows George Box’s advice to be Bayesian when predicting but frequentist when testing (Box,
1980). Similar ideas were used previously by Carlin & Louis (1985); see § 2. As mentioned, a
more general formulation was also considered in Westfall et al. (1998) and Westfall & Soper
(2001). We show that our approach is feasible for large-scale problems.

When prior information is uncertain, we show via simulations that the new method has more
power and is more stable than competitors. We also show theoretically that weighting leads
to substantially improved power. We apply the method to genome-wide association studies.
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By analysing several such datasets, we show that our method has advantages in terms of power
and easier tuning compared to other methods.

With rapidly increasing volumes of data available as prior information for any given study,
our method should be useful for other problems in biology and elsewhere. The data analysis and
computational results in this paper are reproducible, and an open-source implementation of the
method is available from the authors.

2. RELATED WORK

There is a large literature on statistical methods for multiple testing with prior information,
some of which is reviewed in Roeder & Wasserman (2009) and Gui et al. (2012). Spjøtvoll (1972)
devised optimal single-step multiple testing procedures maximizing average or minimal power
and controlling the familywise error rate. Later it was recognized that Spjøtvoll’s results are
equivalent to optimal p-value weighting methods. For instance, Benjamini & Hochberg (1997)
developed extensions of Spjøtvoll’s methods for p-value weighting, allowing for weights also in
the importance of the hypotheses.

Leveraging Spjøtvoll’s results, Rubin et al. (2006) and Roeder & Wasserman (2009) found an
explicit formula for optimal weights of the weighted Bonferroni method in the Gaussian model
N (μi , 1), assuming that the effects are known exactly. In practice the effects are estimated, but
the weights do not take this into account. These weights are optimal for average power, and
this efficient method is suitable for large applications. Eskin (2008) and Darnell et al. (2012)
applied the framework of Roeder & Wasserman (2009) to genome-wide association studies; they
accounted for correlations between the tests but assumed that the effects are known exactly.

Another popular approach is to test the top candidates from a prior study, often known as two-
stage testing or candidate study. It can be viewed as a p-value weighting method where some of
the weights equal zero. A specific version for genome-wide association studies has been called
the proxy-phenotype method (Rietveld et al., 2014).

In the literature on carcinogenicity trials, related methods have been devised to select tumour
sites based on historical data (Carlin & Louis, 1985; Louis & Bailey, 1990); the methods are
explicitly Bayesian with regard to historical data and frequentist in analysing current data. These
models and methods differ from ours, and focus on pairwise comparisons based on Fisher’s exact
test (Louis & Bailey, 1990).

Westfall et al. (1998) considered a Gaussian model N (μi , 1) for the effects in hypothesis
testing where prior distributions are known for the means. They formulated the problem of
finding the weights that maximize expected power for the weighted Bonferroni method, and
this was followed up for binary data in Westfall & Soper (2001), motivated by carcinogenic-
ity trials. As mentioned in § 1, published studies using their optimization methods are typically
small.

Less work exists on weighted methods beyond the single-step Bonferroni method, or beyond
the control of the familywise error rate. The step-down method of Holm (1979) can use weights,
and Westfall & Krishen (2001) and Westfall et al. (2004) discuss the choice of optimal weights.
Genovese et al. (2006) showed that the weighted Benjamini–Hochberg procedure controls the
false discovery rate, and Roquain & Van De Wiel (2009) proposed a method of choosing weights
optimally, assuming fixed known effects. Peña et al. (2011) developed a general framework for
optimal multiple decision functions for the control of familywise error rate and false discovery
rate, assuming exact knowledge of the alternatives.

In this paper we focus on the familywise error rate, because it is the standard measure of error
controlled in our motivating application, and because in this case it is already challenging to find
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the optimal weights accounting for uncertainty on a large scale. Extension of this work to the
Benjamini–Hochberg procedure and to false discovery rate control is left for future research.

