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Abstract: Intracellular calcium (Ca) cycling in the heart plays key roles in excitation–contraction
coupling and arrhythmogenesis. In cardiac myocytes, the Ca release channels, i.e., the ryanodine
receptors (RyRs), are clustered in the sarcoplasmic reticulum membrane, forming Ca release units
(CRUs). The RyRs in a CRU act collectively to give rise to discrete Ca release events, called Ca
sparks. A cell contains hundreds to thousands of CRUs, diffusively coupled via Ca to form a CRU
network. A rich spectrum of spatiotemporal Ca dynamics is observed in cardiac myocytes, including
Ca sparks, spark clusters, mini-waves, persistent whole-cell waves, and oscillations. Models of
different temporal and spatial scales have been developed to investigate these dynamics. Due to the
complexities of the CRU network and the spatiotemporal Ca dynamics, it is challenging to model the
Ca cycling dynamics in the cardiac system, particularly at the tissue sales. In this article, we review
the progress of modeling of Ca cycling in cardiac systems from single RyRs to the tissue scale, the
pros and cons of the current models and different modeling approaches, and the challenges to be
tackled in the future.
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1. Introduction

The heart is probably the most intensively and accurately modeled biological system
compared to other organs [1–5]. So far, more than 100 action potential models (or modified
versions) have been developed for different types of myocytes and species. Tissue and
organ scale models, including one-dimensional (1D) cable, two-dimensional (2D) sheet,
three-dimensional (3D) slab, and anatomically based ventricle and atrium models, have
been developed. These mathematical and computational models have been widely used to
investigate cardiac excitation-contraction coupling and arrhythmias under physiological
and pathophysiological conditions.

Modeling of the voltage in the heart is relatively well executed, mainly following
the Hodgkin–Huxley (HH) modeling approach [6]. The governing equation for the trans-
membrane potential (V) of a myocyte is simply described by the following differential
equation: dV

dt = −Iion/Cm, in which Iion is the total ionic current density and Cm is the
cell membrane capacitance. In cardiac myocytes, there are many types of ionic currents
(Figure 1A) which are modeled either using the HH formulation or Markovian approaches.
In the HH formulism, the ionic current density is described as Is = Gsxmynzk(V − Es), in
which Gs is the maximum conductance, and Es is the reversal potential. x, y, and z are the
gating variables described by differential equations with properties (steady states and time
constants) from experimental measurements of whole-cell voltage clamp recordings [6].
In the Markovian approaches, there are two ways of modeling. In the first way, single ion
channel openings and closings are simulated using stochastic Markovian transitions, and
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the total ionic current of an assembly of ion channels is described as Is = gsNo(V − Es),
in which gs is the single-channel conductance and No is the number of open channels at a
given time. In the second way, differential equations are used to describe the probabilities
of states in the Markovian scheme, and the ionic current of an assembly of ion channels
is described as Is = GsPo(V − Es), in which Po is the open probability of the ion channels.
Note that a ventricular myocyte is a 3D entity with its dimension being roughly [7] 150 ×
30 × 15 µm3, but in the current action potential models, voltage is considered uniform over
the entire cell membrane. In other words, at any moment, the ion channels in the entire cell
membrane are assumed to sense the same voltage. Moreover, in the Markovian scheme,
it is assumed that the ion channels are statistically independent, and thus the whole-cell
current is simply the summation of the single-channel currents.

However, Ca cycling and its dynamics are much more complex to model. Ca cycling
not only is required for contraction but also plays important roles in regulating ionic
currents (Figure 1A). Ca is stored in the sarcoplasmic reticulum (SR), which forms a
complex network inside the cell. Ca is released from the SR into the cytoplasmic space
through the opening of the ryanodine receptors (RyRs) in the SR membrane. Opening of
the RyRs is activated by Ca on both the cytoplasmic and luminal sides. Under the normal
condition, SR Ca release is mainly triggered by Ca entry from the L-type Ca channels
(LCCs). Under diseased or Ca overload conditions, spontaneous Ca release occur more
frequently. In cardiac myocytes, RyRs form clusters (Figure 1B), which combine with their
associated LCC clusters to form basic units of Ca signaling, called Ca release units (CRUs).
A cell contains hundreds to thousands of CRUs [8–10], which form a coupled network
via Ca diffusion in the cytoplasmic space and SR. A rich spectrum of spatiotemporal Ca
dynamics is observed in cardiac myocytes and other cell types, including Ca sparks, waves,
and oscillations [11–21]. Due to the complex spatiotemporal Ca dynamics, it has been
challenging to model Ca cycling dynamics in the cardiac system, particularly at the tissue
scales. Models of different temporal and spatial scales have been developed to investigate
these spatiotemporal dynamics. In this article, we review the progress of modeling of Ca
cycling in cardiac systems from single RyRs to tissue scales, the pros and cons of the current
models and different modeling approaches, and the challenges to be tackled in the future.
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Figure 1. Ca cycling/signaling in cardiac myocytes. (A) Schematic diagram showing Ca cycling and
signaling and its coupling with voltage, including the major components: (1) ionic currents and their
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regulation by Ca/calmodulin (CaM) and Ca/calmodulin-dependent protein kinase II (CaMKII);
(2) SR Ca release and uptake and their regulation by CaMKII and protein kinase A and C (PKA
and PKC); (3) mitochondrial Ca cycling; (4) Ca and myofilament interaction; and (5) Ca-dependent
signaling pathways. DS stands for dyadic space and ROS for reactive oxygen species. For a detailed
explanation of each component in the diagram, see Ref. [22]. (B) RyR clusters measured from a
ventricular myocyte, adapted from Ref. [9].

