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Global warming exposes plants to severe heat stress, with consequent crop

yield reduction. Organisms exposed to high temperature stresses typically

protect themselves with a heat shock response (HSR), where accumulation of

unfolded proteins initiates the synthesis of heat shock proteins through the

heat shock transcription factor HSF1. While the molecular mechanisms are

qualitatively well characterized, our quantitative understanding of the under-

lying dynamics is still very limited. Here, we study the dynamics of HSR in the

photosynthetic model organism Chlamydomonas reinhardtii with a data-driven

mathematical model of HSR. We based our dynamical model mostly on mass

action kinetics, with a few nonlinear terms. The model was parametrized and

validated by several independent datasets obtained from the literature. We

demonstrate that HSR quantitatively and significantly differs if an increase in

temperature of the same magnitude occurs abruptly, as often applied under

laboratory conditions, or gradually, which would rather be expected under

natural conditions. In contrast to rapid temperature increases, under gradual

changes only negligible amounts of misfolded proteins accumulate, indicating

that the HSR of C. reinhardtii efficiently avoids the accumulation of misfolded

proteins under conditions most likely to prevail in nature. The mathematical

model we developed is a flexible tool to simulate the HSR to different

conditions and complements the current experimental approaches.
1. Introduction
As a consequence of global warming, plants are more and more subject to heat

stress, a condition that can severely reduce crop yield [1,2]. Understanding how

plants react to such a stress is of crucial importance in developing metabolic

engineering approaches or treatments to improve crop plant resistance to heat.

In general, when exposed to increased temperature organisms react with a heat

shock response (HSR), which to a certain degree allows adaptation to the new

condition. However, while the HSR has been considerably investigated experimen-

tally, the complementary theoretical activities have been rather limited. In this

work, we seek to remove this gap by developing a mathematical model of the

HSR in the photosynthetic model organism Chlamydomonas reinhardtii and investi-

gate, in particular, the response dynamics under different experimental conditions.

By this mathematical approach to the HSR in C. reinhardtii, we show that at the

quantitative level, the HSR differs substantially if an increase in temperature of
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the same magnitude occurs rapidly, as often applied in typical

laboratory heat shock experiments, or gradually, as expected

in most natural environments.

The green microalgae C. reinhardtii is a widely studied,

easy to grow photosynthetic model organism with promising

industrial applications like biopharmaceuticals, biofuels

and hydrogen. Thus motivated, different aspects of the HSR

in C. reinhardtii have been experimentally investigated, as

reviewed, e.g. by Schroda et al. [3].

In both the land plant Arabidopsis thaliana [4,5] and the green

alga C. reinhardtii [6], the HSR is generally triggered by a heat-

induced accumulation of mis- or unfolded proteins and leads

to the activation of a heat shock transcription factor (HSF)

through a series of sensor and signalling events. The HSF, in

turn, promotes the expression of heat shock protein (HSP)

genes, and subsequently leads to the synthesis of proteins,

some of which act as chaperones responsible for refolding the

degenerated proteins back to their correct three-dimensional

structure [7]. The precise temperature at which the denatured

proteins accumulate depends on the typical temperature range

in which an organism grows [8]. For C. reinhardtii, it has been

shown that a temperature of T0 ¼ 368C is sufficient to detect a

HSR [9].

To investigate systematically the HSR dynamics and the

underlying mechanisms, we developed a mathematical

model based on available experimental data. The construction

of a mathematical model itself often provides a high degree of

insight, because based on the essential features of the system

under investigation it identifies the key components respon-

sible for the characteristic system properties [10,11]. It thus

allows discriminating between important and less important

entities and provides a powerful technique to verify whether

our general understanding of a system is basically correct

and whether the interacting molecular mechanisms that have

been identified experimentally are sufficient to reproduce

and thus explain observed behaviours.

One of the earliest theoretical studies of the eukaryotic HSR

considered mainly the influence of misfolded proteins and did

not include a detailed description of transcriptional regu-

lation [12]. Modelling of the transcriptional regulation was

firstly used to study prokaryotic systems, in particular E. coli.
This was done by Srivasta et al. [13] employing a stochastic

approach, and by Kurata et al. [14] with a deterministic model.

More recently, Rieger et al. [15] proposed a mathematical

model to describe the HSR in HeLa cells with a detailed model

of nuclear events. A model of the thermal adaptation in Candida
albicans, a fungal pathogen of humans, focuses on the auto-

regulatory mechanism involving HSF1 and HSP90 but does

not include a detailed description of transcriptional regu-

lation [16,17]. The modelling of the multi-scale heat stress

response in the budding yeast Saccharomyces cerevisiae is dis-

cussed by Fonseca et al. [18], and Sivery et al. [19] studied the

role of HSF1 during the HSR in mammals.