3. THEORETICAL RESULTS

3·1. Background

We work in the Gaussian means model of hypothesis testing: we observe test statistics Ti ∼
N (μi , 1) and test each null hypothesis Hi : μi � 0 against μi < 0. The p-value for testing Hi is
Pi = �(Ti ), where � denotes the normal cumulative distribution function.

For a weight vector w ∈ [0, ∞)J and a significance level q ∈ [0, 1], the weighted Bonferroni
procedure rejects Hi if Pi � qwi . Usually this corresponds to wi = 1. For general weights, the
expected number of false rejections, known as the per-family error rate, equals

∑
μi �0 pr(Pi �

qwi ) = q
∑

μi �0 wi . If
∑J

i=1 wi � J , the expected number of false rejections is at most α = Jq.
By Markov’s inequality, this implies that the familywise error rate is at most α. Hence the
weighted Bonferroni method controls the familywise error rate. This result does not require
independence of the Ti . We assume always that q � 1, and usually that q � 1. Without loss of
generality, we restrict the weights to the interval [0, 1/q].

Let us denote the number of rejections by R(w) = ∑J
i=1 I (Pi � qwi ), where I (·) is the indi-

cator function. The optimal weights maximizing the expected number of discoveries, assuming
a priori known effects μi , were found explicitly by Roeder & Wasserman (2009) and indepen-
dently by Rubin et al. (2006). Denoting by ET (·) the expectation with respect to Ti , they solved
the constrained optimization problem

max
w∈[0,1/q]J

ET {R(w)} subject to
J∑

i=1

wi = J. (1)

It was not noted previously that this problem is convex. The objective is a sum of terms of
the form �{�−1(qwi ) − μi }, whose concavity follows directly by differentiation. Yet, by simple
Lagrangian optimization, the above papers showed that if all μi < 0, the optimal weights are
wi = w(μi ) where

w(μ) = �

(
μ

2
+ c

μ

) /
q. (2)

Here c is the unique normalizing constant such that the weights sum to J . Interestingly, the
weights are not monotonic as a function of μ, but are largest for intermediate values of μ. As
noted by Roeder & Wasserman (2009), formula (2) is a direct consequence of Spjøtvoll’s the-
ory of optimality in multiple testing (Spjøtvoll, 1972). Accordingly, we call these weights the
Spjøtvoll weights.

3·2. Weighting leads to substantial power gain

To illustrate theoretically that p-value weighting can lead to increased power, we compare the
power of optimal weighting with that of unweighted testing in a sparse mixture model.

First, we note that p-value weighting exploits the heterogeneity of the tests. In the simplest
case there are only large and small negative effects, say M � m ≈ 0. We consider the m ≈ 0 limit,
and for simplicity we suppose that m = 0. Let the fractions of large and small effects be π1 > 0
and π0 > 0, respectively, so that π1 J of the means equal M and the remaining π0 J equal zero.
We solve for the optimal weights.
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Fig. 1. Power gain and nonconvexity: (a) contour plot of the power ratio of optimal to unweighted
testing for sparse means; (b) plots of four different instances of the function that is summed
in the optimization objective; the nonconvex summand w 	→ �[{�−1(qw) − η}/γ ] with q =
0·05 is plotted for the pairs (η, σ ) = (−0·1, 1) (solid), (−0·1, 2) (dashed), (−1, 1) (dotted) and

(−1, 2) (dot-dashed).

PROPOSITION 1. There is a set of optimal p-value weights that gives the same weights to the
same means, i.e., weights w0 and w1 to means 0 and M, respectively, where

(w0, w1) =
⎧⎨
⎩

(0, 1/π1), π1�(−|M |/2) > q,(
q − π1�(−|M |/2)

qπ0
,
�(−|M |/2)

q

)
, π1�(−|M |/2) � q.

Further, the power of the optimal p-value weighting method is

p∗(π1, M, q) =
{

π1�{�−1(q/π1) + |M |}, π1�(−|M |/2) > q,

q + π1{�(|M |/2) − �(−|M |/2)}, π1�(−|M |/2) � q.