2. RyR Models

The RyRs are regulated by Ca from both the luminal and the cytosolic sides of
SR [23–25], and thus they are sensitive to both cytosolic and SR Ca. There are several
RyR models developed and used in modeling cardiac Ca cycling. The simplest model
is a two-state model consisting of a closed state and an open state (Figure 2A), used in
many previous simulation studies [26–28]. The close-to-open transition rate is a function
of cytosolic Ca. SR Ca dependence is also added to model the luminal Ca sensitivity. A
key issue that has been investigated related to RyR models is how a Ca spark is terminated
spontaneously [26,27,29–34], and several mechanisms have been proposed based on com-
puter simulations. In the scenario of the two-state model, for a Ca spark to terminate, the
SR Ca content needs to be depleted to a very low level (~90% depletion) to allow the RyRs
to transition from the open state to the closed state. This requires a long enough time delay
between the junctional SR (JSR) and the network SR (NSR). This delay is assumed to be
caused by either slow SR Ca diffusion or complex NSR structures [26,27,32]. However, this
assumption is not supported by experiments which show that Ca diffusion between JSR
and NSR is very fast and the JSR Ca is only depleted by around 40% (Figure 2D) [35–37].
Stern et al. [29,38] developed a four-state model which includes inactivation and recovery
states (Figure 2B), in which both activation and inactivation of the RyRs are mediated by Ca
in the cytosolic space. However, there is no experimental evidence that the inactivation of
RyRs is mediated by cytosolic Ca. It seems that this RyR model still requires a substantial
SR Ca depletion for termination of Ca sparks [31]. Shannon and Bers [39] modified the
Stern et al. model by replacing cytosolic Ca-dependent inactivation with SR Ca-dependent
inactivation, which allows spark termination at a much higher SR Ca level [34]. This
model also allows luminal SR Ca activation of the RyRs. Restrepo et al. [40] developed a
model in which inactivation is mediated by calsequestrin in the SR (Figure 2C). Other RyR
models have also been developed [29,30,41–43], and the effects of RyR cooperativity are
investigated [26,43–47].

Despite the effects of RyR activation and inactivation properties on spark termination,
no matter how the RyRs are activated and inactivated, there is a common dynamical
mechanism of spark firing and termination [31,34], in which the firing and termination of a
spark are governed by a bistable switch (Figure 2E). Namely, the cytosolic Ca concentration
([Ca]i) has two stable states in a range of SR Ca concentration ([Ca]SR) (gray region in
Figure 2E). When [Ca]i is at the low state, as [Ca]SR reaches a threshold (red arrow),
spontaneous firing occurs, and [Ca]i increases to the high state. If SR depletion is fast
enough to be below another threshold (cyan arrow), [Ca]i quickly switches to the low state,
terminating the firing and resulting in a normal Ca spark. However, if the SR depletion
cannot be low enough to reach the threshold, [Ca]i will stay at the high state, failing to
terminate the spark promptly. The bistability is a result of the positive feedback due to Ca-
induced Ca release. Whether there is RyR inactivation or not, [Ca]SR is the key parameter
for the termination of sparks. For the RyR models without inactivation or weak inactivation,
once SR Ca is low enough, the Ca flux from the JSR to the dyadic space is so small that
[Ca]i in the dyadic space becomes low. The low [Ca]i causes the transition from the open
state to the closed state to over compete the transition from the closed state to the open
state, shutting off the RyRs. For the models with RyR inactivation, particularly with SR
Ca-dependent inactivation, inactivation is the primary cause for shutting off the RyRs. The
difference is that the termination threshold of [Ca]SR is much lower for the RyR models
without inactivation.
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When [Ca]SR is higher than the termination threshold, the spark can still terminate
due to stochastic fluctuation of RyR openings, resulting in the so-called long-lasting
sparks [31,34,48,49]. This random transition is widely known as the Kramers escape
process in stochastic nonlinear systems. In other words, noise can cause the system to
cross the potential barrier (the unstable state, dashed line in Figure 2E) to reach the low
state. Theoretical analysis by Song et al. [34] showed that the duration of the long-lasting
sparks exhibits an exponential distribution, which is described by the Kramers rate theory.
Exponential distributions of spark duration have been observed in cardiac myocyte ex-
periments in which long-lasting sparks were promoted by FK506 [48]. Note that the same
random transition applies to spark firings when [Ca]SR is lower than the firing threshold,
i.e., random fluctuations can cause transition from the low state to the high state even when
[Ca]SR is lower than the firing threshold, following the same Kramers transition process.
For LCC-triggered sparks, [Ca]SR is lower than the firing threshold, and Ca from the LCCs
elevates [Ca]i to cross the barrier (the unstable state) to reach the high state, firing the spark.
Therefore, whether the sparks are spontaneous or triggered by L-type Ca current (ICa,L),
they follow the same dynamical mechanism.