Here, we develop a data-driven mathematical model for

the HSR in the green algae C. reinhardtii with the main purpose

of (i) verifying whether our understanding of the mechanisms

of HSR are not only qualitatively but also quantitatively con-

sistent with experimental observations, and (ii) providing a

generic theoretical framework, by which new predictions can

be made (such as responses to chemical treatments or genetic

modifications) and thus novel hypotheses can be generated.

For this purpose, we first introduce the considered HSR signal-

ling network used to implement the mathematical description
and characterize the typical behaviour based on parameteriza-

tion by data from the literature. We then validate the model by

simulations of independent experimental data including exper-

iments with specific inhibitors and ‘double heat shock’

experiments. Finally, we employ the model to simulate

interesting conditions that have not yet been tested experimen-

tally, and we demonstrate the predictive power of the model

and its usefulness in providing a fundamental understanding

of the system’s dynamics.
2. Mathematical model
2.1. Model description
The design of the model is based on the underlying signall-

ing network inferred from experimental findings [6]. In

C. reinhardtii, the only HSF (among the two encoded in the

genome) known to be activated by heat shock is HSF1 [20],

which initiates the synthesis of HSPs [21]. HSP70A and

HSP90A are the predominant cytosolic chaperon complexes

and HSP70B and HSP90C the analogues in the chloroplast,

respectively [22]. As our model aims at a general description

of the HSR, we describe HSF1 as HSF in the model and only

consider one generic HSP (HP) which represents any HSP

present in C. reinhardtii.
Schmollinger et al. [6] performed a series of experiments

which led to a hypothesized signalling network (depicted in

fig. 11 in [6]). From these results, we derive the signalling

network schematically depicted in figure 1a by performing

the above simplifications and detailing the transcription of the

HSF and HSP genes. This signalling network represents the

base for building our mathematical model of the HSR. In

accordance with experimental evidence, a temperature increase

triggers the HSR by the accumulation of degenerated proteins

P#. Their presence activates a stress kinase (SK), which in the

active form SK* phosphorylates the heat shock factor HSF.

The phosphorylated (HSF*) and unphosphorylated (HSF)

heat shock factor can bind to the transcription factor binding

sites of various genes, coding for key proteins involved in the

HSR, including HSF itself and HSPs (HPs). In the model, the

amount of all these genes is described by one generic variable

G, and the transcription of different mRNAs is represented by

the individual transcription rates p. Binding of the active form

HSF* to the transcription site of genes G induces the production

of mRNA coding for HSP (mRHP) and for the heat shock factor

itself (mRF), whereas the inactive form HSF blocks the transcrip-

tion. The mRNAs are subsequently translated into the

corresponding proteins HP and HSF (with rates pHP and pF),

respectively. The increase in HSF concentration leads to a

higher occupation of the corresponding gene transcription site

with the inactive form. The increased concentration of chaper-

ones HP increases the repair of the degenerated protein state

P# to their functional form P until a new steady state is reached.

The full model is described by 12 dynamic variables (elec-

tronic supplementary material, table S1), each representing the

concentration of the corresponding network component. The

dynamics of these variables are governed by a set of ordinary

differential equations given in electronic supplementary

material, table S2, that follow from the considered reactions

and corresponding rate expressions given in electronic sup-

plementary material, table S5, where v describe regulatory

processes, n activation and deactivation steps, p synthesis

rates and h degradation rates.
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Figure 1. The dynamical model of the HSR. (a) Scheme of the signalling network used to model the HSR. This scheme is extracted from the experiments performed
by Schmollinger et al. [6] and inspired by the signalling mechanisms hypothesized in fig. 11 therein, to which we add gene transcription and apply some sim-
plifications as explained in the text. This signalling network represents the base to build our mathematical model of the HSR described in detail in electronic
supplementary material, §A. Temperature T acts via the Arrhenius Law vTP on the proteins P. Higher temperature increases n0P leading to more degenerated proteins
P#. This activates stress kinases SK (SK* when active) by a Hill kinetics vPS which increases phosphorylation of the heat shock factor HSF (HSF* when active). If HSF*
is bound to the gene G, mRNA for the heat shock factor HSF and for the heat shock protein HP is generated by the corresponding production rates p, respectively,
indicated by mRHP and mRF. The mRNA is translated into the proteins HP and HSF and degraded by rates h. HSF*G indicates HSF active and bound to gene, HSFG
indicates HSF inactive and bound to gene. (b – g) Typical behaviour of the model illustrated inducing a HSR via an increase of the temperature from 258C to 428C
applied at t ¼ 20 min (represented by a red background in the figures). (b) Owing to temperature increase at t ¼ 20 min functional proteins P are misfolded
leading to an increased P# level. (c) The degenerated proteins bring inactive stress kinases SK into their active form SK*. (d ) Due to active stress kinases, the heat
shock factor (HSF) is phosphorylated (HSF*). (e) The heat shock factor HSF binds to free gene loci G, the bound form HSF*G activates mRNA production, and HSF un-
binding blocks transcription. ( f ) The initiated gene transcription leads to mRNA production of the HSF and the heat shock protein as shown. (g) Owing to translation
of the corresponding mRNA, the HP concentration increases until the response is switched of. The small degeneration rate of the chaperon leads to a slow decrease
after the onset of the HSR. The normalization factors used to represent the concentrations in arbitrary units can be found in electronic supplementary material,
table S3. (Online version in colour.)
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For the majority of these rate laws, we assume mass