If the absolute effect size |M | is small enough that π1�(−|M |/2) > q, all the weight is placed
on the larger means, which is the behaviour we would expect intuitively. However, if |M | is large
enough that π1�(−|M |/2) � q, then it is advantageous to place some weight on the small means,
because a large absolute effect size |M | will be detected with high probability.

In Fig. 1(a) we plot the ratio p∗(π1, M, q)/p(π1, M, q) for q = 10−3, where p(π1, M, q) =
π0q + π1�{�−1(q) + |M |} is the power of unweighted Bonferroni testing. For most effect sizes
M ∈ [−2·5, −0·25] and for π1 < 0·4, we see a power gain of at least 50% relative to unweighted
Bonferroni testing. Moreover, there is a hotspot where the power gain can be three- to four-fold.
Optimal weighting can lead to a significant gain in power.

3·3. Weights with imperfect prior knowledge

In the previous sections it was assumed that the effects μi are known precisely. We now assume
that we have uncertain prior information in the form μi ∼ N (ηi , σ

2
i ).

Following Westfall et al. (1998), we maximize the expected power Eμ[ET {R(w)}] averaged
with respect to the random Ti and μi . Introducing γi = (σ 2

i + 1)1/2, the optimization problem,
which we call the Bayes weights problem, becomes

max
w∈[0,1/q]J

J∑
i=1

�

{
�−1(qwi ) − ηi

γi

}
subject to

J∑
i=1

wi = J. (3)
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Fig. 2. Bayes weights: (a) surface plot and (b) contour plot of the Bayes weight function
w(η, σ ) defined in Theorem 1; Spjøtvoll weights are on the segment {σ = 0, η < 0}.

This objective function is not concave if any γi > 1. To help with visualization, the function
w 	→ �[{�−1(qw) − η}/γ ] is plotted in Fig. 1(b) for four parameter pairs (η, γ ). On the interval
w ∈ [0, 1/q], the function is first concave and then convex.

Our main contribution is to solve this problem efficiently for large J . The results in this respect
are two-fold. First, we can solve the problem exactly in the special case where q is sufficiently
small. Second, we have a nearly exact solution for arbitrary q. Starting with the simpler first case,
we define

c(η, γ ; λ) = −η + γ {η2 + 2(γ 2 − 1) log(γ λ)}1/2

γ 2 − 1
.

A weighted one-sided test �(Ti ) � qwi can be written equivalently in terms of the critical
values as Ti � �−1(qwi ). It turns out that the critical values corresponding to the optimal Bayes
weights can be expressed in terms of c, when q is small enough that

q � 1

J

J∑
i=1

�{c(ηi , γi ; 1)}. (4)

In our data analysis examples and simulations, this mild restriction requires that q be below
values in the range 0·1 to 0·3. In the next result we give the exact optimal weights for small q
when all σi > 0.

THEOREM 1. If the significance level q ∈ [0, 1] is small enough that (4) holds, then the opti-
mal Bayes weights maximizing the average power (3) are wi = w(ηi , γi ; λ) = �{c(ηi , γi ; λ)}/q,
where λ � 1 is the unique constant such that

∑J
i=1 w(ηi , γi ; λ) = J .

In the Supplementary Material, we solve this problem by maximizing the Lagrangian. Two key
properties that we use are joint separability of the objective function and constraint, and analytic
tractability of the Gaussian density.

Figure 2 displays an instance of the optimal weights w(η, σ ) as a function of the prior mean
η and the standard deviation σ . In the theorem the weights are a function of (η, γ ), but they can
also be viewed as a function of (η, σ ) via the natural map γ 2 = σ 2 + 1. As the standard error σ

becomes small, our weights tend to the Spjøtvoll weights.

PROPOSITION 2. For any λ and η < 0, the Bayes weight function defined by w(η, γ ; λ) =
�{c(η, γ ; λ)}/q tends to the Spjøtvoll weight function defined in (2) as σ → 0.
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With σi > 0, the weights are regularized: more extreme weights are shrunk towards a com-
mon value in a nonlinear way. For finite σi , our weights can be viewed as a smooth interpola-
tion between Spjøtvoll weights and uniform weights. It is reasonable to think at first that as all
σi → ∞, the best weight allocation becomes the uniform one. However, this is not the case: a
symmetry-breaking phenomenon occurs due to nonconvexity.