Besides the spark dynamics, not surprisingly, how RyRs are activated and inactivated
is also important for the cell-scale Ca dynamics, such as Ca alternans and Ca waves. For
example, it is shown that RyR refractoriness is important for the formation of Ca alter-
nans [50–55], indicating that the models with inactivation and refractoriness are more
appropriate to describe the RyRs. Ca waves and oscillations are another widely observed
phenomenon in the cardiac myocytes [17,56–59], and RyR refractoriness plays an important
role in forming waves and oscillations. For example, removing the calsequestrin-mediated
inactivation from the RyR model in Figure 2C, Ca waves become fractionated and irregular,
as shown in simulations using a 3D cell model (Figure 2F). The simulation result agrees
with the experimental observation that the R33Q mutation causes high-frequency but
fractionated Ca waves (Figure 2G) [60], in which the R33Q mutation lacks the calsequestrin-
mediated inactivation of RyRs. This implies that the two-state RyR model may not be
appropriate for normal Ca cycling. Future modeling is needed to investigate how differ-
ent RyR models affect the Ca alternans and Ca wave dynamics and compare them with
experimental observations to further reveal the RyR models’ appropriateness.
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Figure 2. RyR models and Ca cycling dynamics. (A) A two-state model. The rate constant from C
to O (kCO) as a function cytosolic Ca without or with luminal SR Ca regulation. (B) A four-state
model with cytosolic Ca-dependent inactivation developed by Stern et al. [29,38]. (C) A four-state
model with calsequestrin-dependent inactivation developed by Restrepo et al. [40]. (D) Left: SR Ca
during a spark and after caffeine. Right: SR Ca nadir distribution measured during sparks. Data
from Zima et al. [36]. (E) Bistable switch for spark firing and termination. Red arrow marks the SR
Ca threshold for spark firing and cyan arrow marks the SR Ca threshold for spark termination. Gray
marks the bistable region in which the high state and low state are stable and the middle one (dashed)
is unstable. (F) Upper: Time-space plots of Ca from a computer simulation of a 3D cell with the RyR
model in C. Lower: Time-space plots of Ca from a computer simulation of the same 3D cell with
the RyR model without the CSQN-dependent inactivation, equivalent to the two-state model in A.
Simulations were done under voltage clamped at −80 mV using the 3D cell model by Song et al. [59].
(G). Time-space plots of Ca from a permeablized rat ventricular myocyte of control (upper) and R33Q
mutation (lower), adapted from Ref. [60].

3. Single CRU and CRU Network Models

Models of single CRU with different spatial resolutions have been developed. In
1992, Stern [61] put forth a theory for excitation-contraction coupling to explain the graded
response of Ca release to ICa,L, in which a local control (or “cluster bomb”) model is
assumed. In this local control model, an LCC triggers a cluster of RyRs to open collectively,
resulting in an all-or-none discretized release event. The all-or-none release events are
probability events proportional to the strength of ICa,L, giving rise to the experimentally
observed whole-cell graded response. This cluster bomb model can be considered as the
first single CRU model. In 1993, the discretized release events, called Ca sparks, were
demonstrated in experiments [21]. Later, more detailed CRU models [26,29,38,62] that
include stochastic RyR openings and different compartments were developed to investigate
the spark dynamics, especially the mechanism of termination of a spark as described
earlier. Higher spatial resolution and more realistic CRU models were also developed,
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including realistic T-tubule structure reconstructed from experiments (Figure 3A) [63],
spatially distributed RyRs with Ca diffusion in the dyadic space [27,28,32,64] and complex
SR network structures (Figure 3B) [27,32]. These high-resolution models provide further
details on spark firing and termination properties.