action kinetics and describe regulatory processes v by non-

linear dependencies. The effect of the temperature on the

denaturation (unfolding or misfolding) of proteins is

described by means of the Arrhenius Law, with an activation

energy in the range reported in the literature [23,24]. The acti-

vation (phosphorylation) of the SKs given by vPS obeys a Hill

kinetics. Furthermore, the action of the phosphorylated SK*,

the enzyme phosphorylating HSF, is described by a Michae-

lis–Menten behaviour as expected for typical enzymatic

kinetics. A detailed description of the mathematical model

can be found in electronic supplementary material, §A.
2.2. Typical behaviour of the model
To investigate the typical behaviour of the model, we simulate a

heat shock at time t ¼ 20 min by instantaneously increasing the

temperature from 258C to 428C. The inferred model parameters

are explained below. This scenario mimics a standard exper-

imental design, in which the temperature is rapidly increased

to induce a HSR. The time evolution of the concentrations of

the molecular species described by the model is depicted in

figure 1b–g where a red background indicates the period

during which a heat shock temperature is applied. These con-

centrations are normalized to a reference value for each panel,

as summarized in electronic supplementary material, table S3.

The quantities of figure 1b,c,e are normalized to the three con-

served quantities representing, respectively, the total amount

of [P] þ [P#], [SK] þ [SK*] and [G] þ [HSF *G] þ [HSFG], thus
the vertical scale represents the fraction over the total, allowing

for direct comparisons with relative values from experiments.

Quantities in figure 1d,f,g are expressed in arbitrary units.

Owing to the temperature increase, the functional proteins

become misfolded (concentration in figure 1b). The concen-

tration of the functional form P suddenly decreases due to the

nonlinear vTP relation and the misfolded form P# increases cor-

respondingly. The latter form induces the transition of the SKs

into their active form SK* (figure 1c). SK* phosphorylates the

HSF (figure 1d). The activated HSF* activates gene transcription

(figure 1e). The amount of free gene G decreases and the active

form with phosphorylated HSF bound, HSF*G, increases

rapidly. Simultaneously, the gene bound to the inactive form

of HSF (HSFG) increases as well, but with a slower dynamics.

The activated gene induces mRNA production (figure 1f) for

both HSF and HSP. These mRNAs are translated, leading to

an increase of the HSF itself (figure 1d) and of the HSP

(figure 1g). The increased chaperon level (figure 1g) leads to

re-folding of degenerated proteins into their functional form

(figure 1b), which eventually leads to a termination of the

response. This analysis illustrates that the model is able to

realistically describe the HSR.
2.3. Model parameterization
A general challenge in modelling biological systems is the

identification of system parameters because often these are

not directly accessible experimentally. None of the rate con-

stants listed in electronic supplementary material, table S4
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are explicitly known. Still for some of them a reasonable range

can be estimated from databases [25]. In particular, we ensured

that the rate constants kP, kFG and kF*G were kept in a range

lower than the diffusion controlled limit of enzymatic reaction

rates estimated in [26, tables 6–8]. We further select a value for

kF*G with the same order of magnitude of the activator associ-

ation rate reported in [27]. Considering this information, we

first manually tuned all the parameters to reproduce the

qualitative behaviour of the experimental data. These par-

ameters are referred to as the ‘fiducial parameter set’,

reported in the second column of electronic supplementary

material, table S4. We then used this fiducial parameter set as

a starting point for a deeper investigation of the parameter

space represented by the 20 rate constants. For this, we divided

the experimental data available from the literature in two

groups, one used to calibrate the model and the other to vali-

date the model. The data used for calibration comprise the

controls of feeding experiments performed in Schmollinger

et al. [6] including six time course curves of HSF1 mRNA con-

centration, and six curves for the mRNA coding for HSP90A,

under heat shock and no inhibitor treatment. These data are

shown in figure 2a,b. We have then defined an objective func-

tion reflecting the quality of the fit by a root mean square

(RMS) of the deviations between model simulations and exper-

imental data. We first performed a Monte Carlo (MC) scan of

the parameter space to gain insight into its structure and then

a gradient search to find a set of parameters which locally

optimizes the objective function.