Consider a weight vector w that equals 1/q for �Jq� indices, and assume that Jq is not an
integer. Distribute the remaining strictly positive weight equally among the remaining hypothe-
ses. It is now easy to see that the hypotheses with weights equal to 1/q are always rejected, so
their power equals 1. For the remaining hypotheses the power �[{�−1(qw) − η}/γ ] tends to
�(0) = 1/2 as γ → ∞. This shows that the limiting power of this unbalanced weighting scheme
is �Jq� + (J − �Jq�)/2 = (J + �Jq�)/2. For uniform weighting, the power tends to 1/2 as
γ → ∞, for each hypothesis. This shows that the limiting power of uniform weighting is J/2.
Hence, the power of the skewed weighting scheme is larger than that of uniform weighting. This
illustrates the symmetry-breaking phenomenon caused by the extreme nonconvexity of the opti-
mization problem.

Fortunately, the situation is better when condition (4) holds. In addition to being easy to check
for any given parameters q and (ηi , σi ), we now show that the constraint is mild. Often we want to
keep α = Jq small even if J is large, because α is the number of false rejections that we tolerate.
In this regime, the condition holds as long as there are a few average-sized negative prior means
ηi . We denote by zc = �−1(c) the normal quantile function.

PROPOSITION 3. Condition (4) holds if there are K � 1 distinct indices i with negative ηi , for
which γ 2

i log(γ 2
i )/|zα/K | � |ηi | � |zα/K |.

If α/K → 0, then |zα/K | 
 {2 log(K/α)}1/2, so the simple condition holds provided that
γ 2

i log(γ 2
i ){2 log(K/α)}−1/2 � |ηi | � {2 log(K/α)}1/2. For instance, if K = 10 and α = 0·01,

then {2 log(K/α)}1/2 
 3·7. If, moreover, σ = 1 so that γ 2 = 2, and γ 2 log(γ 2)/3·7 = 0·16, then
we need only ten effect sizes with 0·16 � |η| � 3·7. This is a weak requirement.

When q is small, we use a damped Newton’s method to find the right constant λ from
Theorem 1 via a one-dimensional line search. The function evaluations cost O(J ) per iteration,
and empirically we find that the algorithm takes only a small number of iterations to converge,
independently of J . We can solve problems involving more than two million tests in a few seconds
on a desktop computer.

Now we present our result for the general case.

THEOREM 2. For any q ∈ [0, 1], the nonconvex Bayes weights problem can be solved for a
nearby q∗ ∈ [0, 1] for which |q∗ − q| � 1/(2J ). The optimal weights and q∗ can be found in
O(J log J ) steps.

This result is relevant when α, the expected number of errors under the null hypothesis, is
controlled at a threshold greater than 1/2. Our weights will be optimal for a q∗ that is close to q.
We see from the proof that even for large q, q∗ often equals q. The method also returns the value
of q∗, which the user can inspect. It is then the user’s decision as to whether to perform multiple
testing adjustment at the original level q or at the new level q∗.

The analysis of nonconvex optimization problems is challenging. It seems remarkable that the
nonconvex Bayes weights problem admits a nearly exact solution.
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4. SIMULATION STUDIES

4·1. Bayes weights are more powerful than competing weighting schemes

We perform two simulation studies to explore the empirical performance of our method. First,
we show that Bayes weights increase power more reliably than two other weighting schemes,
namely exponential weights and filtering.

For Bayes weights, we multiply the variances by a dispersion factor φ, i.e., N (ηi , φσ 2
i ). The

default value for this tuning parameter is φ = 1 and, as discussed in § 5·3, we recommend use
of the default value in most cases. The purpose of changing the dispersion is to explore the
robustness of our method with respect to misspecification of the prior variances. The dispersion
ranges from 0 to 4, and Spjøtvoll weights correspond to φ = 0.