To investigate the Ca cycling dynamics in a whole cell, one needs to develop a model
consisting of hundreds and thousands of CRUs. It is difficult to implement the complex
CRU models as in Figure 3A,B into a cell model. CRU network models [40,52,57,65–69]
composed of simpler CRU models were developed. These models are used to investigate the
spatiotemporal Ca cycling dynamics, including Ca alternans and Ca waves. As an example,
Figure 3C shows a scheme of a CRU network model developed by Nivala et al. [57,58,66].
The model consists of a 3D network of CRUs. Each CRU contains four types of spaces,
bulk myoplasm, dyadic space, junctional SR, and network SR. Unlike the CRU models in
Figure 3A,B, the dyadic space is a single compartment in this model and thus there is no
Ca diffusion, i.e., the RyRs in a CRU sense the same Ca in the dyadic space. The CRUs are
coupled via Ca diffusion in the SR and cytoplasm. Figure 4 shows the spatiotemporal Ca
cycling dynamics as extracellular Ca concentration increases in the same CRU network
model as in Figure 3C [57], undergoing a phase transition with criticality [70,71]. These same
sequences of dynamics were demonstrated in experiments of ventricular myocytes [57].
Most of the 3D whole-cell models are similar but differ somewhat in spatial resolution and
structural details, e.g., some with structural complexities between those in Figure 3A–C
(see Colman et al. for a detailed review [4]). Although the CRU network models lack the
realistic structures of the TT and the SR networks as the real one in Figure 3A, or even
as the complex one in Figure 3B, they are much more computationally convenient, and
can be easily modified to simulate different subcellular structures, different cell types, and
diseased conditions [68,72].
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Figure 3. Single CRU and CRU network models. (A) CRU model with realistic structure, adapted
with permission from Ref. [63], copyright 2012, John Wiley and Sons. Upper: Structure. Lower: A
Ca snapshot during a Ca spark. (B) A detailed CRU model, adapted with permission from Ref. [32],
copyright 2013, Elsevier. Left: Model structure. Right: Snapshots of Ca at different time points in
the dyadic space. (C) A CRU network model to represent the whole cell [57,66]. Left: A 3D network
consisting of 100 × 20 × 10 CRUs, representing a whole cell. Right: Structure of a CRU. Colored
cubes mark different spaces and arrows indicate different fluxes.
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Figure 4. Spatiotemporal Ca cycling dynamics in a 3D CRU network model [57]. (A) Snapshots of
Ca concentration in the cytoplasmic space for different Ca loading achieved by altering extracellular
[Ca]o. From left to right, [Ca]o = 3 mM, 9 mM, 10 mM, and 16 mM. (B) Averaged whole-cell Ca
concentration for the corresponding loading conditions. (C) Number of clusters versus spark cluster
size. Symbols are data from simulations and lines are reference lines. The line in the left most panel
is exponential, but those in other panels are linear, indicating power-law distribution. Power-law
clustering indicates that a critical phenomenon [70,71] occurs during the transition from individual
sparks to waves. Adapted with permission from Ref. [57], copyright 2012, Elsevier.

4. Modeling SR Ca Cycling in Single-Cell Action Potential Models

In early action potential models, such as the Noble model [73], the Beeler–Reuter
model [74], and the 1991 Luo and Rudy model [75], there is no or trivial intracellular Ca
cycling. Ca cycling was added in the later action potential models using different modeling
approaches.

Global RyR models. In this type of models, one assumes that SR Ca release is uniform
in the whole cell, and thus uses a single-channel RyR model to describe the whole-cell SR
Ca release. We call this type of Ca release models as global RyR models. The first action
potential model with intracellular Ca cycling is the DiFrancesco-Noble model for sinoatrial
nodal (SAN) cells [76], in which Ca-induced Ca release based on Fabiato’s theory [77]
was implemented with the SR Ca release flux (we denoted it as Jrel in this paper) being

formulated as: Jrel = αrel [Ca]rel
[Ca]2i

[Ca]2i +Km,Ca
. This formulation is equivalent to the two-state

RyR model in Figure 2A. This Ca cycling model was modified for excitation-contraction
coupling in a rabbit atrial cell model [78]. Jafri et al. [79] developed an action potential
model with Ca cycling by adopting the Keizer and Levine’s RyR model [41] for SR Ca
release, and Shannon and Bers [39] developed an action potential model by using a modified
Stern et al. RyR model (Figure 2B), in which SR Ca-dependent activation was added and
SR Ca-dependent inactivation was used. The RyR model by Shannon and Bers was also
adopted by Maltsev and Lakatta for their SAN cell model [80]. In these models, Jrel is
formulated as Jrel = kPo([Ca]SR − [Ca]i) in which Po is the open probability calculated from
the RyR model. Sine in this type of models, the whole cell contains a single cytosolic Ca pool
and a single SR Ca pool, and thus all the RyRs in whole cell sense the same cytosolic Ca and
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the same SR Ca. These models are called “common-pool” models. However, as pointed out
by Stern [61], the “local-control” model is more appropriate for ICa,L triggered SR Ca release
exhibiting graded response. On the other hand, the common-pool model with a global RyR
model allows spontaneous Ca release responsible for delayed afterdepolarizations (DADs)
in ventricular cells [81] or the Ca clock in SAN cells [80].

Phenomenological SR Ca release models. In many of the action potential models, instead
of using a RyR model, SR Ca release is modeled phenomenologically. For example, in the
1994 Luo and Rudy model [82,83], Jrel was modeled as: Jrel = Grel([Ca]SR − [Ca]i) with