To perform an MC exploration of the parameter space, we

assumed a flat prior probability distribution between half and

two times of the fiducial value of each parameter. Then, by ran-

domly extracting a value for each parameter from these

distributions, we generated 105 randomized parameters sets.

For each set, we computed the corresponding value of the

RMS with respect to the data of the first group. We obtained

values of the RMS ranging approximately from 0.13 to 0.70.

The fiducial parameter set has a RMS w.r.t. the controls of

the feeding experiments of 0.147, which is already remarkably

close to the lowest values obtained for the random parameter

sets. For illustration, we select the best 300 parameter sets, cor-

responding to the lowest values of the RMS, and we show in

figure 2c (for each of the 20 parameters separately) the values

of the RMS versus the value of each parameter.

We observe that for the vast majority of the parameters no

preferred interval in which the lowest values of the RMS occur

more often can be identified. This observation means that

many different configurations in the parameter space would

allow us to obtain a small RMS with respect to the data.

It is thus important to note that the calibration data we used,

which only provide a relative quantification of two molecular

species, namely mRF and mRHP, are not sufficient to identify

the model parameters uniquely, nor to provide estimates

of these parameters independently of the other parameter

values. To investigate these correlations further, in electronic

supplementary material, §B, we also investigate pair-wise

relationships among model parameters (see electronic sup-

plementary material, §B and figure S5). The limited available

data for model calibration stresses the importance of an accu-

rate model structure, which here was constructed based on

the experimental findings in [6].

Thus, having shown via a global random scan of the par-

ameter space that almost no region of the parameter space

explored is preferred by the RMS, we decided on a local
optimization procedure, thus performing a gradient search

starting from the point in the parameter space represented by

the fiducial set of parameters, employing the steepest descent

method. As shown in figure 2d, our algorithm stopped after

several iterations and returned the set of parameters listed in

the third column of electronic supplementary material,

table S4 as final values. The corresponding value of the RMS

w.r.t. the controls of the feeding experiments is 0.137. This

value lies very close to the lower boundary of the range

obtained with randomized sets (0.131 to 0.700). We prefer it

over randomized sets with a slightly lower RMS because it is

closer to the manually tuned set of parameters which already

performed well, and it should lie very close to a local minimum

(thus RMS should only increase if we perturb the parameters).

We accept this set as the ‘final parameter set’ to perform all sub-

sequent model analyses, because it adequately reflects the

limited experimental data available, and with these parameters

the model exhibits the essential features of the heat shock

system, which include a rapid initial response followed by

the production of HSPs leading to the removal of misfolded

proteins. A more detailed description of the calibration is pro-

vided in electronic supplementary material, §B. Therein, we

also perform a sensitivity analysis to assess how small vari-

ations in each of the 20 rate constants influence the RMS

(electronic supplementary material, figure S6).
3. Results and discussion
3.1. Model validation by experimental data
After parameterization, we used the model with its inferred

parameters to quantitatively simulate the dynamics of several

independent key experiments to validate the model and

investigate underlying dynamical properties. We first simu-

lated the feeding experiments performed in Schmollinger

et al. [6] (§3.1.1), where specific inhibitors have been applied

in different concentrations and the effect on the HSR

was measured. Subsequently, we simulated the double heat

shock experiments performed in Schroda et al. [28], where

an additional heat shock was applied to quantify the

minimum relaxation time needed to observe a full second

response (§3.1.2). Finally, we tested the model against

measured HP concentrations [29] (§3.1.3).

3.1.1. Inhibitor treatments
In the systematic experiments reported in Schmollinger

et al. [6], C. reinhardtii cells have been fed with different con-

centrations of specific inhibitors, and the effect on the HSR

has been observed by monitoring the temporal evolution of

mRNA concentrations of mainly the HSF1 and HSP90

genes. We specifically consider the two inhibitors staurospor-

ine, a protein kinase inhibitor [30], and radicicol, a specific

inhibitor of HSP90 [31]. We simulate these experiments by

altering the corresponding rate constants to mimic the effect

of the inhibitors, and apply the same heat shock conditions

as in the experiments, simulating a sudden temperature

increase from 258C to 408C at t ¼ 0 min.