Exponential weights with tilt parameter β are defined as wi = exp(β|ηi |)/c, where
c = ∑J

i=1 exp(β|ηi |)/J . This weighting scheme was proposed by Roeder et al. (2006), who
recommend β = 2 as the default value. We consider the range β ∈ [0, 4]. As noted by Roeder
et al. (2006), exponential weights are sensitive to large means. To guard against this sensitivity,
we truncate weights larger than 1/q and redistribute their excess weight among the next largest
weights.

Filtering methods test only the most significant effects ηi � M , using the unweighted Bon-
ferroni method. These methods can be viewed as weighting schemes in which some weights
are zero. Such methods are known under many names, such as two-stage testing, screening, or
proxy-phenotype methods (Rietveld et al., 2014). We adopt the term filtering used by Bourgon
et al. (2010), who filter based on independent information in the current dataset rather than prior
information. The threshold M ranges from −4 to 0. If |M | is large and fewer than Jq hypotheses
would be tested, then we instead test the most significant Jq hypotheses.

In the simulation, we generate J = 1000 random means and variances independently accord-
ing to ηi ∼ N (0, 1) and σi ∼ |N (0, 1)|, and we set q = 10−2. For any weight vector w, we calcu-
late the power as the objective from (3) divided by J , to reflect the average power per test.

The results are shown in Fig. 3(a). Each method can improve the power over unweighted
testing. However, Bayes weights yield more power than the other methods. The best power
is attained when the dispersion φ is equal to 1, but good power is reached in a large neigh-
bourhood of φ = 1. Our weights are robust with respect to misspecification of the tuning
parameter.

In particular, taking uncertainty into account helps. Spjøtvoll weights, which assume fixed
and known effects, and are represented on the figure as regularized weights with φ = 0, have less
power than Bayes weights with positive φ, for a wide range of φ.

The remaining two methods, filtering and exponential weights, have disadvantages. While
filtering yields a gain in power for a thresholding parameter M � 3/4, it also leads to a substantial
power loss for M > 1. For sufficiently large M the power equals q, because only the top Jq
hypotheses are selected. Another significant disadvantage is that there seems to be no principled
way to choose M a priori without additional assumptions. Similarly, exponential weighting leads
to at most a small gain in power, and it usually leads to a power loss.

We conclude that Bayes weights are robust with respect to the choice of the tuning param-
eter and have uniformly good power. In contrast, exponential weighting and filtering are more
sensitive, and their power can drop substantially.

4·2. Bayes weights have a worst-case advantage

We show that Bayes weights have a worst-case advantage compared to Spjøtvoll weights. We
use the sparse means model and generate J = 1000 means ηi distributed as ηi ∼ π0δm + π1δM ,
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Fig. 3. (a) Power of four p-value weighting methods plotted as a function of their parameter:
unweighted (solid), Bayes (dashed) as a function of the dispersion φ, exponential (dotted) as a
function of β, and filtering (dot-dashed) as a function of |M |; the Spjøtvoll weights correspond
to the point at the origin φ = 0 on the Bayes weights curve. (b) Power comparison for sparse
means: deterministic (left) and average (right) power plotted as a function of the proportion of

large means π1, for the unweighted (solid), Spjøtvoll (dashed) and Bayes (dotted) methods.

where m = −10−3 and M = −2. We set q = 10−2 and vary π1 from 0 to 0·1. We set all σi to
equal σ and consider σ = 0 or 1.

Spjøtvoll weights are optimal for σ = 0, while Bayes weights are optimal for σ = 1. We evalu-
ate these weighting schemes by calculating the power that they do not maximize, i.e., the average
power (3) for Spjøtvoll weights and the deterministic power (1) for Bayes weighting. We also
compute the power of the unweighted Bonferroni method.