Grel ∝ f (∆Cai,2)
[
1 − exp

(
− t

τon

)]
exp

(
− t

τo f f

)
. ∆Cai,2 is the Ca change at 2 ms after

.
Vmax,

and if this change is below the given threshold, Grel = 0. Since ∆Cai,2 is caused by Ca entry
from LCCs, thus Grel is ICa,L-dependent. Another type of phenomenological Ca release
model [84–88] uses the following type of formulation for Jrel : Jrel = Grel xy([Ca]SR − [Ca]i),
in which x and y are activation and inactivation gating variables formulated in the form of
HH formulism as for the membrane ionic currents. In this type of model, the activation
gating x’s steady state (x∞) is a function of ICa,L, and thus Ca release is ICa,L-dependent. In a
study by Livshitz and Rudy [89], they used a Ca release model by the following differential
equation of Jrel :

dJrel
dt = − Jrel,∞+Jrel

τrel
, in which Jrel,∞ is a function of ICa,L and SR Ca. This

formulation was later adopted in the human model by O’Hara et al. [90]. The authors stated
that they developed a two-state (closed-open) model of SR Ca release, but it is unclear how
a differential equation for Jrel can be derived from the two-state model. On the other hand,
a similar equation was derived earlier by Shiferaw et al. [91] based on spark statistics (see
below). Note that in these models, SR Ca release is a function of ICa,L, i.e., SR Ca release is
triggered by ICa,L, which can effectively model the graded response of Ca release. However,
if ICa,L = 0, no SR Ca release can occur in these models, indicating that spontaneous Ca
release cannot be appropriately modeled. On the other hand, these models can exhibit Ca
alternans [84–86,89]. As will be discussed below, a phenomenological spontaneous release
term can be added to these models for modeling spontaneous Ca release.

Spark statistics-based models. Shiferaw et al. [91] took a different approach to develop
an SR Ca release model based on spark dynamics and statistics, which was improved in
the Mahajan et al. model [92]. The basic idea is that Ca sparks are triggered by ICa,L and
the rate of spark generation is proportional to ICa,L, i.e., dN

dt ∝ ICa,L. On the other hand,
a Ca spark has a limited lifetime, and Ca sparks disappear over time. By considering
the spark birth-and-death process, they derived a differential equation for Jrel as [92]:
dJrel

dt = N(ICa,L)Q
(
cJSR

)
cJSR − Jrel

T , in which N(ICa,L) is the number of sparks as a function
of ICa,L, T is a time constant related to the spark lifetime, Q

(
cJSR

)
is the fractional SR Ca

release which can be experimentally determined [93,94]. Similar to the phenomenological
models, this model cannot exhibit spontaneous Ca release but can exhibit Ca alternans.
Indeed, this model is the first to reveal the role of fractional Ca release in the genesis of
Ca alternans.

Local-control models. In 2002, an action potential model with a local-control model of
Ca cycling was developed by Greenstein and Winslow [42]. In this model, thousands of
CRUs with stochastic RyRs and LCCs are implemented with a common bulk cytosolic
space. A simpler version was developed later [95]. Similar local-control models were
developed and simulated with advanced numerical methods and mathematical approaches
to speed up computation [96,97]. As expected, these models can well simulate the graded
response. Moreover, it can exhibit Ca alternans [98]. Although no studies have been carried
out to show spontaneous Ca release in these models, in principle, this type of model is
capable of simulating spontaneous Ca release to result in Ca oscillations. A caveat of this
type of model is that the Ca released from the SR enters into the common bulk cytosolic
space, lacking the capability for spatiotemporal Ca cycling dynamics. Since it contains
CRUs in the order of 10,000, it is computationally nontrivial and difficult to be used for
tissue-scale simulations.

Spatially extended cell models. More recently, action potential models containing a 3D
CRU network for Ca cycling have been developed to investigate Ca cycling dynamics
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and their coupling with voltage [40,52,57,66–68]. These models are truly local control
models which can exhibit the whole spectrum of spatiotemporal Ca cycling dynamics
(e.g., Figure 4). These models can be easily adapted for different types of cells, such
as atrial myocytes [99–103] and SAN cells [104,105] that exhibit complex T-tubular struc-
tures [106,107], as well as subcellular structural remodeling in heart failure [72] in which
T-tubule disruption occurs [108–110]. Other action potential models with spatially ex-
tended Ca cycling have also been developed to simulate subcellular Ca alternans and
triggered activities [46,111–115]. A major caveat is that the spatially extended models are
computationally challenging to use for tissue-scale simulations.

As mentioned above, each type of model has its advantages and pitfalls. A common
issue of the non-spatial models is that they cannot properly simulate DADs. Even if some
of them can simulate DADs, such as the model by Shannon and Bers [81], it cannot capture
the stochastic nature of DADs [59,116–118] as well as the positive feedback between voltage
and Ca releases that give rise to the dynamics of the triggered activity [59,116]. As shown in
Figure 4, when intracellular Ca is low, such as under normal conditions, the Ca sparks are
independent stochastic events (i.e., no spark-induced sparks). Thus, a statistical approach
used by Shiferaw et al. [91] to derive the Ca release equation is a more rigorous approach
(i.e., the differential equation is derived based on first principles) than others. Therefore,
the model by Shiferaw et al. is more appropriate for the condition of low or normal Ca
level. On the other hand, when Ca is very high, Ca oscillates synchronously and almost
periodically; the global RyR modeling approach is more appropriate. However, none of
the models (except for the spatial cell models) can correctly capture the dynamics at the
intermediate range of Ca level where large random fluctuations occur due to criticality
(Figure 4). This is the range where DADs and triggered activity occur.