3.1.1.1. Staurosporine
Staurosporine is a protein kinase inhibitor. We, therefore, simu-

late the effect of applying staurosporine by lowering the rate

constant k0F, which determines the reaction rate n0F, by which
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Figure 2. Model parameterization. (a,b) Data from the controls of the feeding experiments of Schmollinger et al. [6]. These correspond to six curves representing the
time evolution of the concentration of mRNA coding for HSF1 (a), and six curves for the mRNA coding for HSP90A (b), under heat shock and no inhibitor treatment.
The superposed continuous thick black line shows the model prediction obtained with the final parameter set. (c) Projection w.r.t. each of the 20 parameters of the
Monte Carlo (MC) scan of the parameter space, for the points corresponding to the 300 random parameter sets with lowest RMS among the 105 sets randomly
generated. The RMS corresponding to these 105 sets ranged between 0.130 and 0.700, while this panel is strongly magnified and only shows parameter sets with
RMS between 0.130 and 0.139. The vertical line in each sub-panel indicates the fiducial value of the corresponding parameter, i.e. the starting point of the two
alternative calibration approaches used, the MC described in this panel, and the gradient search eventually employed. The yellow star in each sub-panel indicates the
parameter values finally retained after the gradient search, referred to as the ‘final parameter set’ (electronic supplementary material, table S4). These values are
relatively close to the fiducial values, and the corresponding RMS of 0.137 is close to the lower extreme of the range of values obtained with the MC (0.130 to
0.700). (d ) RMS decrease for subsequent iterations of the gradient search algorithm. (Online version in colour.)
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SK activates the HSF. The simulation results are shown in

figure 3a, together with redrawn experimental data from

fig. 1B of Schmollinger et al. [6].

The simulations clearly exhibit a reduced maximal

HSF mRNA concentration and a delayed response in a dose-

dependent manner which is in accordance with the
experimental data (figure 3a). Because the experimental data

are normalized to the maximal response, a direct comparison

of the simulated concentrations is not possible and the applied

staurosporine concentration cannot directly be translated into a

reduced rate constant. However, the simulated responses for k0F
at its nominal value of 1.09 s21 and for values reduced to 60%
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Figure 3. Comparisons between model predictions and data. Feeding experiments by Schmollinger et al. [6] using staurosporine (a) and radicicol (b). (c) Simulating
the double HS experiment and comparison with the corresponding data from Schroda et al. [28]. As in that experimental study, two HSs of 30 min duration
each were applied to our model with an interval of 2, 3, 4 and 5 h (blue, green, black and yellow curve, respectively), and compared to the response to
only one HS of 30 min duration (solid line without second increase). We see that a full HSR, in which the increase in the concentration of HSP (and thus in
the ARS enzyme activity) has approximately the same magnitude as for the first HS, is possible only when the second HS occurs at least 5 h after the first
HS. (d ) Comparison between the model predictions for the variation of the concentration of HP under HS and the corresponding data from Mühlhaus
et al. [29]. The scale on the left side refers to the simulation results, the scale on the right side to the data. An exact correspondence of the two scales is
not possible because we lack the necessary information. (Online version in colour.)
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and 10% of that value led to a remarkable agreement between

simulation and experiment, in which staurosporine was

applied in concentrations of 20 nM and 1 mM, respectively.

Not only is the qualitative behaviour well captured but also

the timing of the response as well as the relative reduction of

the mRNA signal is quantitatively reproduced.

3.1.1.2. Radicicol
Radicicol is a specific inhibitor of HSP90 activity. Therefore,

we simulate the effect of radicicol by lowering the rate

constant kP, which determines the reaction rate nP, by which

the HSP refold the unfolded proteins P# back to their func-

tional form. The simulation results and the corresponding

data (reproduced from fig. 4B of Schmollinger et al. [6]) are

displayed in figure 3b for three values of the rate constant

kP corresponding to the reference value of 9.938 (mM s)21,

and for a reduction to 60% and 30% of that value. We see

that decreasing the rate constant results in an increased

amplitude and delayed attenuation of the HSR. The data

from Schmollinger et al. [6] shown in the same panel for a

control and radicicol concentrations of 10 and 100 mM

demonstrate that a similar behaviour is observed in the

experiments. Interestingly, the magnitude of the responses
are qualitatively reproduced by our model and appear

much more pronounced in the experiment.

3.1.2. Double heat shock
In Schroda et al. [28], the ARS gene that encodes for the enzyme

arylsulfatase was placed under control of the HSP70A promoter.

The study demonstrated that whenever the HSP70A gene is

activated also the ARS enzyme is produced. Under the assump-

tion of a direct proportionality between the concentration of the

ARS enzyme and its activity, the authors could monitor

the activity of the HSP70A promoter by measuring the ARS

activity. This construct was then used to systematically expose

C. reinhardtii cells to two subsequent heat shocks to determine

the minimum time the cell needs to observe a full HSR for the

second heat shock. It turned out that the heat shock system

relaxes within approximately 5 h to its initial state.

To compare the experimental results to our model simu-

lations, we extended the model accordingly, also including

transcription and translation of the ARS enzyme (for details

see electronic supplementary material, §C.2, where we also

provide the corresponding equations and parameters values).