The results are displayed in Fig. 3(b). Bayes weights lose only a little power compared to
the optimal Spjøtvoll weights. In contrast, Spjøtvoll weights lose a lot of power relative to Bayes
weights, which maximize the worst-case power. Bayes weights show a maximin property. Further,
as shown in the Supplementary Material, Spjøtvoll weights lose power near π1 = 0·07 because
they set the weights equal to zero on the small means.

5. APPLICATION TO GENOME-WIDE ASSOCIATION STUDIES

5·1. Review of genome-wide association studies

We adapt our framework to genome-wide association studies, relying on basic notions of
quantitative genetics (see, e.g., Lynch & Walsh, 1998). In this section we present in detail the
methodology for this application, while also illustrating the steps of using our framework for
specific problems.

We study a quantitative trait y in a population, with the goal of understanding the effects
of single nucleotide polymorphisms g1, . . . , gJ on the trait. We assume that y has mean 0 and
known variance; here gi denotes the centred minor allele count of variant i for an individual. We
rely on the linear model for the effect of the i th variant on the trait: y = giβi + εi . In this model
y is the phenotype of a randomly sampled individual from the population, so gi is random, βi is
a fixed unknown constant, and εi is the residual error. This error is a zero-mean random variable
that is independent of gi , with variance σ 2

i .
Suppose that we observe a sample of N independent and identically distributed observations

from this model. We use the standard linear regression estimate β̂i , which for a large sample size
has an approximate distribution N 1/2β̂i

.∼ N {N 1/2βi , σ
2
i /var(gi )}. To standardize, we divide by

τi , where τ 2
i = σ 2

i /var(gi ) is the variance of N 1/2β̂i .
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With these steps, we have framed our problem in the Gaussian means model. Writing Ti =
N 1/2β̂i/τi and μi = N 1/2βi/τi , we have Ti

.∼ N (μi , 1), which has the required form. Let us also
define the standardized effect size νi = βi/τi , which will be of key importance.

5·2. Prior information

To use prior information, assume that we also have a prior trait y0 which is measured indepen-
dently on a different, independent sample from the same population. With the same assumptions
on y0, we can write y0 = giβ0i + ε0i . Here β0i is a fixed unknown constant, and ε0i is random.
Suppose that we have independent samples of size Ni and N0i for the two traits. If we define T0i

and ν0i by analogy to the definitions for y, we can write T0i ∼ N (N 1/2
0i ν0i , 1).

We model the relatedness of the two traits as a relation between the standardized effect sizes
ν, which do not depend on the sample size. If the two traits are closely related, the first-order
approximation is equality, or νi = ν0i . This model captures the pleiotropy between the two traits
(Solovieff et al., 2013).

The final step is to compute the distribution of νi given the prior data T0i . For this we need to
choose a prior for νi , and for simplicity we will use a flat prior.

We now have all ingredients for the model of Gaussian hypothesis testing with uncertain
information. Specifically, we have μi ∼ N (ηi , σ

2
i ), where μi = N 1/2

i νi , ηi = (Ni/N0i )
1/2T0i and

σ 2
i = Ni/N0i .

The uncertainty in T0i may be different from 1, and may exceed it due to overdispersion. This
is one way to weaken the first-order approximation assumption. To allow for overdispersion, we
recall the parameter φ used in our simulation. We model the prior data as T0i ∼ N (N 1/2

0i ν0i , φ),
and then the variance becomes σ 2

i = φNi/N0i . The default value φ = 1 is recommended in most
cases. Finally, we compute the Bayes weights wi with parameters q and (ηi , σ

2
i ), and we run the

weighted Bonferroni method on the current p-values. This fully specifies the method, which is
summarized in the following algorithm.

Algorithm 1. Bayes-weighted Bonferroni multiple testing in genome-wide association
studies

(i) Let T0i be the prior effect sizes for i = 1, . . . , J .
(ii) Let N0i and Ni be the prior and current sample sizes.

(iii) Let Pi be the current p-values.
(iv) Let q be the significance threshold; the default value is q = 0·05/J .
(v) Let φ be the dispersion; the default value is φ = 1.