Besides DADs, it has been shown experimentally that early afterdepolarizations
(EADs), although mainly caused by reactivation of ICa,L [119], can also be caused by
spontaneous Ca release [120–123]. Spatially extended 3D cell models [124,125] have been
used to investigate the roles of spontaneous Ca release in the genesis of EADs, which can
capture certain features of the experimental observations. Wilson et al. [126] modified a non-
spatial cell model, the Shannon and Bers model [39], to exhibit spontaneous Ca oscillation
and investigated spontaneous Ca release/oscillation on EAD genesis. However, in this
model, the voltage depolarizations for EADs occur much earlier than the corresponding
spontaneous Ca releases (the Ca oscillation and the voltage oscillation for EADs are almost
in opposite phase) [126,127], which does not agree with the experimental observation that
the rise of Ca occurs slightly ahead of the voltage depolarization of an EAD (experimental
evidence to support that Ca release causes the EAD, not the other way around) [122,123].
Due to the spatiotemporal nature of the Ca cycling dynamics, the same problems remain
for modeling spontaneous Ca release induced EADs as those for modeling DADs using the
non-spatial action potential models.

5. Modeling Mitochondrial Ca Cycling and Energetics in Action Potential Models

Mitochondria are not only the energy store but also another Ca store for the cell
(Figure 1A) and play important roles in intracellular Ca cycling and cardiac function [128,129].
Mitochondrial metabolism provides energy for ion pumps, including Na-Ca exchanger, Na-
K pump, and SERCA pump. Furthermore, there are ATP-sensitive K channels and RyRs are
also regulated by ATP. Besides providing energy for the ion channels and pumps, mitochon-
dria also participate directly in intracellular Ca cycling. Cytosolic Ca enters into mitochon-
dria via mitochondrial Ca uniporter and extrudes from mitochondria via mitochondrial
Na-Ca exchanger. Ca may also get out of mitochondria via the transient opening of the mi-
tochondrial permeability transition pore. Non-spatial (single mitochondrial compartment)
models integrating mitochondrial metabolism and Ca cycling have been developed to sim-
ulate the effects of mitochondria on Ca cycling and arrhythmogenesis [130–134]. However,
mitochondria form a network inside the cell, which can exhibit complex spatiotemporal
mitochondrial depolarization dynamics, such as critical phenomenon in mitochondrial
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depolarization [135,136]. In our recent publications [137–140], we developed a model
with a spatially distributed mitochondrial network and used it to investigate Ca alternans,
EADs, and spontaneous Ca release induced DADs and triggered activity. Similar to the
case without mitochondria in the model, when Ca dynamics becomes spatiotemporal, the
single mitochondrial compartment model may fail to capture the Ca cycling dynamics and
network models are needed.

6. Modeling Ca-Dependent Signaling

Ca-dependent signaling (Figure 1A) plays key roles in cardiac excitation-contraction
coupling and arrhythmogenesis [22,141]. Pathways of β-adrenergic signaling, protein
kinase A/C signaling, reactive oxygen species-dependent singling, and Ca/calmodulin-
dependent protein kinase II signaling have been incorporated into many action potential
models [87,90,138,142–146], which have been used to investigate their effects on action
potential and Ca cycling dynamics. Most of the models are non-spatial models, and it has
not been investigated how the complex spatiotemporal Ca cycling dynamics will affect the
Ca-dependent signaling which then affects the Ca cycling and action potential dynamics.

7. Tissue-Scale Modeling for Spatiotemporal Ca and Voltage Dynamics

In most of the tissue-scale simulations, non-spatial cell models were used. As men-
tioned above, these models cannot properly model DADs and DAD-mediated triggered
activities as well as spontaneous Ca release mediated EADs. To simulate the effects of spon-
taneous Ca release on arrhythmias at the tissue scale, different approaches have been used.
A simple and straightforward way of modeling was used [118,147], in which stochastic
DADs were phenomenologically implemented by commanding stochastic SR Ca release
with statistical properties from experimental data. Chudin et al. [84] added phenomeno-
logically a spontaneous release term to the release flux as: Jspon = kPspon([Ca]SR − [Ca]i),
in which Pspon, described by a differential equation, is a gating variable depending on
cytosolic Ca. Chen and Shiferaw [111] developed a phenomenological model by adding a
spontaneous spark generation term RSCR(t) to the differential equation for Jrel and used a
small 1D array to calculate RSCR(t). This model was used in a whole-heart simulation for
random DADs and triggered arrhythmias [111,148]. Colman et al. [149,150] developed a
multi-scale modeling approach in which a phenomenological spontaneous release function
was derived based on the detailed 3D single-cell simulations, and used it to simulate DAD-
mediated arrhythmias in tissue models. More recently, a phenomenological model for Ca
wave induced APD alternans in atrial cells was developed and used in atrial tissue for
alternans induced arrhythmias [99,151]. Walker et al. [152] simulated a 100-cell cable with
a detailed 3D cell model and developed a spatial-average filtering method for estimating
the probability of extreme stochastic events from a limited set of spontaneous Ca2+ release
profiles to predict DAD events in tissue.