In figure 3c, we display the simulation results and the corre-

sponding experimental data redrawn from fig. 7b of Schroda
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et al. [28], where two heat shocks of 30 min duration were

applied with the intervals of 2, 3, 4 and 5 h, respectively. It

can clearly be observed that both in simulation and experiment

the second HSR increases in intensity with increasing time

between the treatments, eventually reaching its full activity

after approximately 5 h. Again, the model results are in good

qualitative agreement with the experimental data, but clear

quantitative deviations can be observed. For example, the

simulations systematically display an earlier response to the

heat shocks (first and second) than the experimental data.

While the exact reason for this is not known, it is striking that

also the experimental response to the first heat shock occurs

later than in the control experiments used to calibrate the

parameter sets (figure 2a,b). A possible explanation for these

discrepancies is a considerable time lag introduced by the tran-

scription and translation of ARS. Further, it must be considered

that the double heat shock experiment was performed with a

transformed line, and potentially the behaviour deviates

slightly from the wild-type. However, the qualitative agree-

ment between simulation and data provides a further

validation of our model. Most important, it also illustrates

the flexibility of our model, which as we have shown can

easily be extended to include further reactions. This is of par-

ticular relevance in view of its possible applications, e.g. to

characterize the production of any protein whose correspond-

ing gene has been put under the control of temperature by

means of fusion with a HSP promoter.

An interesting observation when analysing the model

simulations is that even after 5 h, the concentration of HSP

does not yet relax to its initial value before the first heat

shock. While the second heat shock leads to misfolded proteins

and triggers an almost full HSR in terms of the observed HSP70

promoter activity, the amount of misfolded proteins is dramati-

cally lower than during the first heat shock (see electronic

supplementary material, figure S8 and §C.1). This indicates

that the production of HSF resulting from the first HSR

and the accumulation and slow degradation of HSP have the

role of preparing the organism for future stress situations

similar to those encountered in the past. Thus, the slow turn-

over of HSP may implement a short-term molecular memory

of experienced heat stress, similar to the observed short-

term memory of previously experienced light stress recently

discussed and described by a mathematical model in

Matuszyńska et al. [32].

The model simulations allow for a novel interpretation of

the experimental double heat shock results. While the activity

of the HSP70 genes seemingly indicates a full HSR, our simu-

lations suggest that the first and second response differ quite

fundamentally. During the first exposure, HSP needs to be

synthesized de novo from practically zero concentration

and, therefore, the corrective response to refold the denatured

proteins is slow, whereas in the second heat shock after 5 h

the remaining HSP level is still sufficient to rapidly counteract

the temperature-induced denaturing of proteins and the total

level of misfolded proteins remains very low. However, even

this low level is sufficient to induce expression of the HSP

genes, so that the mRNA level during the second response

is as high as during the first.
3.1.3. HP expression
Unlike the study of the feeding experiments, where model

predictions and experimental data were compared at the
level of mRNA production, we next compared our simu-

lations with time course data of the HP concentration [29].

To simulate the experiment we apply at t ¼ 0 min a heat

shock by increasing the temperature from 258C to 428C. We

compared the model simulated behaviour of HP with the

experimental data on HSP70A, HSP70B and HSP90.

Figure 3d shows that the model reproduces well the quali-

tative behaviour of the data. Although the model predicts a

slightly faster increase in HP concentration during the first

100 min than experimentally observed, it reproduces the

key feature that increase is initially slow, then accelerates,

while at later times the HP concentration again slightly

decreases. Quantitatively, experimental data are provided in

terms of the z-score, measuring the distance of single data

points from the mean in terms of standard deviations. As

the information needed to convert this scale to concentrations

is not available, we superpose our simulation results and the

data, and indicate the two different scales of the y-axes.
3.2. Modelling natural temperature variation
As demonstrated above, our mathematical model, which has

been calibrated to control experiments only, can reproduce

drug treatments, the double heat shock experiments and

the data on HP abundance reasonably well. The agreement

of simulation results and experimental data therefore sup-

ports the notion that our current understanding of the HSR

is basically correct. Our model can therefore serve as a theor-

etical framework in which data can be interpreted in a

quantitative way. Another purpose of model building is the

ability to make novel predictions. We have therefore employed

our model to simulate scenarios that provide insight into our

understanding of the HSR, but which are either difficult to

test or have not yet been tested experimentally, as further

exemplified in electronic supplementary material, §D.

To reproduce the typical experimental set-up employed in

many studies, we have so far considered step-wise temperature

increases as heat shocks throughout this work. However, these

situations do not reflect the natural environment. Hence, what

kind of heat shock is a C. reinhardtii cell going to experience in

the wild? This green algae is widely distributed around the

world in various environments such as soil and fresh water.

Thus, a natural heat shock condition it encounters is the daily

variation of the temperature, which is low at night, increases

during the day, reaches a peak and then drops again. To inves-

tigate the natural HSR in C. reinhardtii, we simulate an idealized

temperature variation mimicking a hot day by imposing a

sinusoidal variation between 228C and 408C with a period of

1 day and a maximum at 15.00 (figure 4g).