(vi) Set the prior means and variances: ηi = (Ni/N0i )
1/2T0i and σ 2

i = φNi/N0i .
(vii) Compute the Bayes weights wi , defined via (3), with parameters q and (ηi , σ

2
i ).

(viii) Output indices i such that Pi � qwi .

5·3. Practical remarks

It is important that we retain Type I error control even when the modelling assumptions fail.
The only requirement is that we have marginally valid p-values. We list two common deviations
from our model. First, summary data for genome-wide association studies sometimes include
only the magnitude of the effects and not their sign. In this case we have two choices: we could
assume that the directions of effects are the same, and perform a one-tailed test of the current
effect in the prior direction; alternatively, we could do a two-tailed test by including the tests
with prior parameters (ηi , σ

2
i ) and (−ηi , σ

2
i ) for each i , for a total of 2J tests. Large effects
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will often be in the same direction, whereas small effects may change direction between the
prior and current studies. Our procedure for dealing with two-sided effects may lead to minor
power loss while retaining Type I error control. On the other hand, in some cases the prior and
current traits can be of different types; for instance, the prior trait could be binary and the current
trait quantitative. In such a situation, the model νi = ν0i should be re-examined, but it is still
convenient to use as a first approximation.

We recommend using the default value of the tuning parameter, φ = 1, in all but exceptional
cases. This value was derived from a natural Bayesian model, and our simulations and data analy-
sis show that it provides good performance in most cases. The same numerical results demonstrate
that our method is not too sensitive to the choice of tuning parameter. If the relationship between
the two traits is thought to be weak, one could use a larger φ, such as φ = 2. If the uncertainty
in the prior information is less than that suggested by the usual model, one could use a small
φ, such as φ = 0·5. If the value φ = 1 was tried first, the results of that analysis should also be
reported.

One may wish to use the weighted Benjamini–Hochberg method with our weights (Genovese
et al., 2006); but in general this will be underpowered, as optimal weights for stepwise meth-
ods differ greatly from those for single-step methods (Westfall & Soper, 2001). However, in the
special case of very small q, in our data analysis examples we have observed that weights often
become monotonically increasing with the magnitude of the effect size, and thus are similar to
the optimal weights for stepwise methods.

6. DATA ANALYSIS

6·1. Data sources

We illustrate the application of our method by analysing data from publicly available genome-
wide association studies. We use the p-values, recorded for 500 000 to 2·5 million genetic vari-
ants, from five studies: CARDIoGRAM and C4D for coronary artery disease (Schunkert et al.,
2011; Coronary Artery Disease Genetics Consortium, 2011), blood lipids (Teslovich et al., 2010),
schizophrenia (Schizophrenia Psychiatric Genome-Wide Association Study Consortium, 2011),
and estimated glomerular filtration rate creatinine (Köttgen et al., 2010); see the Supplementary
Material.

We analyse three pairs of datasets, with a specific motivation for each. First, we use CARDIo-
GRAM as prior information for C4D. This is a positive control for our method, since both studies
measure coronary artery disease. We choose C4D as the target because it has a smaller sample;
hence prior information may increase power more substantially.

Second, we use the blood lipids study as prior information for the schizophrenia study.
Andreassen et al. (2013) demonstrated improved power with this pair. They used a fully Bayesian
method, and our goal is to evaluate the power improvement using a frequentist method. There is
a small overlap between the controls of the two studies.

Third, we use the creatinine study as prior information for the C4D study. Heart disease and
renal disease are comorbid (Silverberg et al., 2004), so this set-up may improve power.