Although these simulation studies have provided useful information and mechanistic
insights into DAD-mediated arrhythmias, they have their pitfalls. One major issue is the
effects of the feedback between Ca and voltage when complex spatiotemporal dynamics
occurs. This feedback is lacking in the current multi-scale modeling approaches. More-
over, tissue simulations with detailed 3D cell models are needed to validate the results
of the phenomenological models, however, this is computationally non-trivial for large
tissue sizes.

We recently developed a parallel computational method using multiple graphics
processing unit (GPU) cards, which allows us to simulate large tissue sizes with a 3D cell
model. Figure 5 shows one of our simulations (unpublished data) in which a DAD occurs
after a pacing beat in a 100 × 100-cell tissue using a detailed 3D cell model that is the same
as in Song et al. [59]. Figure 5A shows the voltages and whole-cell Ca transients from a
line of 100 cells in the tissue. Figure 5B shows Ca snapshots from the surface of the entire
100 × 100-cell tissue at three different time points as marked. Figure 5C,D show zoom-in
views of Ca snapshots from a 20 × 20-cell area (Figure 5C) and a 3 × 3-cell area (Figure 5D).
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As shown in Figure 5D, during the DAD, the Ca waves occur in the cells, and the waves
are randomly different from cell to cell.

In the simulations shown in Figure 5, the 3D cell model contains 100 × 20 × 10 CRUs,
and thus the tissue contains a total of 2 × 108 CRUs. Since each CRU has 100 RyRs and
10 LCCs, thus the tissue contains 2 × 1010 RyRs and 2 × 109 LCCs. The RyRs are described
by a four-state Markovian model (Figure 2C) and the LCCs are described by a seven-
state Markovian model. The simulation was carried out on 10 Nvidia GTX 3090 cards
using ~41.5 GiB GPU memory in total. The time step for the simulation was 0.01 ms. It
costs ~3.5 computational hours to compute 1 s of the model time. Of note, our method is
computationally scalable, meaning that we can perform larger tissue-size simulations with
more available GPU cards within a reasonable computational run time.
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Figure 5. Computer simulation of a 100 × 100-cell 2D tissue using a 3D spatial cell model showing
spontaneous Ca release and DAD following a paced beat. (A). Voltage (left) and whole-cell Ca
transient (right) from a line of 100 cells in the tissue. The action potential was elicited by a stimulus
applied at t = 0. (B). Ca snapshots (recorded on the surfaces of the 3D cells) in the 100 × 100-cell
tissue taken from three time points as marked. (C). A zoom-in view of Ca snapshots from a small area
(20 × 20 cells) for the three time points. (D). A zoom-in view of Ca snapshots from an even smaller
area (3 × 3 cells) showing stochastic Ca wave dynamics inside the cells. Plotted is a 3D surface view
of Ca on the surface of the 9 cells. The 3D cell model consist of 100 × 20 × 10 CRUs and the cell
model is the same as in Song et al. [59]. The tissue model contains 2 × 1010 RyRs (four-state model in
Figure 2C) and 2 × 109 LCCs, both are simulated with stochastic Markovian transitions. The time
step for the simulation is ∆t = 0.01.

8. Challenges for Future Modeling

Despite the progress in modeling Ca cycling at different scales in the heart, there are
still plenty of challenges. A general problem is how to develop low-dimensional models or
multi-scale modeling approaches to link the dynamics from the protein scale to the whole
heart. Several gaps need to be filled:

(1) The first gap is to simulate sparks from a high spatial resolution CRU model to a
non-spatial CRU model. As shown in the high spatial resolution models [27,28,32]
(see also Figure 3B), Ca spark dynamics are spatiotemporal and depend on the spatial
distribution of the RyRs in the dyadic space. Moreover, Maltsev et al. [64] showed that
the occurrence of Ca sparks harnesses the Ising phase transition in a 2D array of RyRs.
On the other hand, the majority of the single CRU and CRU network models ignore
these spatiotemporal properties by using a RyR cluster without spatial placement
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of RyRs. How to correctly capture the properties of the phase transition and large
fluctuations of the spatiotemporal system using a lower-resolution or non-spatial
model needs to be investigated.

(2) The second gap is from CRUs (sparks) to a low-dimensional whole-cell model (Ca
waves and whole-cell Ca transient). So far, using the 3D cell model for large tis-
sue and whole-heart simulations is computationally nontrivial. Low-dimensional
representations of the cell are preferred. As shown extensively by experiments and
simulations (e.g., Figure 4), there is a hierarchy of Ca dynamics: quarks, sparks, spark
clusters, mini-waves, persistent waves, and whole-call oscillations. How to develop
a low-dimensional model to embrace these dynamics is a nontrivial challenge. As
mentioned above, when Ca is low or normal, the differential equation describing the
SR Ca release by Shiferaw et al. is a correct approach. At very high Ca where SR Ca
release is synchronous, the global RyR model is appropriate. However, neither of
the two modeling approaches can capture the Ca dynamics in the intermediate Ca
range. As shown in Figure 4 (see Nivala et al. [57]), a second-order phase transition
occurs for the transition from independent individual spark dynamics to the whole-
cell oscillations, i.e., a critical phenomenon exists. How to model the dynamics at
this phase transition using a low-dimensional representation is unknown since when
criticality occurs, the dynamics is intrinsically high-dimensional. Another challenge
is how to model complex 3D T-tubular structures in low-dimensional models. For
example, T-tubules are disrupted in failing ventricular myocytes [108–110], which can
cause nontrivial changes in both Ca cycling and action potential dynamics [68,72].
Correctly modeling these effects is essential for tissue-scale modeling of heart failure.
Furthermore, when Ca cycling dynamics becomes spatiotemporal, their effects on Ca-
dependent ionic currents and signaling, such as ICa,L and INCX as well as Ca-activated
potassium currents (Figure 1A), and thus on the action potential dynamics may be
nontrivial [125]. How to model these effects using a low-dimensional model is another
issue needed to be concerned.