As we can see from figure 4a– f , the concentrations of the

mRNAs (figure 4e) and of the HSF (figure 4c) have a steep

increase, which leads to a maximum and then a much slower

decrease. In particular, in figure 4a, we can appreciate the

peak in the concentration of degenerated proteins at approxi-

mately 06.00. This dynamic is due to the activation of the SK,

which follows a Hill kinetics. It is this HSR which lowers the

concentration [P#] after 06.00. The response remains until the

evening and during this time the accumulation of P# due to

the increase in temperature is counterbalanced by the HSR

(this balance originates the second peak in figure 4a). When

the temperature becomes sufficiently low in the evening the

level of unfolded proteins P# decreases considerably, thus

there is no need of a HSR until the next day.
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Importantly, the accumulation of unfolded proteins

remains considerably smaller than 0.25% of the total

amount of proteins ([P] þ [P#], figure 4a). This is remarkable

because this value is more than one order of magnitude smal-

ler than that obtained for a stepwise increase in the

temperature, figure 1b. As unfolded proteins are undesired

by the cell, it is meaningful that the HSR, which for a

sudden increase of 208C is not fast enough and allows for a

certain transient accumulation of unfolded proteins, is on

the other hand perfectly capable of preventing the accumu-

lation of unfolded proteins during a heat shock like those

that occur in nature.

The circadian clock of C. reinhardtii is well studied [33,34]

and it is known to regulate also some HSP as e.g. HSP70B,

which exhibits a maximal concentration at dawn. The HSR
that we model is not a circadian clock, and has no oscillatory be-

haviour on its own. We, nevertheless, observe from figure 4b– f
that the HSR is activated just before dawn, i.e. at approximately

06.00, when the concentration of P# shown in figure 4a becomes

sufficiently high to trigger the HSR. Then, the intensity of the

HSR reaches a maximum approximately 1.5 h before the maxi-

mum of the temperature, which occurs at 15.00. It then drops

slowly during the rest of the day, it is largely absent when

night comes, and it remains off over night. We observe in

figure 4a– f that, as soon as the temperature increase has led

to a sufficient accumulation of P# to trigger a HSR, this response

is strong enough not only to handle the currently present

amount of P#, but also to prevent the subsequent temperature

increase (which still continues for hours) to lead to an accumu-

lation of [P#] above the level which triggered the initiation of the
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HSR. This allows the cell to remain exposed to high tempera-

tures for several hours during the day accumulating far less

unfolded proteins than when the temperature increase occurs

within minutes instead of hours. This observation allows us

to speculate and propose the hypothesis that the HSR might

be adapted to naturally occurring, smooth daily temperature

variations rather than abrupt temperature changes. The sys-

tem’s parameters could thus be the result of adaptation to

variable thermal environments, such that the HSR would be

well suited to handle daily temperature fluctuations.

To investigate how the maximum concentration of

unfolded proteins accumulated during a heat shock depends

on the dynamics of the temperature increase from the initial

value Tlow to the final value Thigh, we systematically simu-

lated heat shocks in which the temperature raised from

Tlow ¼ 258C to Thigh ¼ 428C in a cosinusoidal way during a

time t and subsequently stayed at Thigh (figure 4h). We

screened for various values of t as shown in figure 4i. We

observed that for an instantaneous increase in temperature,

up to increases which require approximately 1 min (similar

to those provided to cells during experiments), the maximum

value of the degenerated protein concentration does not

change, and exhibits a very large value. For t between

approximately 1 and 100 min there is a steep fall, and another

plateau is reached for t larger than approximately 100 min.

These are the timescales which a Chlamydomonas cell is

more likely to experience for an increase of temperature in

natural conditions. The accumulated concentration of HSP

is much lower than for shorter times t, contributing to gener-

ate the hypothesis that the HSR dynamics might be adapted

to natural temperature variations (note that the scale on the

horizontal axis of figure 4i is logarithmic). In electronic sup-

plementary material, §E, we show that these results are

robust against changes in the parameters m and P0 of the

Hill kinetics term vPS by which SK gets activated (electronic

supplementary material, table S5).

One of the main advantages of a mathematical model,

inferred and calibrated from experiments, is that it allows situ-

ations to be simulated that are difficult to test with experiments

and enables computation of quantities that are difficult to

measure. To outline the potential of our model, we employed

it to simulate systematically further situations. We have been

able, as described in electronic supplementary material, §D.1,

to show the ability of the system to acclimate to temperatures

higher than usual during heat shocks longer than 3 h by shifting

to a new steady state. Two distinct phases are clearly visible in

electronic supplementary material, figure S9a– f: an early heat

shock lasting for about the first 3 h, and a late heat shock in

which the system shows acclimation (a new steady state is

reached), compatible with the experimental findings of [35].