6·2. Methods and additional details

We run weighted Bonferroni multiple testing for each of five weighting schemes. The prior
data is T0i = �−1(P0i/2), where P0i is the i th prior p-value. The familywise error rate is con-
trolled at α = 0·05, so that the p-value thresholds are approximately 10−9 to 10−8.
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Table 1. Number of significant loci for five methods on three examples: the
top portion of the table shows results pruned for linkage disequilibrium, the
middle part shows results without pruning, and the bottom portion reports

the score of each method

Bayes(φ) Exp(β) Filter(−log P)

Parameter Un Spjot 0·1 1 10 1 2 4 2 4 6

Pruned
CG → C4D 4 11 10 8 4 4 5 4 10 10 6
Lipids → SCZ 4 1 1 1 5 1 0 0 2 2 2
eGFRcrea → C4D 4 2 2 4 4 4 5 4 1 0 1

Unpruned
CG → C4D 29 45 44 39 29 32 34 27 40 48 34
Lipids → SCZ 116 214 214 223 123 92 0 0 217 96 39
eGFRcrea → C4D 29 18 18 23 29 29 28 19 1 0 1

Scoring
Score 0 0 0 1 1 0 0 −1 0 −1 −1
Total 0 0 sum = 2 sum = −1 sum = −2

Un, unweighted; Spjot, Spjøtvoll; Bayes(φ), Bayesian with φ = 0·1, 1 or 10; Exp(β), expo-
nential with β = 1, 2 or 4; Filter(−log P), filtering with −log P = 2, 4 or 6; CG, CARDIo-
GRAM; SCZ, schizophrenia study; eGFRcrea, creatinine study.

The first four weighting schemes are: unweighted Bonferroni testing, where all weights equal
unity; Spjøtvoll weights with parameters μi = (Ni/N0i )

1/2T0i ; Bayes weights with dispersion
φ = 0·1, 1 or 10; and exponential weights (Roeder et al., 2006), introduced in § 4·1, with tilt
β = 1, 2 or 4.

The fifth and last weighting scheme is filtering, which selects the smallest p-values from
the prior study and tests their hypotheses in the current study. We use three p-value thresholds,
10−2, 10−4 and 10−6. Rietveld et al. (2014) proposed a method for choosing the optimal p-value
threshold for filtering, which requires the genotypic correlation between the two traits and the
additive heritability of the current trait. For complex traits, these parameters are usually estimated
with large uncertainty, and substantial domain expertise is needed to specify them.

We prune the significant single nucleotide polymorphisms for linkage disequilibrium using
the DistiLD database (Palleja et al., 2012). Specifically, for each weighting scheme we select one
locus from each linkage disequilibrium block that contains significant loci. Our data analysis
pipeline is given in the Supplementary Material.

We compute a score sm(p)d for each weighting scheme m with parameters p, on each dataset d.
This is defined as +1 if the weighting scheme increases the number of detections relative to
unweighted testing, 0 if it leaves the number unchanged, and −1 otherwise. The score sm(p) of a
weighting scheme m with parameters p is the sum of scores across datasets. The total sm of the
weighting scheme m is the sum of scores sm(p) across parameters.

6·3. Results

Table 1 shows the number of significant loci for each pair of studies and for each weighting
scheme. We also present the results pruned for linkage disequilibrium, which act as a proxy for
the number of independent loci found.

The results are somewhat inconclusive. In the positive control example, all weighting schemes
except exponential weighting detect more loci than unweighted testing. Spjøtvoll weighting and
filtering lead to the largest number of loci. In the blood lipids example, the methods generally
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detect fewer pruned loci, except for Bayes weights with φ = 10. The methods can detect both
a larger and a smaller number of unpruned loci, except in the case of Bayes weights, which
uniformly increase the number of loci. For the eGFR creatinine example, exponential weights
produce the best behaviour. We also see that the default φ = 1 never performs worse than both
unweighted testing and Spjøtvoll weights, and for the unpruned lipids example it is better.

If we allow tuning of parameters for the three weighting schemes that have such a parameter,
Bayes weights show good performance: they are either first or second in all examples. This shows
that our method is robust with respect to the choice of tuning parameter.

Finally, only Bayes weights with φ = 1 or 10 have a positive score. The total score, summed
across parameter settings, is also positive only for Bayes weights. Judging from these results, our
method shows promise. However, from this analysis alone we cannot establish conclusively the
relative merits of the methods. In future work it will be necessary to evaluate p-value weighting
methods on more datasets.
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