(3) The third gap is from a single cell to a syncytium (tissue and whole heart). For tissue or
whole-heart simulations, cardiac tissue is treated as a syncytium with discretization in
computer simulations being typically from ∆x = ∆y = ∆z = 0.1 to 0.5 mm [3,153–155].
The dimension of a typical myocyte is 0.15 × 0.03 × 0.015 mm3, which indicates
that one “computational cell” is equivalent to 15 to 1500 real cells. Under normal
conditions in which conduction is fast and Ca is mainly determined by ICa,L (so that
Ca is synchronized by ICa,L in different cells), this type of discretization is appropriate.
However, under diseased conditions, such as ischemia and heart failure, cells are
weakly coupled and the Na current is attenuated, and thus the action potential
conduction in tissue is slow. For slow conduction, a discretization at the cell size is
more appropriate [156,157]. Moreover, when spatiotemporal Ca dynamics, such as
waves and alternans, occur in the cell, these dynamics may be dyssynchronous from
cell to cell [158] (see Figure 5), and thus a resolution of the cell size may be required
for investigating these dynamics. Large tissue or whole-heart simulations with a
resolution at the cell size scale is computationally nontrivial.

(4) Mitochondrial Ca cycling [131,137,138,159] and Ca-myofilament interactions [160,161]
play important roles in Ca cycling dynamics. How to include their effects in a low-
dimensional representation of a cell is also challenging.

(5) Although stochastic Markovian models are used to simulate single ion channel dy-
namics, they are still phenomenological models describing the transitions of an ion
channel among different hypothetical states. Molecular dynamics simulations of
single ion channels at the atomic scale are more accurate representations, which can
provide parameter information for transition rates of Markovian models used in
cell and tissue simulations, linking the molecular scale effects of gene mutations or
drugs to cellular and tissue scale behaviors [162,163]. However, molecular dynamics
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simulation is computationally tedious [164], and it is still a major challenge to use it
for the development and validation of Markovian models.

The central issue among these challenges is dimension reduction. Coarse graining
and mean-field theories are typical modeling approaches to reduce a high-dimensional
representation to a low-dimensional one [165]. Approaches for dimension reduction spe-
cific to ion channel models have been developed. For example, Fox derived a Langevin
equation for a population of ion channels described by stochastic Markovian transitions
for the HH formulation [166]. Keener [167] showed that many Markovian models of ion
channel kinetics have globally attracting stable invariant manifolds, which can substan-
tially simplify the computation with no approximation. He showed that this applies to
certain models of potassium channels, sodium channels, and RyRs. Phenomenological
modeling is currently the major modeling approach that uses low-dimensional models
to describe high-dimensional systems. Iterated maps are another low-dimensional repre-
sentation of high-dimensional systems [53,151,168,169]. However, both phenomenological
modeling and iterated maps rely on experimental data for validation and are only valid for
certain conditions.

Theoretically, if one has all the details of a system, one can build up a mathematical
model to describe the motion of the atoms following Newton’s laws of motion or quantum
mechanics. However, it is impossible to simulate such models due to computational
limitations, at least in the foreseen future. Even if one can simulate such a big system, it is
still too complex to be understandable. On the other hand, a main task of science is to reduce
complex systems into ones that can be grasped by the human brain and establish principles
and theories which can be passed from generation to generation. Therefore, developing
low-dimensional representations that can capture the dynamics or multi-scale modeling
approaches that can link the dynamics at different scales is crucial for understanding
complex biological systems, such as Ca cycling in the heart.

9. Conclusions

The heart is so far the most widely and accurately modeled organ, and it has the
potential to use the models and simulations at bedside to guide treatments. Much progress
has been made for the past several decades of cardiac modeling, including models from
single proteins (ion channels), whole-cell Ca cycling and action potential models, and whole-
heart models. Mathematical and computational methods, such as multiscale modeling
approaches and advanced numerical algorithms, have been developed. These modeling
efforts have greatly helped the understanding of cardiac excitation–contraction coupling
and arrhythmogenesis. Despite the progress in the last several decades, there are still
plentiful pitfalls in the current models, modeling approaches, and simulation methods. The
challenges to overcome these pitfalls are nontrivial but highly worthwhile for the upcoming
generation of modelers to pursue in their future careers.
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