We have subsequently studied in electronic supplementary

material, §D.2 how the steady-state concentrations depend on

the temperature at which the steady state is reached. As

shown in electronic supplementary material, figure S9g– l, for

not too high temperatures the concentration of unfolded pro-

teins [P#] is kept very close to zero. On the other hand, for too

high temperatures the HSR cannot prevent the accumulation

of degenerated proteins and the cell dies. We have finally

been able to systematically investigate how the accumulation

of HSPs depends on the combination of temperature and

duration of the heat shock in electronic supplementary

material, §D.3, which we illustrate in electronic supplementary

material, figure S9M.
4. Conclusion
In this work, we have developed a data-driven mathematical

model for the HSR in C. reinhardtii, a photosynthetic model

organism. We have extracted the signalling network structure

from various experiments, and experimental data are used

for model parameterization.

The model is based on a number of simplifying assump-

tions. Foremost, we assume that the simulated cells are close

to a stationary state, in which the total numbers of proteins

remain constant. This, however, may be inappropriate if either

extreme and prolonged stress conditions apply, or if synchro-

nized cells in periodic diurnal conditions are considered.

Especially the latter is important for our predictive study regard-

ing the response to natural daily temperature variations. It is

well known that HSPs also underlie a circadian rhythm. For a

future study, it would therefore be interesting to link the gene

expression dynamics with the output of a model of the circadian

clock, in order to study how the results obtained here would be

influenced by including dynamic protein concentrations. Such

an extended model would moreover provide the possibility to

investigate and predict how the HSR depends on the time of

the day when it is applied.

For model validation, we have tested the model’s behav-

iour with independent experimental results extracted from

the literature; the following were not employed for the cali-

bration: feeding experiments, double heat shock experiments

and HP expression. By this, we have shown that the model is

able to reproduce very well the main features of various exper-

imental datasets. This capability shows that our conclusion

about the signalling mechanism is plausible and robust. Even

though the model is based on simplifying assumptions, it exhi-

bits very good agreement with experimental observations.

Moreover, it allows analysis of the HSR at different signal

levels which are not easily accessible in experiments. An

example is represented by our analysis of the double heat

shock experiment, where it is interesting to note the (simulated)

behaviour of e.g. SK* which is usually not measured in

experiments (electronic supplementary material, figure S8).

We then investigated the system’s response to a smooth

and more natural variation in temperature mimicking a hot

day (figure 4a– f ). An interesting observation of the simu-

lations was that the percentage of misfolded proteins does

not exceed 0.25% of total proteins. While these numbers are

not experimentally validated and should therefore be inter-

preted with care, it is remarkable that this fraction is a

factor of 20 lower than the predicted 5% unfolded proteins,

when a sharp temperature increase (of the same amount of

degrees) is simulated (note the different scale of the vertical

axis in figure 1b). Likewise, and possibly even more impor-

tant, the maximal fraction of SK that is activated amounts

to 80% upon a sharp temperature increase (figure 1c), while

it reaches only approximately 4% for a smooth temperature

variation (figure 4g). These results indicate that for the slow

temperature increase the system is not really under stress,

whereas the sharp temperature increase, usually applied in

heat shock experiments, imposes severe stress, activating

the vast majority of the available SKs.

We have finally studied how the maximal concentration of

unfolded proteins reached during heat shock depends on the

time t of temperature increase from the minimal to the maxi-

mal value (figure 4i). This systematic investigation has

shown that for times t shorter than 1 min (i.e. a sharp increase
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in temperature) the maximal concentration of unfolded pro-

teins is approximately 20 times higher than for increases that

are slower than approximately 100 min. This result supports

the notion that the HSR of C. reinhardtii is able to keep the con-

centration of unfolded proteins at negligible levels if the

increase in temperature occurs on a timescale of several min-

utes to hours, in sharp contrast to the sudden increases

usually applied in experiments. This indicates that the HSR

of C. reinhardtii is indeed tailored to handle natural temperature

variations due to a match of the intrinsic timescale of the HSR

system, which could be easily tested in experiments. Moreover,

as we have shown with several applications, our model pro-

vides a framework to explore further situations of interest

and to generate new hypotheses to be tested by experiments.

Whereas models such as the one presented here may help

greatly to elucidate molecular mechanisms and enable the

interpretation of experimental data in a sound theoretical

framework, they are clearly idealized and represent an ‘aver-

age’ cell. Thus, it is not straightforward to employ this model

if one wishes to make predictions about the adaptive behaviour

of a cell population, in particular, over longer timescales. How-

ever, in principle it seems possible that ensembles of models

such as the one presented here, each with slightly modified

parameters to reflect the plasticity found within a natural
population, can be used to predict in which direction a

population [36], or even whole ecosystems and their stoichi-

ometries [37], may evolve under prolonged environmental

perturbations.
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